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DECOMPOSITION OF GROUP-VALUED
ADDITIVE SET FUNCTIONS

by Tim TRAYNOR

Introduction.

This article is concerned with the decomposition of additive set
functions with values in a topological group. The main object is
to obtain Lebesgue-type decomposition theorems for such functions.
However, since the method has some other interesting applications,
we have decided to present the general theory :

Given a finitely additive set function w, defined on a ring H
of sets, with values in a commutative Hausdorff topological group,
and given an ideal K of H, we study representations of m as the
sum of two other additive set functions, one essentially supported on
K, the other vanishing on K. We find that such a decomposition must
be unique and exists under mild conditions. The main condition,
s-boundedness, was introduced by C.E. Rickart[l] to obtain a similar
decomposition, with respect to a-ideals, of additive set functions
taking values in a normed space. For complete spaces, this condition
is equivalent to the monotone convergence condition used by M. Sion
[2] in his extension theorem. In this form, s-boundedness allows a
direct construction of the decomposition, by taking certain limits.

In the second section, we apply the general theorem to obtain
two Lebesgue-type decompositions, one for the null set notion of
absolute continuity, the other to (the group-valued version of) the
^, 5" notion of absolute continuity.

We close with some other applications and an indication of the
corresponding theory for outer measures.
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Notation

In all that follows,

N is the set of non-negative integers ;
A\B ={s E A : s ^ B} ;
K^ = {U A .̂ : A is a sequence in K }

The symbol Y denotes a commutative Hausdorff topological
group, written additively, and V is a base for the neighborhoods
of 0 in Y, consisting of symmetric sets. We recall that Y is metrizable
if and only if Vcan be chosen to be countable. We suppose that

H is a ring of subsets of a space S, and
m is finitely additive on H to Y.

1. General decomposition theorems-

Let K be an ideal of H. We are concerned here with the problem
of representing m as the sum of two additive functions, one vanishing
on K, the other nearly supported on K (in a sense to be made precise
in 1.3). For this purpose, we will impose on m the following con-
dition of C.E. Rickart[l] ''

1.1. DEFINITION.- m is s-bounded on H iff for every disjoint
sequence A in H, w(A.) -^ 0.

Remarks. — If H is a a-ring on which m is o-additive, then m
is s-bounded. If Y is a locally convex space, a finitely additive
s-bounded function is bounded. (See Rickart's proof for normed
spaces, [1, p. 655 ])(1).

It is easy to prove the following lemma, which gives the form
of s-boundedness which best suits our purposes.

1.2. LI:MMA . m is s-bounded iff for every increasing or
decreasing sequence A in H, m (A.) is Cauchy.

{ l ) This result is actually true for any commutative topological group in which
singleton sets are bounded..
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1.3. DEFINITIONS

1) m is nearly supported on K iff for every V in V, there exists
E in K such that m(A) G V, whenever S\ E D A G H.

2) m vanishes on K iff m(E) = 0, for all E in K.

1.4. DEFINITIONS. - We put

m^(A) = limg m(A 0 E) and m^(A) = lim^ m(A\E),

as E runs over K directed upward by inclusion, provided these
limits exist.

The following result indicates that the desired decomposition
must be given by 1.4. (and is therefore unique).

1.5. LEMMA. — Ifm is the sum of two finitely additive functions
m^ and m^ on H to Y such that m^ is nearly supported on K and
m^ vanishes on K, then m^ = m^ and m^ = m^ on H.

Proof. — Suppose m, m^ and m^ are as described. Given V in V,
choose EQ in K such that for all A in H, m^(A\Eo) e V. Tlien,
for all E in K containing E^ and each A in H,

m(A H E) = m^(A U E) + m^(A 0 E)

= m^(A 0 E)

= m, (A) - m, (A\ E)^v—/ "^

E m.(A) + V,

and

m(A\E) = m^(A\E)+ m^(A\E)

= m,(A\E)+ m^(A)

m^(A) + V.

Hence lim^, m(A H E) = m^(A) and linig m(A\E) = m^(A), as
required.

The following is the key result, giving the properties of m^
and m^
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1.6. THEOREM. - Suppose that m is finitely additive on H to Y.
// K is an ideal of H and one of m^ and m°^ is defined on H to Y,
then so is the other, and m = m^ + m°^ on H. Both are then finitely
additive on H ; a'additive, if m is a-additive : s-bounded, if m is
s-bounded, Moreover, m°^ vanishes on K and, if m..(S)a!so exists,
m^|H is nearly supported on K.

Suppose Y is metrizable and m^(A) exists for all A in H U {S}.
If either

(a) K is a a-ideal (so that K^ = K)
or (b) H is a a-ring on which m is a-additive,

then there exists an E in K such that
0

m^(A) =m(A 0 E) and w^(A) =m(A\E) , for all A in H,

and

w^(S) =w(E).

Proof. - For all A in H, m(A) = m(A 0 E) + m(A\E), for
all E in K. Thus, since subtraction is continuous,

m (A) = lim^ m (A 0 E) + lim^ m(A\E),

whenever one of the two limits exist.

Finite additivity is a consequence of continuity of addition.
Let A be in H. Since m^(A) exists, given any V in V, there

exists EQ in K such that w(A H E ) - m(A 0 E^) E V, whenever
EQ C E E K. Then, for all B in H contained in A, we have

E^ C (B 0 E) U E^ G K,

and calculation shows that m(B H E ) - w(B 0 E ) E V. Thus ,
lim^m(B H E) exists uniformly for A D B E H.

Now, suppose that m is a-additive on H and B is an increasing
sequence in H with union A belonging to H. Then, we use the uniform
convergence just proved to interchange limits :

w^(A) = lim^ m (A H E) = lim^ lim^ m(B^. n E) = lim, lim^ m(B, 0 E)

= lim^. w^(B<).
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Thus, m^ is a-additive on H. Since m^ = m — m^ on H, it
too is a-additive on H.

Suppose that m is s-bounded, let A be a disjoint sequence in
H, and let V in V be given. Using the definition of m^, for each
i in N, choose E .̂ in K, contained in A .̂ with m^(A? -m(E^) E V.
Since m is s-bounded, m(E^) -^ 0, so eventually m.,(A.) E V + V.
This shows that m^ (and hence m^) is s-bounded on H.

It is evident that m^ vanishes on K. If, in addition, m.,(S)
exists, we repeat an argument given above to prove that lim^. m(A H E)
exists uniformly for A in H U {S}. Thus, we may choose an E in
K such that, for all A in H, m^(A) E m(A 0 E)+ V, so m^|H is
nearly supported on K.

To prove the remarks about the metrizable case, let V., / E N,
form a base for the neighborhoods of 0 in Y. Again using uniform
convergence, we choose, for each / in N, E'^ in K such that E^ ^ D E^.
and m^(A) - m(A H E^) E V^., for all A in H U {S}. Then, for all
A in H U {S}, m^(A) = lim^. m(A 0 E^.). Let E be the union of the
E' and let A be in H U {S}. Then,

(a) if K is a a-ideal, we have m^(A\E) = l im^w(A\E n E;.) = 0
so m^(A) = m^(A 0 E) = m(A 0 E) ;

(b) if K is not necessarily a a-ideal, but H is a a-ring on which
m is a-additive, then w^(A) = l im^m(A H E^ = m ( A 0 E). Thus,
in either case, m^(A) = m(A H E), for all A in H U {S}.Also, for
A in H, m^(A) = m(A) — m^(A) = m(A\E)« This completes the
proof.

The essential work of establishing the decomposition theorem is
now done. We need only introduce hypotheses ensuring that m^
and m° exist.i\.

1.7. THEOREM. - Let m be a finitely additive s-bounded function
on the ring H with values in Y. // K is an ideal of H and m[K] has
complete closure (1), then m is the sum of unique finitely additive
functions m^ and m^ on H to Y such that m, is nearly supported
on K and m^ vanishes on K. The m, are s-bounded ; a-additive if
m is o-additive.

(1) In case Y is a quasi-complete locally convex space, this condition is automa-
tically satisfied, since an s-bounded additive function is bounded.
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In case Y is metrizable and either
(a) K is a a-ideal (so that K^ = K), or
(b) H is a a-ring on which m is a-additive,

the completeness condition may be dropped. Then, there exists an
E in K^ such that m^A) =m(A H E) and m^A) =w(A\E),for all
A in H.

Proof. ~ we need only prove that, under the completeness
condition, or if Y is metrizable and (a) or (b) holds, m^(A) exists
in Y, for all A in H U {S}. The other statements follow immediately
from 1.5 and 1.6.

Now, for all A in H U {S}, lemma 1.2 implies that for every
increasing sequence E in K, m (A 0 E,) forms a Cauchy sequence.
Hence, the elements m (A 0 E), E in K, form a Cauchy net, (Sion
(2, lemma 2.5)). Under the completeness condition, this net converges.

If Y is metrizable, but not necessarily complete, we think of
Y embedded in its completion Y. Then, m^(A) exists in Y, for
all A in H U {S}. But then, if (a) or (b) holds, there exists, by 1.6,
E in K^ such that, for all A in H U {S}, m^(A) =m(A H E), which
is already in Y.

2. Lebesgue decomposition.

In this section, we apply the general theory to obtain two
Lebesgue-type decomposition theorems. In addition to the previous
notation, Z is another commutative topological group, and n is an
additive function on H to Z.

2.1. DEFINITIONS.

1) N is n-null i f f N G H and <A) = 0, whenever N D A E H;
ffi = = { N : N is n-null}.

Vt

2) m is n-continuous iff m(N) = 0, for all N in 9^.

3) m is nearly n-singular iff for each V in V, there exists N
in 51 with m(A\N) C V, for all A in H.w

4) m is n-singular iff there exists N in 91^ with m(A\N) = 0,
for all A in H.
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The Lebesgue decomposition theorem for this type of n-continuity
is the following :

2.2. THEOREM. - Let m be finitely additive and s-bounded on
H to Y and n be finitely additive on H to Z. // the range ofm has
complete closure, then there exist unique finitely additive functions
m^ and m^ on H to Y such that m = m^ + m^, m^ is n-continuous,
and m^ is nearly n-singular. Both are s-bounded functions ; a-additive,
if m is o-additive.

Suppose, in addition, that Y is metrizable and H is a a-ring.

(a) // n is a-additive, then m^ is n-singular.

(b) // m is a-additive, then there exists a countable union E
of n-null sets with m^(A\E)= 0, for all A in H.

In these two cases, the completeness condition may be dropped.

Proof. — Let K =^,. Then K is an ideal in H. If His a a-ring
on which K is a-additive, then K is a a-ideal. The theorem now follows
from the definitions and theorem 1.7.

The following alternative notion of absolute continuity is often
used for additive functions.

2.3. DEFINITIONS.

1) m is topologically n-continuous if f for every V in V, there
exists a neighborhood W of 0 in Z such that m (A) ^ V, whenever
A G H and n(E) e W for all E in H contained in A.

2) For A in H, m^ denotes the restriction of m to A :

m^(E) = m(A n E), for all E in H.

3) We say that m is nowhere topologically n-continuous iff
the only members A of H for which m^ is topologically n-continuous
are the m-null sets.

Remark. — In general, the two types of n-continuity are distinct.
However, if H is a a-ring, n and m are a-additive and Z is metrizable,
the two notions coincide [4].

The following is the Lebesgue decomposition theorem for topo-
logical n-continuity.
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2.4. THEOREM. — Let m and n be finitely additive on H to Y and
Z, respectively. If m is s-bounded and the range of m has complete
closure, then there exist unique finitely additive functions m^ and
m^ such that m = m^ 4- m^, m^ is topologically n-continuous, and
m9 is nowhere topologically n-continuous. Both are s-bounded ; they
are a-additive if m is a-additive.

If Y is metrizable, H is a-ring, and one of m and n is o-additive ,
the completeness condition may be dropped. In this event, there is
an E in H such that m^ = m(A H E) and m'^(A) = m(A\E), for
all A in H.

Proof. — Let K = {E €: H : m^ is topologically n-continuous}.
Then, K is an ideal of H. Using 1.7, let m^ be the part of m nearly
supported on K and let m be the part of m which vanishes on K.
To show that m^ is topologically n-continuous, given V in V, let
E in K be so large that, for all A in H, w^(A\E) G V. Since EC K,
there exists a neighborhood W of 0 in Z such that, whenever A E H
and n(B) G W for all B in H contained in A, we have m^(A) €E V.
Then, for such an A,

m^,(A) = m^E HA) + m^,(A\E)

= m(E n A) 4- ^(A\E)

E V + V.

To show that m' is nowhere topologically continuous, let A € H
and suppose ( m ' ) . is topologically n-continuous. Then A is in K,
since m = (m ). + (^^A- But m^ vanishes on K so A ism^-nulL

The other properties are direct consequences of 1.7.

3. Other applications and remarks.

In this section we wish to indicate briefly some other applications,
of the decomposition theorems. The symbols m , H , Y , and V have
their usual meanings.
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3.1. Atomic functions. — An element A of H is called an m-atom
iff for every B in H either A n B or A\B ism-null. The function m
is called nearly atomic iff, for every V in V, there is a finite union
E of m-atoms such that m (A\E) G V, for all A in H ; it is called atomless
iff every w-atom is m-null.

Applying 1.7, taking for K the collection of finite unions of
w-atoms, we can decompose an s-bounded additive function m into
atomless and nearly atomic parts, provided its range has complete
closure. In the metrizable situation, if m is a-additive on H and H
is a-ring, completeness isn't needed, and the decomposition takes the
form m(A) = m(A H E) + m(A\E), where E is a countable union of
m-atoms.

If H is a a-ring, there is a less interesting theorem, taking for
K the collection of countable unions of m-atoms. In this case, we
obtain no information from the individual atoms about the values
of the part supported on K, (unless, of course, m is a-additive, in
which case the decomposition is the same as that above).

3.2. a-additive functions. — Theorem 1.7 may be used to obtain
a representation ofm as the sum of a a-additive function and a function
which is "nowhere a-additive" in the sense that, for no non-null
E in H, is its restriction to E a-additive. However, there is a much
stronger result, using a variation of the Caratheodory process [5].

3.3. Capacitability and outer regularity. — In the situation of
the decomposition theorems, if m has certain approximation pro-
perties, say by compact sets from within or by open sets from
without, these are retained by each of the two parts. This is because
of the uniform convergence property mentioned in the proof of 1.6.

3.4. Outer measures. — Again because of uniform convergence
properties, if one begins a G-outer measure fJL (see Sion [3]) and
an ideal in the ^-measurable sets, one may obtain a representation
of p. as the sum of two G-outer measures - one vanishing on the ideal,
the other nearly supported on it.

We leave the details to the reader.
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