MANUEL VALDIVIA Some examples on quasi-barrelled spaces

Annales de l'institut Fourier, tome 22, nº 2 (1972), p. 21-26 <http://www.numdam.org/item?id=AIF_1972_22_21_0>

© Annales de l'institut Fourier, 1972, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble 22, 2 (1972), 21-26.

SOME EXAMPLES ON QUASI-BARRELLED SPACES (1)

by Manuel VALDIVIA

J. Dieudonné has proved in [2] the following theorem: a) Let E be a bornological space. If F is a subspace of E, of finite codimension, then F is bornological.

We have given in [6] and [7], respectively, the following results:

b) Let E be a quasi-barrelled space. If F is a subspace of E, of finite codimension, then F is quasi-barrelled.

c) Let E be an ultrabornological space. If F is a subspace of E, of infinite countable codimension, then F is bornological.

The results a), b) and c) lead to the question if the results a) and b) will be true in the case of being F a subspace of infinite countable codimension. In this paper we give an example of a bornological space E, which has a subspace F, of infinite countable codimension, such that F is not quasi-barrelled.

In [8] we have proved the two following theorems:

d) Let E be a \mathfrak{DF} -space. If G is a subspace of E, of finite codimension, then G is a \mathfrak{DF} -space.

e) Let E be a sequentially complete DF-space. If G is a subspace of E, of infinite countable codimension, then G is a DF-space.

Another question is if the result d) is also true for subspaces of infinite countable codimension. Here we give an example of a quasi-barrelled DF-space, which has a subspace G, of infinite countable codimension, which is not a DF-space.

⁽¹⁾ Supported in part by the « Patronato para el Fomento de la Investigación en la Universidad ».

MANUEL VALDIVIA

N. Bourbaki, [1, p. 35], notices that it is not known if every bornological barrelled space is ultrabornological. In [9] we have proved that if E is the topological product of an infinite family of bornological barrelled space, of non-zero dimension, there exists an infinite number of bornological barrelled subspaces of E, which are not ultrabornological. In this paper we give an example of a bornological barrelled space, which is not inductive limit of Baire spaces.

We use here vector spaces on the field K of real or complex numbers. The topologies on these spaces are separated.

In [10] we have proved the following result:

f) Let E be a barrelled space. If $\{E_n\}_{n=1}^{\infty}$ is an increasing

sequence of subspaces of E, such that $\bigcup_{n=1}^{\infty} E_n = E$, then E is the inductive limit of $\{E_n\}_{n=1}^{\infty}$.

THEOREM 1. — Let E be the strict inductive limit of an increasing sequence $\{E_n\}_{n=1}^{\infty}$ of metrizable locally convex spaces. Let F be a sequentially dense subspace of E. If E is barrelled, then F is bornological.

Proof. — Let $\overline{\mathbb{E}}_n$, $n = 1, 2, \ldots$, be the closure of \mathbb{E}_n in E. Obviously E is the strict inductive limit of the sequence $\{\overline{\mathbb{E}}_n\}_{n=1}^{\infty}$. Let F_n be the closure in E of $F \cap \overline{\mathbb{E}}_n$, $n = 1, 2, \ldots$. If $x \in E$ there exists a sequence $\{x_n\}_{n=1}^{\infty}$ of points of F, which converges to x. Since the set of points of this sequence is bounded, there exists a positive integer n_0 such that $x_n \in \overline{\mathbb{E}}_{n_0}$, $n = 1, 2, \ldots$, and, therefore, $x \in F_{n_0}$. Hence $E = \bigcup_{n=1}^{\infty} F_n$. Since E is barrelled, aplying the result f), we obtain that E is the strict inductive limit of the sequence $\{F_n\}_{n=1}^{\infty}$.

Given any Banach space L and a linear and locally bounded mapping u from F into L, we must to prove that u is continuous. Let u_n be the restriction of u to $F \cap \overline{E}_n$. Since $F \cap \overline{E}_n$ is a metrizable space and u_n is locally bounded, u_n is continuous. Let v_n be the continuous extension of u_n to F_n . Let v be the linear mapping from E into L, which coincides with v_n in F_n , $n = 1, 2, \ldots$ Since v_n is equal to v_{n+1} on $F \cap \overline{E}_n$, then they are equal on F_n and, therefore, φ is well defined. Since E is the inductive limit of $\{F_n\}_{n=1}^{\infty}$ and since the restriction of φ to F_n is continuous, $n = 1, 2, \ldots$, then φ is continuous. On other hand u is the restriction of φ to F and, therefore, u is continuous. Q.E.D.

Example 1. - A. Grothendieck, [3], has given an example of a space E, which is strict inductive limit of an increasing sequence $\{E_n\}_{n=1}^{\infty}$ of separable Frechet spaces, so that there exists in E a non-closed subspace G, such that $G \cap E_n$ in closed, n = 1, 2, ... In this example let A_n. be a countable set of E_n , dense in E_n . Let P be the linear space generated by $\bigcup_{n=1}^{n} A_n$. Let F be the linear hull of $P \cup G$. Since P is sequentially dense in E, applying Theorem 1, it results that F is a bornological space. Applying theorem f) it results that G is not barrelled and since G is quasicomplete, then G is not quasi-barrelled. Since P has a countable basis, G is a subspace of F, of countable codimension, and by a) the codimension of G is infinite. Therefore, F is a bornological space, which has a subspace G, of infinite countable codimension, so that G is not quasibarrelled.

Example 2. — G. Kothe, [4, p. 433-434] gives an example of a Montel DF-space, which has a closed subspace L, which is not a DF-space. In this example, let $\{B_n\}_{n=1}^{\infty}$ be a fundamental sequence of bounded sets. Since E is a Montel DF-space, then B_n is separable, $n = 1, 2, \ldots$ Let A_n be a countable subset of B_n , dense in B_n , $n = 1, 2, \ldots$ Let Q be the linear space generated by $\bigcup_{n=1}^{\infty} A_n$. Let M be the linear hull of $Q \cup L$. Now, we shall prove that M is quasi-barrelled. Indeed, given a closed, absolutely convex and bornivorous set U in M, let \overline{U} be its closure in E. If $x \in E$, there exists a positive integer n_0 , such that $x \in B_{n_0}$ and, therefore, x is in the closure of A_{n_0} . Hence, there exists a $\lambda \in K, \lambda > 0$, such that $\lambda \times \chi \in \overline{U}$, i.e. \overline{U} is a barrel in E, and therefore, $U = U \cap M$ is a neighborhood of the origin in M. Since Q has a countable basis, L is a subspace of M, of countable codimension, and by d), the codimension of L is infinite. The space M is, therefore, an example of quasi-barrelled \mathfrak{DF} -space which has a subspace L, of infinite countable codimension, so that L is not a \mathfrak{DF} -space.

We say that a subspace E of F is locally dense if, for every $x \in F$, there exists a sequence $\{x_n\}_{n=1}^{\infty}$ of points of E, which converges to x in the Mackey sense. In [9] we have proved the following result:

g) Let F be a locally convex space. If E is a bornological locally dense subspace of F, then F is bornological.

THEOREM 2. — Let E be a bornological barrelled space which has a family $\{E_n\}_{n=1}^{\infty}$ of subspaces, which satisfy the following conditions:

I. $\bigcup_{n=1}^{\infty} E_n = E.$

II. For every positive integer n, there exists a topology \mathcal{T}_n on \mathcal{E}_n , finer than the initial one, so that $\mathcal{E}_n[\mathcal{T}_n]$ is a Frechet space.

III. — There exists in E a bounded set A, such that $A \notin E_n$, n = 1, 2, ...

Then there exists a bornological barrelled space F, which is not inductive limit of Baire spaces, so that E is a hyperplane of F.

Proof. — Let B be the closed, absolutely convex hull of A and let u be the canonical injection of E_B in E. If E_B is a Banach space, there exists, according to a theorem of Grothendieck, [4] or [5, p. 225], a positive integer n_1 , such that $u(E_B) = E_B \subset E_n$, hence $A \subset E_n$, which is in contradiction with the condition III. We take in E_B a Cauchy sequence $\{x_n\}_{n=1}^{\infty}$ which is not convergent. Let \hat{B} be the closure of B in the completion \hat{E} of E. Since the topology of the Banach space $\hat{E}_{\hat{B}}$ induces in E_B a topology coarser than the initial one, $\{x_n\}_{n=1}^{\infty}$ converges in $\hat{E}_{\hat{B}}$ to an element

 $\mathbf{24}$

x. Since the set $\mathbf{M} = \{x_1, x_2, \ldots\}$ is bounded in $\mathbf{E}_{\mathbf{B}}$, there exists a $\lambda \in \mathbf{K}$, such that $\mathbf{M} \subset \lambda \mathbf{B}$ and, therefore, if $x \in \mathbf{E}$, then $x \in \lambda \mathbf{B} \subset \mathbf{E}_{\mathbf{B}}$, hence, according to a result of N. Bourbaki, [5, p. 210-211], $\{x_n\}_{n=1}^{\infty}$ converges to x in $\mathbf{E}_{\mathbf{B}}$. This is a contradiction and, therefore, $x \notin \mathbf{E}$. Let F be the space generated by $\mathbf{E} \cup \{x\}$, equipped with the topology induced by $\hat{\mathbf{E}}$. Obviously F is a barrelled space and, according to result g), F is bornological.

Finally we need to prove that F is not inductive limit of Baire spaces. Suppose that there exists in F a family $\{F_i: i \in I\}$ of subspaces, which union is F, so that for every $i \in I$, there exists a topology \mathfrak{U}_i on F_i , such that $F_i[\mathfrak{U}_i]$ is a Baire space and F is the locally convex hull of $\{F_i[\mathcal{U}_i]: i \in I\}$. Since E is a dense hyperplane of F, there exists an index $i_0 \in I$, such that $E \cap F_{i_0}$ is a dense hyperplane of $F_{i_b}[\mathcal{U}_{i_b}]$. Let G be the vector space $E \cap F_{i_b}$ with the topology induced by \mathfrak{U}_{i_0} and let x_0 be an element of F_{i} , which is not in G. If φ is the canonical injection of G in E, φ is continuous. Let G_n and H_n be the spaces $G \cap e^{-1}(E_n)$ and that generated by $(G \cap e^{-1}(E_n)) \cup \{x_0\},\$ respectively, equipped with the topologies induced by \mathfrak{U}_{i} . Obviously $F_{i_0} = \bigcup_{n=1}^{n-1} H_n$ and, therefore, there exists a positive integer n_0 such that H_{n_0} is of the second category in $F_{i_0}[\mathcal{U}_{i_0}]$. If v_{n_0} is the restriction of v to G_{n_0} , the graph of v_{n_0} is closed in $G_{n_0} \times E_{n_0}[\mathcal{T}_{n_0}]$ and, since G_{n_0} is barrelled and $E_{n_0}[\tilde{v}_{n_0}]$ is a Frechet space, v_{n_0} is continuous from G_{n_0} into $E_{n_0}[\tilde{v}_{n_0}]$. If $\{y_m : m \in D\}$ is a net of elements of G_{n_0} , which converges to $y \in F_{i_0}[\mathcal{U}_{i_0}]$, then $\{v_{n_0}(y_m) = y_m : m \in D\}$ is a Cauchy net in the Frechet space $E_{n_0}[\mathcal{C}_{n_0}]$, which converges to z, hence y = z and G_{n_a} is closed in $F_{i_b}[\mathcal{U}_{i_b}]$. Also H_{n_0} is closed in $F_{i_0}[\mathcal{U}_{i_0}]$ and since H_{n_0} is of the second category in $F_{i_0}[\mathcal{U}_{i_0}]$, then $H_{n_0} = F_{i_0}[\mathcal{U}_{i_0}]$ and, therefore, $G_{n_n} = G.$

Finally, taking the net $\{y_m : m \in D\}$ converging to x_0 , it results that $x_0 \in E$, which is not true. Hence F is not inductive limit of Baire spaces. Q.E.D.

Example 3. — G. Kothe has given an example of a noncomplete (LB)-space, which is defined by a sequence $\{E_n\}_{n=1}^{\infty}$

MANUEL VALDIVIA

of Banach spaces, so that there exists a bounded set A in E, which is not subset of E_n , $n = 1, 2, \ldots$ This example, and our Theorem 2, assure the existence of bornological barrelled spaces which are not inductive limits of Baire spaces.

BIBLIOGRAPHY

- [1] N. BOURBAKI, Éléments de Mathématiques, Livre V : Espaces vectoriels topologiques, (ch. 111, ch. 1v, ch. v), Paris (1964).
- [2] J. DIEUDONNÉ, Sur les propriétés de permanence de certains espaces vectoriels topologiques, Ann. Soc. Polon. Math., 25, 50-55 (1952).
- [3] A. GROTHENDIECK, Sur les espaces (F) et (DF), Summa Brasil. Math., 3, 57-123 (1954).
- [4] A. GROTHENDIECK, Produits tensoriels topologiques et espaces nucléaires Mem. Math. Soc., 16 (1955).
- [5] G. KOTHE, Topological Vector Spaces I, Berlin-Heidelberg-New York, Springer (1969).
- [6] M. VALDIVIA, A hereditary property in locally convex spaces, Ann. Inst. Fourier, 21, 1-2 (1971).
- [7] M. VALDIVIA, On final topologies, J. Reine angew. Math., 251, 193-199 (1971).
- [8] M. VALDIVIA, On DF spaces, Math. Ann., 191, 38-43 (1971).
- [9] M. VALDIVIA, A class of bornological barrelled spaces which are not ultrabornological, *Math. Ann.* 194, 43-51 (1971).
- [10] M. VALDIVIA, Absolutely convex sets in barrelled spaces, Ann. Inst. Fourier, 21, 3-13 (1971).

Manuscrit reçu le 22 juin 1971. accepté par J. Dieudonné

Manuel VALDIVIA, Facultad de Cienciás, Paseo Valencia al Mar, 13, Valencia (Espagne).