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THE MEASURE EXTENSION PROBLEM
FOR VECTOR LATTICES

by J. D. Maitland WRIGHT

Introduction.

This paper is mainly concerned with measures which take
their values in a boundedly cy-complete vector lattice but
some applications are made to Boolean algebras and classical
measure theory. In particular a problem of Sikorski and
Matthes is solved by showing that all Boolean o-algebras
with the weak cr-extension property are weakly cr-distributive.
A generalisation of a result of Horn and Tarski [5] follows
from Theorem T.

In classical measure theory Hopf's extension theorem
states that a finitely additive measure on a field of sets can
be extended to a o-additive measure on the generated o-field
provided a simple necessary condition is satisfied. This result
is usually obtained by constructing inner and outer measures
but it is shown in a corollary to Theorem E that the Hopf
-Kolmogorof extension theorem can easily be deduced from
the Riesz representation theorem. This observation may not
be new but seems of mild interest.

Let V be a boundedly cr-complete vector lattice, that is,
a vector lattice such that each sequence {a^} (n = 1, 2, ...)

00

in V which is bounded above has a least upper bound V a^
n==l

Let (X, %) be a measurable space and m: S) —> V a positive
finitely additive measure then m is a c-measure if, whenever
{E^} {n == 1, 2, ...) is an increasing sequence in ^B,

00 00

m I J E^ = V mE^. In the special case where V is the dual
i i

of a Banach space and is a Banach lattice this is the same as
3
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00

requiring that m {^J E^ == lim mE^ in the weak*-topology.

But Floyd [1] gives an example of a boundedly complete
Banach lattice for which there does not exist any Hausdorff
vector topology such that each bounded monotone increasing
sequence converges to its least upper bound.

It is not difficult to construct a V-valued integral with
respect to a c-additive V-valued measure and obtain analo-
gues of all the Lebesgue convergence theorems. In § 3 of [15]
this construction is performed when V is a Stone algebra
but, since each boundedly o-complete vector lattice is neces-
sarily Archimedean, both the results and proofs remain valid
when V is an arbitary boundedly o-complete vector lattice.

Let 9 : C(Z) —^ V be a positive linear map where Z is
compact Hausdorff and V is a boundedly o-complete vector
lattice. It follows from Theorem 4.1 of [15] that there exists
a unique o-additive V-valued measure m on the Baire sets
of Z such that for all fe C(Z),

^f)=f^fdm.

The natural way to attempt a proof of this result is by a straight-
forward adaption of the Daniell method but this fails in general
and a different approach has to be adopted. In view of a
previous misunderstanding it is perhaps worth mentioning
that Theorem 4.1 [15] is not a consequence of McShane's far
reaching generalisation of the Daniell extension method.
The Daniell construction breaks down because the Baire
measure m may fail to be regular. These points are clarified
at the end of § 2.

The existence of a successful analogue of the Riesz repre-
sentation theorem makes it reasonable to ask the following
question. Let 9 be a field of subsets of a set X, 9?°° the
<r-field generated by 9 and m: 9 —> V a positive finitely

00

additive measure on (X, 3?) such that m \ \ E^ = 0 whenever
i

{E^} [n === 1, 2, ...) is a monotone decreasing sequence in 9
00

with | 1 E^ ==0. Does there always exist a (r-additive measure
i
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m* : y -> V which is an extension of m? We shall see that
the answer is no, unless V has special properties.

Various conditions sufficient to ensure that V has the measure
extension property are given, or implicit, in the work of several
mathematicians, notably Kantorovich [6], McShane [7] and
Matthes [9]. The main point of this paper is that we comple-
tely characterise boundedly o-complete vector lattices with
the measure extension property, that is, find necessary and
sufficient conditions. The first and perhaps most useful
characterisation is that the measure extension property for V
is equivalent to each V-valued Baire measure on a compact
Hausdorff space being « near regular )). This leads to an intrinsic
algebraic characterisation; V has the measure extension
property if, and only if, V is weakly a-distributive. The suffi-
ciency of the latter condition follows from Matthes elegant
and delicate lattice theoretic methods [9] but an independent
proof of this result is given here in Corollary P of Theorem N.
It is further shown that when B has the measure extension
property each V-valued Baire measure on a compact Haus-
dorff space is regular.

Summary.
The structure of this paper is as follows. The first key result

is Theorem E where the problem of extending a finitely
additive V-valued measure m on a field of sets 9 to a
G-measure on the generated o-field is shown to be equivalent to
the near regularity of a corresponding measure m on a
(totally disconnected) compact Hausdorff space, the Boolean
structure space of the field.

Next, in Theorem N, it is shown that when V is weakly
(j-distributive then each V-valued Baire measure on a compact
Hausdorff space is regular and hence near regular. So it follows,
in Corollary P, that when V is weakly cr-distributive then
V has the measure extension property.

Then, in Theorem Q, it is shown that when each V-valued
Baire measure on a totally disconnected compact Hausdorff
space is near regular then V is weakly cr-distributive.

In Theorem T, the main theorem, the above results are
used to characterize the measure extension property. Some
applications are then made of this result.
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1. Preliminary definitions and results.

Throughout this paper V is a boundedly a-complete
vector lattice, 9 is a field of subsets of a set X and ^°°
is the a-field generated by 9. A measure on (X, 2) is a map
m : 9 —> V such that

1) mA ^ 0 for each A e 9.
2) mA u B + mA n B == mA + mB for all A, B e 9<.

00

3) /\ mA.n = 0 whenever {A^} (n === 1, 2, ...) is a monotone
n==l oo

decreasing sequence in 9 with [ | A^ == 0. A cr-measure
i

is a V-valued measure on a c-field of subsets of a set X. A
measure m on (X, 9) with values in V is extendable if
there exists a cr-measure m* on (X, S^00) with values in V
such that w*F = mF for each F e 9. The vector lattice V
has the measure extension property when, for each set X and
each field 9 of subsets of X, each measure m: 9 -> V is
extendable. The definition of V-valued measure adopted here
differs slightly from that given in [15] since infinite values
have been excluded. This avoids obscuring the main ideas
with irrelevant difficulties. The modifications needed when
non-finite measures are considered will be dealt with in part
of a later work.

The field 9 is said to be reduced, § 7 Sikorski [12], if it
separates the points of X.

LEMMA A. — If, whenever ^ is a reduced field of subsets
of a set X', each V-valued measure on (X', 9 ' } is extendable
then V has the measure extension property.

Let m be a V-valued measure on (X, 9} and suppose
that 9 is not a reduced field. We form a new set X' by
identifying points of X which are not separated by S.
Then, in the notation of § 7 Sikorski [12], 9 is isomorphic
to 9' which is a reduced field of subsets of X'. So we can
transform the measure m to 9' by defining ZA' = mA. for
all A e 9. Since 9' is a reduced field of subsets of X' there
exists a V-valued cr-measure V on the cr-field generated by
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9\ Let m*A = ?*A' for each A e 9?°° then m* is a cr-measure
on (X, 3100) which extends m.

Since the above argument shows that it is enough to consi-
der only reduced fields of sets we shall, for the rest of this
paper, always suppose that 9 is a reduced field of subsets
of X.

When b is a positive element of a boundedly a-complete
vector lattice V,

00 00 00

1/2 A I/" b == A 1/(2 nb) ^ / \ l l ) tb
n=l n=l /c=l

00

and hence /\ ifnb ==0. So V is Archimedean. For each
n=i

positive element e of V let V[e] = { & e V : — re ^ b ^ re
for some positive real number r}. Whenever {a^} {n == 1,2,...)
is an increasing sequence in V[<°] with an upper bound

00

&eV[e] then V ^n^V[e]. Thus V[^] is a boundedly
i

o-complete vector lattice with order unit e. So when V[<°]
is given the order unit norm it is a Banach space. By the
fundamental Stone-Krein-Kakutani-Yosida vector lattice
representation theorem, see Theorem 4.1 of Kadison [16],
there exists a compact Hausdorff space S such that V[e]
is isometrically and lattice isomorphic to C(S). Since C(S)
is boundedly o-complete it follows from the work of Stone [14]
that S is totally disconnected and the closure of a countable
union of clopen subsets of S is clopen so that the clopen
subsets of S form a Boolean ^-algebra. Following [15] we
call C(S) a or-Stone algebra

PROPOSITION B. — Let Z be a compact Hausdorff space
and 9 : C(Z) —> V a positive linear map. Then there exists
a unique N-valued a-measure m on the Baire sets of Z such
that, for each fe C(Z),

^f)=f^fdm

The existence of m follows from Theorem 4.1 of [15]
after making the observation that <p maps C(Z) into V[<p(l)]
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and V[<p(l)] is isomorphic to a <r-Stone algebra. Since m
must take its values in V[<p(l)] it also follows that m is
unique.

The following definitions are used throughout this paper.
Let X be the Boolean space of 9 so that X may be iden-
tified with the set of Boolean homomorphisms of 9 into the
two element Boolean algebra {0, 1} and X is equipped with
a compact Hausdorff totally disconnected topology, (see § 18
Halmos [2] or § 8 Sikorski [12]). Since ^ is a reduced field
of sets each x e X corresponds to a unique homomorphism
A —> ^A(^). So X may be identified with a subset of X.
Let 9 be the Boolean algebra of clopen subsets of X; ^°°
the cy-field of Baire subsets of X, that is, the smallest cr-field
of subsets of X which contains 3^; and 1st pB = B 0 X
for each B e %00. It is clear from the proof of the Stone
representation theorem given in § 18 Halmos [2] that the
restriction of p to 9 is an isomorphism of 9 onto SL So
there is no non-empty clopen subset of X — X and hence
K == ^K for each K e S.

LEMMA C. — p is a Boolean a-homomorphism of %00

onto 9^ whose kernel is the a-ideal of Baire sets disjoint from X.
Clearly p is a Boolean G-homomorphism of %00 onto a

G-field of sets containing 9?. So p[^°°] ==> 9?00. Then p-1^"]
is a (7-field of subsets of ^°° and ^ <= p"1^00] so that
p-1^00] = ̂ °°.

2. The measure extension property.

LEMMA D. — Let m be a ^-^alued measure on (X, ^f).
Then there exists a unique ^f-^alued a-measure m on the Baire
sets of X such that mVi = mK n X for each K e 9 or
equwalently^ m¥ = m¥ for each F e= 9?.

Let V[mX] ̂  C(S). Let A be the subalgebra of C(X)
consisting of all functions which assume only a finite number

71

of values. Each such function is of the form ^ ^iXK, where
1=1
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{KI, Kg, ..., K^} are pairwise disjoint clopen sets. Because
m is finitely additive a positive linear operator (po : £B —> C(S)
is defined by

/ n \ n

9 o ( S ^XK, = S a,m{K, n X).
\i==i / i

Since 90 is a positive linear operator it is a bounded linear
operator with ||(poll = ll9o(l) l l == II^X|| = 1.

By the Stone-Weierstrass theorem Jfc is uniformly dense
in C(X) and, since C(S) is a Banach space, 90 has a unique
extension 9 which maps C(X) into C(S) ̂  V[mX] <= V.
By Proposition B of § 1 there exists a Baire measure m on
X such that for each fe C(X),

9(/1) == f^f^9

So, for each clopen set K <= <?,

mK = 9^) = mK n X.

For each F e 3?, F is a clopen subset of X with F = F n X
so that mF = mF.

The uniqueness of m is trivial.

THEOREM E. — Let m be a Vr-valued measure on (X, 9).
There exists a a-measure m* on 9100 which extends m if,
and only if, mB = 0 for each Baire set B <= X — X. When
m* exists then mB = m*B n X for all B e %00.

When m* exists we define for each B e S)°°

IB = m*(pB) = m*(B n X).

Since, by Lemma C of § 1, p is a Boolean o-homomorphism
it follows that I is a V-valued ^-measure on the Baire sets
of X. In particular, for each K e= ^,

IK = m*K n X = mK n X

since m* is an extension of m. So, by Lemma D, I == m.
Therefore when m* exists

mB = m*B n X for all B es %00.
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Hence, if B is a Baire subset of X — X then

mB == m*B n X = m*0 = 0.

Conversely, suppose mB = 0 for each Baire set
B <= X — X. So, if BI, Bg are Baire sets such that
BI n X == Bg n X then B^ABa <= X - X and hence
m{(Bi - Ba) u (Ba - B^)} = 0. Thus mBi == mB^ and we
may properly define a function

^* : ̂  -^ v by m^B n X = mB.

Then m* is a c-measure on 9°° and for each F e 3?,

m*F = m*F n X = mF = mF.

A V-valued ^-measure on the Baire sets of a compact
Hausdorff space Z is near regular if, whenever E is a Baire
subset of Z such that IF = 0 for each closed Baire set F
contained in E then IE = 0. When V = R, the real
numbers, then each R-valued Baire measure is regular and
hence near regular. In [15] an example is given of a V-valued
Baire measure on the unit interval which is not near regular.

COROLLARY F. — When every V- valued Baire measure on
each totally disconnected compact Hausdorff space is near regular
then V has the measure extension property.

Let X, X, 9, 9, m, m be as in Theorem E. Since X is the
Boolean space of 9 it is totally disconnected and so, by
hypothesis, m is near regular. If each closed Baire set
F <= X — X has zero m-measure then mE = 0 for each
Baire set E <= X — X and so, by Theorem E, m is exten-
dable to a (7-measure on ^°°.

Let F be a closed Baire subset of X — X. In any compact
Hausdorff space a closed Baire set is the intersection of a
sequence of open sets. When 0 is an open set containing
F then 0 is the union of a collection of clopen sets because
X is totally disconnected. But F is compact so that it is
covered by a finite collection of clopen subsets of 0 and so
there exists a clopen set K such that F c K <= 0. So
there exists a monotone decreasing sequence of clopen sets
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00

{KJ {n = 1, 2, ...) such that F = (~^\ K,,. Then
n=i

00 00 00

mF = A ^K, = A mK, nX=7nr^K,nX
n=l n==l n==l

== mF n X = m0 == 0.

COROLLARY G. —(Hopf-Kolmogorof extension theorem) Let
(i be a finite finitely additive positive real valued measure on
(X, 9} such that lim piE^ = 0 whenever {E^} (^ = 1, 2, ...)
is a monotone decreasing sequence in 31 with empty intersection.
Then there exists a a-additi^e measure (JL* on (X, ^?00) which
extends (JL.

Each real Baire measure on a compact Hausdorff space
is regular and thus near regular. So it follows from Corollary
F that R has the measure extension property. To obtain
the corresponding result when [JL is not a finite measure we
may slightly modify Theorem E by taking 9 to be the
Boolean ring without identity of sets of finite measure so that
X is locally compact. This point will be covered in a later
paper.

A linear functional ^ : V -> R is a-normal if, when {&„}
(n = 1, 2, ...) is a monotone increasing sequence with least
upper bound b then ^(b) === lim ^(&J. The functional ^
is not required to be positive.

COROLLARY H. — If V has a separating family ofa-normal
functionals then V has the measure extension property.

Let Z be a compact Hausdorff space and I a V-valued
Baire measure on Z. Let E be any Baire subset of Z such
that IE ^ 0. Then there exists a cr-normal functional ^
on V such that ^(ZE) ^ 0. For each Baire set B let
p.B == ^{IB) so that [L is a finite signed real valued Baire
measure on Z.

The classical Hahn decomposition theorem ensures the
existence of a Baire set D c: Z such that if, for each Baire
set B, (JL+B = piB n D and [L-B = — (J(.B n D then (JL+,
[L~ are positive finite real valued Baire measures on Z. Since
(JiE ^ 0 we may suppose, without loss of generality, that
^E > 0 and so pi^E n D > 0. Since each real positive
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Baire measure on a compact Hausdorff space is regular there
exists a closed Baire set F c: E n D with pi+F > 0. So
(XF = [iF n D = (JL+F > 0 and hence ;F ^ 0. It follows
that I is near regular and so, by Corollary F, V has the
measure extension property.

A topology 3 for V is cr-compatible with the partial
ordering if, whenever {&,} (n == 1, 2, ...) is a monotone
increasing sequence with least upper bound b then ^ -> b
in the 3-topology. There are many vector lattices for which
a locally convex Hausdorff o-compatible vector topology
can be found. Indeed, if V is any partially ordered Banach
dual space such that V+ n {b — V+) is norm bounded and
closed for each b in V+ then the weack* — topology is
<T — compatible. However Floyd [1] gives a simple example
of a boundedly complete vector lattice for whichf no such
topology exists.

COROLLARY J. — If there exists a locally convex Hausdorff
a-compatible vector topology 3 for V then V has the measure
extension property.

By the Hahn-Banach theorem the 3-continuous linear
functionals on V separate the points of V. Since 3 is a
cr-compatible topology each 3-continuous linear functional
is (7-normal. The result now follows from Corollary H.

We see from the preceding paragraphs that there are many
vector lattices with the measure extension property. The
following example shows that this property can fail even
when V has an order unit, is boundedly complete and satis-
fies the countable chain condition. Further, the V-valued
measure which has no ^-extension is defined on a field of
subsets of a countable set, the set of rationals between 0
and 1.

The complete Boolean algebra of regular open subsets
of [0, 1] is isomorphic to the algebra of idempotents in C(S),
where S is its Boolean space. By a theorem of Birkoff and
Ulam, see § 21 Sikorski [12], there is a Boolean G-homomor-
phism k of the Borel subsets of [0,1 ]onto the algebra of
idempotents in C(S) whose kernel is the <y-ideal of meagre
Borel sets. C(S) is a boundedly complete vector lattice which
can be shown to satisfy the countable chain condition.
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Let X be the set of all rationals in (0, 1). Let S) be the
field of subsets of [0, 1] consisting of all finite unions of
intervals (open or closed at either end) whose end points
are elements of [0, 1] — X.

Let 9 be the field of all sets of the form B n X where
B e: £B. If A e S> and A n X = 0 then A is a finite set
so m: 9 —> C(S) is properly defined by 7nB n X = /cB
for each B e ^@. When { B ^ : n = 1, 2, ...} is a monotone

00

decreasing sequence in % such that | |B^ is disjoint from
°o 1

X then [ IB^ is a closed set disjoint from X and hence
i

nowhere dense. So
00 00 00 00

A mB,, n X = A ̂  < A ̂  = k(~^B^ = 0.
1 1 1 1

So m is a C(S)-valued measure on (X, S).
Suppose there exists a c-measure m* on 9°° which extends

m. Let tf = {B e %00: /cB = m*B n X} then ^ contains
% also ^ is closed under the unions of monotone increasing
sequences and the intersections of monotone decreasing
sequences. So, by Theorem 21.6 [4] or Theorem B § 6 Chapter
1 [3], ^ contains the c-field generated by S> which is the
field of Borel subsets of [0, 1]. Then

1 =/c([0, 1 ] - X) = m*0 =0

which is impossible.
In the following definition N is the set of positive integers

and N^^ is the set of all maps from N into N, that is, all
sequences of positive integers. The boundedly ^-complete
vector lattice V is defined to be weakly a-distributwe if,
whenever {b^ : n = 1, 2, ..., r = 1, 2, ...} is an order bounded
subset of V with &^r+i ^ ^n,r f011 each n and r then

00 00 00

V A ^.= A V^):
n==i r==l 'PGN11 re=l

As an immediate consequence of this definition, V is weakly
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(y-distributive if, and only if, V[e] is weakly a-distributive
for each e ^ 0. (V[e] is defined at the end of § 1).

In any topological space a a-meagre set is a subset of the
union of a countable family of closed nowhere dense Baire
sets. A proof of the following Lemma is included for the
convenience of the reader.

LEMMA K. - (Stone [14]). When C(S) is a c'Stone
algebra and {/,} (n = 1, 2, ...) is a sequence in C(S) which
is bounded below then

LeS: inf/,(S) >(A/.)(<)!
v \r=i /

is a a-meagre set.
Let F^ be the closed Baire set

00 . / 00 \

n ^S:(A^)(5) <^)-l/r}
n=l V \j=l /

/ °° \ \

= {s^ S : (^A fj) W ^ inf Us) - l/r(.

If K is a clopen subset of F, then A // + l/^ XK < /n for
all n and so K is empty. So F^ is nowhere dense.

We need the following simple Lemma. See Kelley [17]
for a related result and also his beautiful characterization
of measure algebras

LEMMA L. — A (j-Stone algebra C(S) is weakly a-distri-
buti^e if, and only if, each a-meagre subset of S is nowhere
dense.

First suppose C(S) to be weakly cr-distributive. Let
{Fn} (^ = 1, 2, ...) be a sequence of closed nowhere dense
Baire subsets of S. Then for each n there exists a decreasing
sequence of clopen sets {K^,} (r = 1, 2, ...) such that

F^n^,, so
r=l

o = A ̂  == V A ̂  =A SVxK^: 9 <= N .̂•^.r V / X AA^.r — — / \ / Y ^^^n)
r=l n=l r=l \ n==i
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/ 00 \

Thus the closed set 0 ]\/ K^^) : <p e= N^ is nowhere dense
(n==l ' )

00

and this set contains I J F^.

Now suppose that each or-meagre subset of S is nowhere
dense. Let {&^,} (n = 1, 2, ...) (r = 1, 2, ...) be an order
bounded double sequence in C(S) with ^^3 ^ fc^ for
all n, r. Then, for each <p e N3^,

00 00 00

V A ^ , r ^ V^W
n=l r==l n=l

Assume that there exists a greater lower bound g in C(S)
/ 00 ^

for the set ^V^n,^ p e N ^ ^ ^ . There exists a o-meagre

set M such that for all n and each s ^ M,

and

\
/\b^,)(s)=inib^(s)

\r=l / r

' \ / A ^,r) (^) = sup inf b^ {s).
\n=l r=l

/ 00 00 \

By assumption, the open set 0 = s e= S : (^ V A ^, r ) ( s ) < g(s)
\n==l r==l /

is non-empty. By hypothesis M is a closed nowhere dense
set so that 0 — M is a non-empty open subset of the totally
disconnected space S. Thus there exists a non-empty clopen
set K c 0 — M and a positive e such that

( 00 00 \

/K V A ,̂ r ) + SXK < gXK
n=l r==l /

For each M, {^iA,r} (r = I? 2, ...) is a monotone decreasing
sequence converging pointwise to the continuous function

00

XR A ^n,r' So, by Dint's theorem, the convergence is uniform



78 J. D. MAITLAND WRIGH1

and thus we can choose (p{n) such that
00

XK&n,<p(/o ^ S/2 XK + %K A ^r-
r==l

Hence
00 00 00

X K V & W ^ e / 2 x K + X K \ / A ^.
n=i n=l r=l

So
CTK < (g — e/2)XK.

00 00

This contradiction shows that V /\ ^n,r ls the greatest
lower bound. n=l r==l

COROLLARY M. — C(S) 15 weakly G-distributive if, and
only if, the Boolean a-algebra of clopen subsets of S is weakly
a-distributive.

This follows at once from the Lemma and Theorem 30.1
of Sikorski [12].

A V-valued Baire measure m on a compact space Z is
said to be regular when, for each Baire set E <== Z,

mE == V {mF : F <= E and F is a closed Baire set}.

THEOREM N. — Let V be weakly a-distributive, Z a
compact Hausdorff space and m a ^-valued Baire measure
on Z. Then m is a regular Baire measure.

The measure m takes its values in V[mZ] which may be
identified with C(S) where C(S) is a weakly (j-distributive
(7-Stone algebra.

For each Baire set E c: Z let U(E) be the family of all
open Baire sets containing E and let ^(E) be the family
of all closed Baire subsets of E. For each s e S let

(mE) {s) = sup {(mF) (s) : Fe^(E)}
(mE) (s) = inf {(m0) (s) : Oe^E)}.

Let a subset of S be called negligible if it is contained
in the closure of a c-meagre set. Then a countable union of
negligible sets is negligible and each negligible set is nowhere
dense. Let 3\ be the collection of all Baire sets E for which
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{ ^ e S : (mE) (s) < (mE) (s)} is a negligible set. When 0
is any open Baire set then it is the union of an increasing
sequence of closed Baire sets so, by appealing to Lemma K,
it follows that mO = mO except on a o-meagre set. Hence
all open Baire sets of Z are in 31.

Let E^egl and V^U(E^ for / = 1,2. Then

m(U] n Ug) — m(Ei n Eg)
= m[(Ui n U^ - E3) u (U, n V, - E,)]
^ m(Ui - E,) + m(Ua - E^).

So mEi n Eg = mEi n E2 except on a negligible set. By a
similar argument mEi n Eg = mEi n E^ except on a negli-
gible set and thus Ei n Eg e S{. It is clear that if E e= gl
then Z — E e 3{ so that 31 is a field of subsets of Z which
contains all the open Baire sets.

Let {E^} (n = 1, 2, ...) be a sequence of pairwise disjoint
00

elements of S{ and let E = \_J E^. Then there exists a
i

negligible set M c S such that, for all .9 e S — M,

(mE) {s) = S W) (^)
i

and for each n

(mEJ (.) = (mEJ (^) = (mEJ (^).

Since C(S) is weakly ^-distributive it follows from Lemma L
that each negligible subset of S is nowhere dense and so
S — M is a dense open subset of S. Choose SQ e S — M
then there exists a clopen neighbourhood K of SQ such that
K cr S - M.

The family of continuous functions {m0 : Oe^EJ} is
filtering downwards with pointwise limit mE^. But
%s7nE^ == /^mE^ so, by Dint's theorem, /K^E^ is the uniform
limit of {^CK^O : Oe^EJ}. Fix s > 0 and then for each
n choose O^ell^EJ such that

^mE, + s/2^K ^ ZK^O,.
So

00 00

V 2; XK/nO, < SXK + XK V 2 rnE,.
n=l 1 n=l l
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So
00

/Km LJ °n ^ S/K + ^KmE.

Thus
XpmE ^ £^K + x^mE.

Since e was arbitrary we have

(mE) (^o) ^ (mE) {s,) ^ (mE) (5o).

But this is true for any SQ e S — M and hence mE = mE
except on a negligible set.

n n

Clearly mE ^ m \_J E^ = m {_j E,, == S m^r except on a
i i i

negligible set. So mE ^ mE except on a negligible set.
Thus mE === mE = mE except on a negligible set and so
E e 3L So ^ is the o-field of Baire sets of Z.

It follows that m is a regular Baire measure.

COROLLARY P. — When V is weakly a-distributive then
V has the measure extension property.

By Theorem N the Baire measure m is regular and hence
near regular. So, by Corollary F of Theorem E, V has the
measure extension property.

THEOREM Q. — When V has the measure extension pro-
perty each \-valued Baire measure m on a totally disconnected.
compact Hausdorff space is near regular.

Let T be a compact Hausdorff totally disconnected space
and let m be a V-valued Baire measure on T. Suppose
that m is not near regular. Then there exists a Baire set
E <= T such that mE ^ 0 and mF == 0 for each closed
Baire set F c E. Since mE ^ 0 the set E is not empty
and, since T is a closed set, E is a proper subset of T.
Let X = T - E.

Let S> be the field of clopen subsets of T and ^00 the
(T-field generated by 35, that is, the Baire sets of T. Let
9 = {B n X: B e S)} so that 9 is a field of subsets of X.
When O], Og are clopen sets such that Oi n X == Og n X
then (Oi — 02) U (Og — Oi) is a closed Baire set contained



THE MEASURE EXTENSION PROBLEM 81

in E and so m(0i — Oa) + m(02 — Oi) = 0. Thus
1: 9 -> V can be properly defined by l{0 n X) = mO for
each clopen set 0 <= T. Then I is positive and finitely
additive on 9.

When {S,J {n = 1, 2, ...) is a monotone decreasing sequence
00

in 9 with ( | S^ = 0 then there exists a monotone decrea-
i

sing sequence of clopen sets {K,J (n = 1, 2, ...) with
00

K^ n X == S^ for each n. So [ | K^ is a closed subset of
E and thus 1

00 00 00

0=mnK»=A^K,=A^S,
n==l re==l n==l

So I is a V-valued measure on (X, 3^).
Since V has the measure extension property there exists

an extension I* of I to S^00. Consider the family of sets

if = {B e ̂  : B n X e ̂  and mB = FB n X}.

Since Z* is an extension of I it follows that ^ <== ^f. Let
{B^} (n == 1, 2, ...) be an increasing sequence on 3' then

00 00 00 / 00 \

m U B. = V ^B, = V ^*B. n X = ^* U BJ n X
i i i \ i /

00

so that L J B^ e tf. Similarly the intersection of a monotone
i

decreasing sequence of elements of iS is itself an element
of ^. It follows from Theorem 21.6 [4] or Theorem B § 6
Chapter 1 [3] that ^ contains ^°°.
But

0 = ;*0 = ;*E n X == mE ^ 0.

This contradiction establishes the theorem.

COROLLARY R. — Each V-valued Baire measure on a com-
pact Hausdorff totally disconnected space is near regular if^
and only if, V has the measure extension property.

This follows from Corollary F to Theorem E and Theorem
Q.

4
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When C(S) is a o-Stone algebra the idempotents of C(S)
(the characteristic functions of the clopen subsets of S)
form a Boolean c-algebra. It follows from a theorem proved
independently by Loomis and Sikorski, see § 29 [12], that
there exists a Boolean cr-homomorphism k of the Baire sets
of S onto the idempotents in C(S) whose kernel is the
G-ideal of meagre Baire sets. We call k the Loomis-Sikorski
Baire measure on S.

THEOREM S. — Let C(S) be a a-Stone algebra such that
the Loomis-Sikorski Baire measure k is near regular. Then
C(S) is weakly a-distributive.

Let N be the union of a countable family of closed nowhere
dense Baire subsets of S so that_ N is a c-meagre Baire set.
Let K be a clopen subset of N. Then K — N is a Baire
set. When 0 _is any open subset of K — N then 0 n N === 0
and so 0 n N = 0. Thus 0 n K = 0 and hence 0 = 0 .
So each closed subset of K — N has empty interior and so
is nowhere dense. Thus, by hypothesis, /c(K — N) == 0
so that K — N is meagre.

But K <= (K — N) u N and so K is a meagre open set.
By the Baire category theorem for compact spaces K == 0.
Since S is totally disconnected each open subset of N is
the union of clopen sets. Thus N has empty interior, that
is, N is nowhere dense. So each or-meagre subset of S is
nowhere dense. Then it follows from Lemma L that C(S)
is weakly a-distributive.

We now prove the main theorem which characterises the
measure extension property.

THEOREM T. — Let N be a boundedly a-complete vector
lattice then the following are equivalent:

(i) V has the measure extension property.
(ii) Each ^-valued Baire measure on a totally disconnected

compact space is near regular.
(iii) Each ^-valued Baire measure on a compact Hausdorff

space is regular.
(iv) V is weakly a-distributive.
By Corollary R to Theorem Q, (i) and (ii) are equivalent.
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Theorem S shows that (ii) implies (iv). By Theorem N, (iv)
implies (iii) and, trivially, (iii) implies (ii).

COROLLARY U. — Let if be a Boolean a-algebra. If there
exists a separating family of a-finite o-additive real measures
on if then if is weakly a-distributive.

Let S be the Boolean space of if and use the Loomis-
Sikorski o-homomorphism of the Baire sets of S onto if
to transfer the measures on if to Baire measures on S. Then
C(S) has a separating family of o--normal functionals and so,
by Corollary H of Theorem E, C(S) has the measure exten-
sion property. Theorem T implies that C(S) and hence if
is weakly cr-distributive.

COROLLARY V. — (Horn and Tarski [5]) Let if be a Boo-
lean a-algebra. If there exists a strictly positive a-finite real
measure on if then if is weakly a-distributive.

In § 5 of McShane [7] normal partially ordered sets are
defined.

COROLLARY W. — When V is a normal vector lattice
then V is weakly G-distributive and each V- valued Baire measure
on a compact Hausdorff space is regular.

From Chapter 5 of McShane [7] V has the measure exten-
sion property.

Corollaries U, V and the first part of Corollary W can
be obtained from very general results of Matthes [8] but
it seems woth noticing that they follow so easily from Theorem
T.

It might appear that the results in Chapter V of McShane
[7] imply Theorem 4.1 of [15]. This is not so because McShane
needs the hypothesis, Postulate 22.1 [cr], that V is normal
which, by Corollary W, implies that V is weakly c'-distri-
butive. On page 74 we give a simple example of a complete
vector lattice, satisfying the countable chain condition,
which does not have the measure extension property and so
is not weakly ^-distributive and hence is certainly not normal.

If V does not have the measure extension property it
is still possible for some V-valued measure on (X, 3) to have
an extension to a ^-measure on (X, ^°°). When this extension
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does exist it is given by Theorem E. Several attractive
conjectures are demolished by the example on page 74 for
in that example X is a countable set and also V is boun-
dedly complete and satisfies the countable chain condition.

The G-extension problem for Boolean algebras seems to
have first been considered by Sikorski [13]. A Boolean o-alge-
bra ^ has the weak ^-extension property, see § 34 Sikorski [12],
if, when ^6 is any Boolean c-algebra, %o is a subalgebra
of S) which ^-generates %, and h^: S^o -> if is a Boolean

/ oo V

homomorphism such that ho ^ /\ A^ ) = 0 whenever {A^}
\ i / ^

(n = 1, 2, ...) is a monotone decreasing sequence in ^o
with null intersection, then there exists a o-homomorphism
h: S) -> ^ which is an extension of ho. A theorem of Matthes,
Theorem 4 § 34 [12], shows that when ^ is weakly o--distri-
butive then it has the weak a-extension property.

Sikorski § 34 [12] poses the problem of whether there
exist Boolean algebras with the weak or-extension property
which are not weakly cr-distributive. As a consequence of the
results of this paper it can be shown that no such Boolean
algebras exist. The analagous problem for the weak ^-exten-
sion property where ^ > ^o will be dealt with in a later
work.

THEOREM X. — Each Boolean a-algebra with the weak
a-extension property is weakly <r- distributive.

When if is a Boolean c-algebra with the weak cr-extension
property then it follows from the argument of Theorem Q
that the Loomis-Sikorski or-homomorphism of the Baire sets
of the Boolean space of ^ onto if is near regular. It then
follows from Theorem ^ that if is weakly <r-distributive.
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