ROGER G. MCCANN Another characterization of absolute stability

Annales de l'institut Fourier, tome 21, nº 4 (1971), p. 175-177 <http://www.numdam.org/item?id=AIF_1971__21_4_175_0>

© Annales de l'institut Fourier, 1971, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ANOTHER CHARACTERIZATION OF ABSOLUTE STABILITY

by Roger C. McCANN

It is well known that absolute stability of a compact subset M of a locally compact metric space can be characterized by the presence of a fundamental system of absolutely stable neighborhoods, and also by the existence of a continuous Liapunov function ν defined on some neighborhood of $M = \nu^{-1}(0)$, [1]. In a more general setting it has been shown that a set M is closed and absolutely stable if and only if $M = \cap \nu_i^{-1}(0)$ for suitable Liapunov functions ν_i , [2]. This paper presents a more elementary description of absolute stability in terms of positively invariant neighborhoods only.

Throughout this paper R and R⁺ will denote the reals and il non-negative reals respectively. A rational number r is called dyadic iff there are integers n and j such that $n \ge 0, \ 1 \le j < 2^n$, and $r = j/2^n$.

A dynamical system on a topological space X is a mapping π of X × R into X satisfying the following axioms (where $x\pi t = \pi(x, t)$):

(1) $x \pi 0 = x$ for $x \in X$.

(2) $(x\pi t)\pi s = x\pi(t+s)$ for $x \in X$ and $t, s \in \mathbb{R}$.

(3) π is continuous in the product topology.

If $A \subseteq X$ and $B \subseteq R$, then $A\pi B$ will denote the set $\{x\pi t : x \in A, t \in B\}$ A subset A of X is called positively invariant if and only if $A\pi R^+ = A$.

A mapping $\varphi: X \to \mathbb{R}^+$ is called a Liapunov function (relative to π) if and only if φ is continuous and $\varphi(x\pi t) \leq \varphi(x)$ for all $x \in X$ and $t \in \mathbb{R}^+$.

ROGER MCCANN

Absolute stability is defined in terms of a prolongation ([1], [2]) and, in [1], is characterized in a special setting by the following theorem.

THEOREM A. — Let M be a compact subset of a locally compact metric space. Then the following are equivalent:

(a) There is a Liapunov function \circ with $\circ^{-1}(0) = M$.

(b) M possesses a fundamental system of absolutely stable neighborhoods.

(c) M is absolutely stable.

In [2], absolutely stable sets, in a more general setting, are characterized by Liapunov functions.

THEOREM B. — Let M be a subset of a space X which is Hausdorff paracompact, and locally compact. Then M is closed and absolutely stable if and only if $M = \bigcap \varphi_i^{-1}(0)$ for suitable Liapunov functions $\varphi_i: X \to [0, 1]$.

In order to obtain our result we will need the following result [2, Corollary 18].

THEOREM C. — In a locally compact metric space X, the closed absolutely stable sets are precisely the zero-sets of Liapunov functions mapping X into [0, 1].

THEOREM. — Let M be a closed subset of a locally compact metric space X. Then M is absolutely stable if and only if M possesses a family F of neighborhoods satisfying

(i) If $U \in \mathcal{F}$, then U is open and positively invariant.

(*ii*) $\cap \mathcal{F} = \mathbf{M}$.

(iii) If $U \in \mathcal{F}$, then there is a $V \in \mathcal{F}$ such that $\overline{V} \subset U$.

(iv) If U, $V \in \mathcal{F}$ are such that $\overline{U} \subset V$, then there is a $W \in \mathcal{F}$ such that $\overline{U} \subset W \subset \overline{W} \subset V$.

Proof. — If. Let $U \in \mathcal{F}$. For each dyadic rational r we construct a set $U(r) \subset U$ such that $U(r) \in \mathcal{F}$ and $\overline{U}(r) \subset U(s)$ if r < s. Then we construct a Liapunov function $v_{U}: X \rightarrow [0, 1]$ and show that $M = \bigcap \{v_{\overline{U}}^{-1}(0): U \in \mathcal{F}\}$. The result will then follow from Theorem B. First obtain from \mathcal{F} a system

176

of neighborhoods $U\left(\frac{1}{2^n}\right)$, *n* a non-negative integer, such that U(1) = U and $U\left(\frac{1}{2^{n+1}}\right) \subset U\left(\frac{1}{2^n}\right)$. This is clearly possible by (*iii*). Using (*iv*) this system of neighborhoods can be extended to one with the desired properties. For example, we choose $U\left(\frac{3}{4}\right)$ to be any member W of \mathcal{F} such that $\overline{U}\left(\frac{1}{2}\right) \subset W \subset \overline{W} \subset U(1)$. Now define $v_U: X \to R^+$ by $v_U(x) = 1$ if $x \notin U = U(1)$ and $v_U(x) = \inf \{v: x \in U(r)\}$ if $x \in U$. If $x \in U(r)$ and $t \in R^+$, then $x\pi t \in U(r)$ since U(r) is positively invariant. Therefore

$$\nu_{\mathbf{U}}(x) = \inf \{r : x \in \mathbf{U}(r)\} \ge \inf \{r : x\pi t \in \mathbf{U}(r)\} = \nu_{\mathbf{U}}(x\pi t).$$

The continuity of ρ_{U} is proved as in the proof of Urysohn's lemma. Thus for each $U \in \mathcal{F}$ we have constructed a continuous Liapunov function ρ_{U} such that $M \subseteq \rho_{U}^{-1}(0) \subseteq U$. By (*ii*), $\cap \rho_{U}^{-1}(0) = M$.

Only if. — Let M be absolutely stable. Then by theorem C, $M = \nu_{\overline{U}}^{-1}(0)$ for some Liapunov function ν . Let \mathcal{F} consist of all sets of the form $\{x : \nu(x) < r\}$ where $r \in (0, 1)$]. Evidently \mathcal{F} satisfies conditions (i)- $(i\nu)$.

Remark. — In the « If » part of the proof we only need that X is Hausdorff, paracompact, and locally compact.

The author wishes to thank Professor Otomar Hájek for several helpful conservations during the preparation of this paper.

BIBLIOGRAPHY

- J. AUSLANDER, P. SEIBERT, Prolongation and stability in dynamical systems, Ann. Inst. Fourier, Grenoble, 14 (1964), 237-268.
- [2] O. HAJEK, Absolute stability of non-compact sets (to appear).

Manuscrit reçu le 20 décembre 1970. Roger C. McCann Case Western Reserve University Cleveland, Ohio 44 106.