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ON A ABSTRACT STIELTJES MEASURE

by James E. HUNEYCUTT, Jr (3)

1. Introduction.

In 1955, A. Revuz [4] considered a type of Stieltjes measure
defined on analogues of half-open, half-closed intervals in a partially
ordered topological space. He states that these functions are finitely
additive but his proof has an error. We shall furnish a new proof and
extend some of his results to “measures” taking values in a topological
abelian group.

2. Preliminaries.

If X is a set and & is a non-void collection of subsets of X,
then 8 is called a semi-ring provided

i)A, BES= ANBES,

ii) A, BES, ACB = 3 {C;}].,< 8 such that
A=Cy<CCC...CC,=B and C\C,_,;€8 for 1<i<n.
& is a weak semi-ring provided that, in place of ii) we require

iii) A, BES, ACB = 3 {C;}{., such that

B\A=UC, and GNG =9 if i#].

(*) The results presented in this paper are a part of the author’s Ph.D. dissertation,
written at the University of North Carolina at Chapel Hill under the direction
of Professor B. J. Pettis.
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DEFINITION. — Let 8 C2* and let ¥ be a topological abelian
group. If u: 8 > ¥ then

i) u is 2-additive if A, B, AUBE 8,
L"E}'iiﬁ?‘}A Elg M@!“Q (.;\U%)Vwﬁ)jfﬂ(ém 7O
ii) p is finitdly BHAIFE if Whenerd K2YE5k @iy finite, pazrw:se
disjoint sequence in 8 such that LIJ A, €S, then u (li A,-) = Z KA.

iii) 4 is countably additive if whenever {A, 1 is any pairwise
Jgioiiguhovnl
disjoint sequence in 8 such that U A; €S8, then Z H(A) ~ u(U A; )

s1izEVien Ntmdnie 35, 941 Was shiown! that if: 8 i€ a Semritig and
s8R g s < D-additive; then' ' i§finitély 4dditive:! This' does  hiot
HoM it genersl for weak ¥emicfings: The Shatlest rifig R(SY containing
thie: semi-ting 8 is the eolkbetiofi 'of Wl anionyof finite pairwise digjoint
dets B fiembers of s 8§10 Vieh Neéwwhan® sHowel‘that & finitely (respee”
tively countably) additive function an 8 has a unique finitély%(féspecs
tively countably) additive extension defined on R (38).

The topology for the totf)olggl ?bqhan group ¥ is determined
by a family {||-ll, : p €P}0 ¢

seml-norms
18 = Mgl e + Bl S Uglly Sl o gl >0,

Suppose u : 3 - ¥ ; then for éwh'vp.ina-,Puand‘»each,«‘sdbset»]}fs:of X
we define

LIRS I Vot

1) (0, B) = sup (1A, Aezs AS B}

i one R 2 H

2) (p),(B) = sup {IIE M(Ai) II 0
3) lul, ®) —SUP{E" II#(A)II }

:’1‘ Foaw i 10 ‘.,!“ 1 ‘}'ﬂ. AN 1 BN Oy Aes P
where the supremum in 2) and 3) is Ftaken Qvgr all ﬁmte pmrwxse
disjoint sequences in' ‘§ whtle unwr{ is"a subset of B v

Let X be:a; topological space and $.a wg&»_semgmm of subsets
of X and let u : 8 > ¥ be finitely additive. '

101 cHEEINITION., =, i, S, M T egular- QnsS.pravided, that. far‘ all é‘é]l'?'
A 8land 2.0} thére:dvist Céountably cdmpact; ’é‘Upngi A sze s
such that A'CCCACoCA" and (ug), AN L g
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~Similar. definitions are maleufor:jip«iand | i |-reguldrityis dni-a

previous paper [1], we have shownithat:d puy-régulat; finitely-additive

function on..a.weak semisting is. ¢ountably, additive., We wnote that

I regularity = prregularify = pregylarity. and that, for aring.of

sets, uD-regulantyils the samle‘ as uR-regvuladrttyw e i
foted g e {4 )

3. The main theorems.

N O « T » iy 8
AR g deow g 20 @ e wans aar xipvs X

wriieinos oyifsgdon e B g i 8 W
Revuz con51dered the problem of obtammg countable add1t1v1ty
from finite additivigy; Y)and! derived ;a s&utabk; -regularity copdition to
obtain countable add1t1v1ty for non—negatlve real valued functions
([4], p. 208). The"Work Of-this paper’géneralizes the regularity condi-
tion of Revuz so tha’g ‘countablp agl(tltlvxty may, be thau?eg, from
finite add1t1v1ty m (,the case of a functlon w1th values in a tqyologwal
a%ehan group "We also shbw that an argument ‘of Revuiz'’ concermng
finite additivity is wrong (Example 3.1) and we give an alternate
argument (Theorem 3.2). C oo

Let X be a non-void set and < a binary relatlon on X. We shall
say that (X ,<): 1s al condz)itma{ slower semzlattzce -provided, that

i) < is reflexive, trans1t1ve and anttsymmetnc

o -

ii) If x and y are memﬁersﬂ ofé( ahd the/re id $bme member z in
X such that z <.x and z < y,“then there is a largest (relatlve to <)

I

We now., form, our “tﬁ;er;vals ,ln tt’us set. For ANy X, m X,.C (x)
will denbte the ‘set of all n‘tembers y of X~ such thdt ¥ <x and
C, (x) will denote the set( Qf)all megpbersy’bf X suqh that x < y. For

each positive integer n and each x, u1 , u2 e, u, in X, let
(O U AT D g
S(x;u,, uz,...,un) ¢ (x)\UC (u) _
o '5.’:‘1‘5, L T ] ',‘-uv fabie o o
but y$fu
disoug s0t ser Ui oW
for any i=1, 2, n}.

Revuz ([4], p. 195) has sl’towﬁF tﬁat eacﬂ non—eingty set of the
foxm above has a, umque representatmn 1{1 Wthh each u; ,x but

rrrrrrrrrr

u {uj for 1#] Thls form w111 be called the canonzcal form In
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particular when (X, <) is the real line with the usual ordering, the
S's are simply intervals of the form (a, b].

Let 8 denote the collection of all sets of the form S(x;u,,... u,).
We note that & € 8 since for any x in X, S(x ;x) = &.

In the case of the real line with the usual ordering,
{@,b]l: —o<a<b<ow}

forms a semi-ring. Revuz has shown that 8 is a weak semi-ring ([4],
p. 199) ; we shall show that & is actually a semi-ring.

LEMMA. — If S; =S(x;v,,v,,...,v,) and
S, =8S(&x;vy,...,v,, then

e
i) S, €8, and in particular, S, =S, NC— (v,).
i) S,\S; = S(@inf xv, ; v, , v3,...,v,) or ®if inf xv, does not
exist,

Proof :

n n —
DS, =C_eNJC oy =c.mn(h o)

n -~ ——
=c_) n (A o) NC_oy)
e e
=8SX;vy,...,V,)NC_(v,) =5,NC_(vy)
i) S,\8; = S\[S, NC_())] =S,\C) =85,nC_(v,)
=C_onNJcennc ey
= C_@NC_oNYC_0)
=& or S@inf xv, ;v,, v;,...,¥,). O
We shall use the preceding lemma to prove
THEOREM 3.1. — 8 is a semi-ring

Proof. — By a result of Revuz & is closed under finite inter-
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sections. We must show that if S and S* are in & with S € S*, then
there is a finite sequence S,,S,,...,S,, in & with

S=5,E8,€...€8,,,=S* and S\S;,_,€ES
for 1 <i<m + 1. Suppose S = S(x;v,,...,»,) and
S* =S(x*;u,,...,u,)

with S € §* and S* is in canonical form (u; < x* for 1 <i <n, but
<y ifi#j). If y€S, then y € S* so y not <u; for any

i=12,...,n;

thus S can be put into the (not necessarily canonical) form

S=SCsv vy, Vsl ety
Now let
So =S =S v,V Vpystly,...,Uy,)
S; =S(xivy,ee, Vipsthy e, tdy)
S; TS Vet s VypslUyseen,ty)
S, =SCx;u,,...,u,).

By Lemma 6.2, we have that S\S;,_, €8 for 1 <i<m ; and
we also have S =§,CS,C...CS so we need only show that if
S*=8S,.,,, then Sm_C_Sm“ and S,,,\S, €8. If y€S,, then
y < x ; since S C S* then x €S* and x < x* ; thus y < x*. By defi-
nition of S, , if y €S,, then y not <u; for

<i<n andso S,ES,, =S*.
We also note thatS,, ={y€X:y<xbutynot<uy,forl <i<n
andSmﬂ={y€X.y<x*butynot<u,.for1<i<n}.
Thus, S,,,,\S,, ={y €X : y <x* but y not <x and y not <u;
for 1 <i<n}
=S&x*;x,u;,...,u,)ES.
and & is a semi-ring. O

We recall from Chapter II, that one property that a semi-ring has
but a weak semi-ring lacks is that a two-additive function is necessarily
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fmitely<additiveyi 18 aiprevicus papet [2];we genératedisuch fanctions
on {(a, b] : — celva K & <%} from?abglian propp vdluéd “functiohs
on the reals W; perform a su;;ular feat J,n our. )more abstra.;;t setting.
Suppose F isa “fufiction on X with vlues in an abellan group Y ; we
define u from -8 to. J. as follows ¥ = 2 weoguue | 4w e 30l

) if S=9, #(S) =0 RO S A

2)if $ # @ and §='S0r i uy .
dfonical) presénta”tlon“‘déﬁﬁe "

vOE I 2 Fon c oe T

(*) u(S)“F(x)—E F(mfxu )+El‘ F(1nf;cu u; )—H

where 2, F (1nf Xty ..U ) represents the sum over all dlstmct sets
Trot {[eaidons i 5030 f ol mm n, q o9 FRt
of m indices | A A }and F(nf xu ) =0'it that inf

doesnotexxst"‘-:»-w;*m.m RS zi‘”*"f""a

Revuz ;[4] p. 197) has shown that any such real valued functl
u is well-definéd ; exactly the samé pr00f Catries ‘over Tor the case in
which u takes valueg m an abelian group, We:ngie tha,t?(*) is simply

an extension of the usual modularlty law :

LR S LI .,,“";xrf::- &
n(AUB) = #(A) + #(B) — u(ANB).
.|~3¢_11"' bl

“u, a .

Revuz attempts to show as follows that such a functlon s
‘fﬁntely “additive! 118 & 8 e 17 !" 1l u)y héﬁ’ X"IS Scatied the s‘dmmlt
of & ‘Re&ui A4 %p! QGI)’&Efﬁiemé relatlon' ‘on‘ arbltrary éollécﬁohs
of° pau'wu%e ’dlsoint‘%emﬁérs of & by setting Sq <{ ’82 if and\’only i3
theve Ui sohid % 44''S; W1fh "&Qt”the sumn’ﬁ’f* of “ '. He‘*&onsf‘dered

son o pad Wi

$,,8,,...,5,in8 Wltlh §= 0 US, €8 and s‘ought to plék a minimal

S; relative to theZofdering <<m He“4sddtfed ({47, '5>201) that this is
posszble ?‘nc‘? << s, re,ﬂex.we, antlsymgletrm, and transitiye, nHowever:x,

the transttlve p;open;y (loes Jaet. ho};;l, in, generalfa_nd 2. sﬂuatpn Jdn

Wthh we cannot ple such a mlnlmal element 1s shown in'

..... 2 G0 »? R r o on Gt g o HE ’;'d" =;'€>X'.ﬂ;'é' 2ad

Example 3.1. — Let (X, <) ¥e' thel pal*tlally ordered set deter-
mined by the follow1_ng Hasse dlagram whg,re A1 usual, n < m provided
n is no higher than m ancf there’ fs an ‘ascending path from n to m.
Note that (X, <) is a conditional lower semitatfiéd-i32 & =i & b
weiimnue & IRAD edvegong sao dent D walgedD mott Hussy o¥

e )
B

winaeeeuat of poftonat avitibba-ow 8 Teedy 2 2xnel geloeor duow 6 tud
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Now we pick S,, S, , S,, S; as follows :
So={0}=S(0;l,2,3)'
S, =1{1,4,7}=S(1;8,10) denoted by %
S, ={2,5,8}=58(2;9,10) denoted by \\\
S; ={3,6,9}=5(3;7,10) denoted by

S, K§, since 7€ S, and 7 <3 = summit of S;, S; K, since
9€8S; and 9 <2 =summit of S,, and S, < S, since 8 €S, and
8 <1 = summit of S, . Thus, there is no minimal member relative to
the order <.

Even though Revuz’s proof is incorrect, we do get finite additivity
for such a function u. In view of Von Neumann’s work and the fact
that & is a semi-ring, we need only prove that u is 2-additive and a
relatively trivial modification of Revuz’s proof accomplishes this.

For the remainder of the chapter, we shall assume that X is a
topological space and (X, <) is a conditional lower semilattice and
we shall be interested in the following relationships between the order
and the topology :

X, : Each C_(x) is closed and the closure of each member of 8 is
countably compact.
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X, :inf is continuous from the right in the sense that one of the
following must hold for each x and y in X :

i) If w=infxy and V is a neighborhood of w, then there
exists V, and V, neighborhoods of x and y respectively such that if
x' €V, with x <x' and y' €V, with y <y', then inf x'y' EV.

ii) If inf xy does not exist, then there exist neighborhoods V,
and V, of x and y respectively such that if x' €V, with x < x'
and y' €V, with y <y’ then inf x'y’ does not exist.

X, : If x €C_(y) then for each neighborhood V  of x, .there exists z
in V, NC,(x) NC_(y) such that C_(x) S{C_(2)}™ where the
interior is relative to the subspace topology of C_(¥).

The meanings of X, and X, are clear, but X, may require an
illustration. Let (X , <) be the real line with the usual topology and
the usual ordering. Let x <Y and € > 0. If x = y then

(—oo,x] = (=00, y]

and the interior of (—oo, x] relative to the subspace topology of
C_(») is (—o°, x]. Thus the z whose existence is asserted in X, is
just x. Now if x :’<& y, then there is some z strictly between x and y

s0 2EC,(x) NC_(») and C_(x) — (—o°, x] _ (— oo, z) = C_(2)"™.

In Chapter II, we have seen that an additive set function which
is ppregular on {(a, b] : a, b ER} is countably additive. Now for
each (a, b] witha <b, let ¢ and d be numbers such thata < ¢ < b <d.
Then (¢, b] € [c, b]< (a, b]1<€ (a, d)< (a, d] and for regularity, it
is sufficient that (a, d]\(c, b] be “small”’. Now

(a,dl\(c, bl=(a,cl]U®,d] =(a,blA(,d]

where A denotes the symmetric difference. Thus, for regularity, we
may require that each member (a, b] be “approximated from the
right” by some member (¢, d]. To the end of generalizing this regu-
larity for use in our more abstract setting we first of all obtain an
approximation notion and then consider “approximation from the
right”.

Recalling the definitions of Chapter II, we define

(Vo) (SCx 31y ...t = sup | 2 1)l |
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|

where in each case the supremum is taken over all finite, pairwise-
disjoint sequences of members of whose unionisin S(x ;u, ,...,u,).
These will be called the variation and the Dunford variation, respec-
tively, of F. We note that these definitions are made so that

i, (8) = (VE),(S) and (up),(S) = (DVE),(S)

for each S in and each p in P.

(DVF)p SGxsuy,...,u,) = supi

; u(s;)

For a regularity condition, we shall consider

Xg:If S=8S(x;uy;,...,u,)ES, €>0,and p EP, then there exist
neighborhoods V, of x and V; of u; (1 <i<n) such that
whenever x' €V, NC,(x), u; €V, N C,(4;) (1 <i<n), then we
have (pp),(S AS") <& where §' =S(x';uy,...,u,).

X, : Same as X, but with pp replaced by |u|.
We note that X, implies X, .

LEMMA. — Let X = C_(y) for some y and suppose X, , X, , and
Xy are satisfied by (X,<). Then u is countably additive-on 8.

Proof. — Let U be the collection of open sets of X and €, the
collection of closed countably compact sets of X. We shall show that
i is ppregular and thus p will be countably additive.

i) “inner regularity” : Let S =S(x;u,;,...,u,), pEP and
€ > 0 ; then since X satisfies X, for each neighborhood V; of u; ,
we can find »; such that », €V, NC,(y;) and C_(x;) S (C_(v,))™.
Now we have that C_(x)\C_(»;) & C_(x)\(C(v,-))int C C_(x)\C_(u).

Thus, S, =S(x;v;,...,v,) = C_(x)\L? C_ov) = f:\(C_(x)\C_(v,.)),
then
S, = N CGNC_0) SN CZEINC_) € M) (CLENC_ @) =S .

Therefore S; €S, €S and S, is countably compact by X, . Now by
X;, we may pick the neighborhoods V; (1 <i<n) such that
(Mp),(S, A S) < €/2. Since S, AS = S/S, whenever S, CS, we have
that (kp),(S\S,) < €/2.
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ii) “outer regularity” : Let S = S(x;u,,...,%,) be in cano-
nical form, p €P and € > 0 ; since X satisfies X, for each neigh-
borhood V, of x, there is a z in V, N C,(x) such that C_(x)) & (C_(2)™,
Let S, =S(z;u,,...,u,). Now SC S CS, since

St = (C_ (z)\uc @)™ = (C_ (z)"“\u C_(u)2C_ (x)\u C (ui)

By X,;, V, can be picked so that (pD)‘!,(S2 A S) <eg/2 ; since
S,AS =S5,\S
whenever SC S, , we have that (1p), (S,\S) <¢g/2.

Now from i) and ii) we may conclude that for each S in &,
each p €P, and each € > 0, there exist S, , S, in 8, C(= S,) coun-
tably compact, and U(= Si™) open such that §, € §, CSC Slnt cs,
and (kp),(S\S;) < (Mp),p(S,\S) + (mp), (S\S, )<€ Thus p is pp-
regular and so u is countably additive. D

THEOREM 3.2. — Let X be a topological space and (X , <) a con-
ditional lower semilattice. If X, , X,, and X, are satisfied, then  is
countably additive on % .

Proof. — Let {S;}7" be a pairwise disjoint sequence of members
of & such that D S;=S€8. Let S=S8(x;u,,...,u,), then
S;€ SCC_(x) for 1 i <oo. If X'=C_(x), then (X' <) satisfies
X,, X., and X;. Thus, by the preceding lemma, u is countably ad-

n
ditive on 8 N 2% and so Z K(S;) > m(S). Therefore, u is countably
1

additive on §. O

Since X} implies X, , we obtain the following

COROLLARY 3.2.1. — Let X be a topological space and (X, <) a
conditional lower semilattice. If X, , X, , and X}, are satisfied, then
is countably additive on 8 .

As an additional corollary, we also obtain Revuz’ original result
below in Theorem 3.3 ([4], p. 208).

We shall say that a function F defined on X and taking values
in the topological space Y is continuous from the right at x in X
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provided that for each neighborhood U of F(x), there is a neighborhood
V of x such that F(x") €U whenever x' € V N C, (x).

LEMMA. — Suppose X is a topological space and (X ,<) is a
conditional lower semilattice. If (X, <) satisfies X, and X, and if
F : X = R is such that

i) M is non-negative.
ii) F is continuous from the right on X,
then if X, is satisfied, so is X, .

Proof. — Notice that under the condition that u is non-negative
we have up(S,\S,) = u(S,) — u(S,) if S, €8, . Let
S=8Cuy,...,u,)

and € < 0. Now F and inf are continuous from the right on X, so
for each u; , there is a neighborhood V; of u; such that if

v, €V, NC, (y;) NC_(x)

then 0 < F(y;) — F(v;) < €/2n. Also, there is a neighborhood V of x
such that if x' €V NC,(x), then 0 < F(x") — F(x) < €/2. Now let

S* =S(x;v,,...,v,) ; then S\S*C L:J S(; ;u;) and so

up(S\S*) < X up(S(; s u)) = 2, u(SU; ;u,)) =
1 1

= i F(v;) - Fu) <gf2.
1
Also, S*\S = S(x' ;x) and
Bp(S*\S) = up(S(x' ;x)) = u(S(x';x)) = F(x") — F(x) <¢g/2 .

Thus u,(S A ¥ < uD(S\S*) + uD(S*\S) <€/2 +€/2 =€ and X, is
satisfied. O

Combining the preceding lemma with Theorem 3.2, we obtain
the main result of Revuz in this area.

THEOREM 3.3. — Let X be a topological space and (X ,<) be a
conditional lower semilattice. If (X, <) satisfies X, , X, , and X, and
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F : X = R is such that p is non-negative and F is continuous from
the right on X, then p is countably additive on 8.
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