MANUEL VALDIVIA A hereditary property in locally convex spaces

Annales de l'institut Fourier, tome 21, nº 2 (1971), p. 1-2 <http://www.numdam.org/item?id=AIF_1971__21_2_1_0>

© Annales de l'institut Fourier, 1971, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble 21, 2 (1971), 1-2.

A HEREDITARY PROPERTY IN LOCALLY CONVEX SPACES (¹)

by Manuel VALDIVIA

J. Dieudonné has given in [1] the two following theorems:

1) If F is a subspace, of finite codimension, of a barrelled space E, then F is a barrelled space.

2) If F is a subspace, of finite codimension, of a hornological space, then F is a bornological space.

In this paper we give a theorem analogous to the previous ones, but using infrabarrelled spaces instead of barrelled or bornological spaces. So we shall prove the following theorem: If F is a subspace, of finite codimension, of an infrabarrelled space E, then F is an infrabarrelled space.

Let K be the field of real or complex numbers. Let E be a locally convex topological vector space over the field K. If \mathscr{B} is the family of all the absolutely convex, bounded and closed sets of E, we denote with E_B , $B \in \mathscr{B}$, the linear hull of E with the seminorm associated to B. Let \mathfrak{C} be the topology on E, so that $E[\mathfrak{C}]$ is the inductive limit of the family $\{E_B: B \in \mathscr{B}\}$.

THEOREM. — Let F be a subspace of E, with finite codimension. If U is a closed, bornivorous and absolutely convex set of F, then there exists in E an U', closed, bornivorous and absolutely convex set, such that U' \cap F = U.

In particular, if E is an infrabarrelled space, then F is also an infrabarrelled space.

Proof. — Clearly, the \mathcal{C} -topology is finer than the initial one on E. On the other hand, for every bounded set A, there exists a set $B \in \mathcal{B}$, such that $A \subset B$. Hence A is a bounded

⁽¹⁾ Supported in part by the « Patronato para el Fomento de la Investigación en la Universidad ».

set of E_B , therefore A is a bounded set of $E[\mathcal{D}]$. That is, the bounded sets of E and those of $E[\mathcal{D}]$ are the same.

We denote with $F[\mathcal{C}]$ the subspace F, equipped with the topology induced by \mathcal{C} . Since $E[\mathcal{C}]$ is the inductive limit of seminormed spaces, it is a bornological space and, according to theorem 2), $F[\mathcal{C}]$ is a bornological space. Hence, U is a closed neighborhood of 0 in $F[\mathcal{C}]$.

Clearly, it is sufficient to prove the theorem in the case of F being a vector subspace of E, with codimension one. So that we suppose that F is so.

Two cases are possible :

1° F[\overline{c}] being dense in E[\overline{c}]. Let \overline{U} and \overline{U}^* be the closures of U in E and E[\overline{c}] respectively. Since U is a neighborhood of 0 in F[\overline{c}], then \overline{U}^* is a neighborhood of 0 in E[\overline{c}], hence \overline{U}^* is a bornivorous set in the same space.

Furthermore, $\overline{U} \supset \overline{U}^*$, then \overline{U} is a bornivorous set in E. We can take $U' = \overline{U}$, then U' is a closed, bornivorous and absolutely convex set of E, such that $U' \cap F = U$.

2° F[$\overline{0}$] being closed in E[$\overline{0}$]. If $U = \overline{U}$, we take a vector x such that $x \in E$ and $x \notin F$. Let C be the balanced hull of the set $\{x\}$, then U + C is a closed set in E and U + C is a neighborhood of 0 in E[$\overline{0}$], therefore, U + C is bornivorous in E. If we take U' = U + C the theorem is satisfied.

If $U \neq \overline{U}$, \overline{U} is absorbing in E, hence there exists an element $z \in \overline{U}$ such as $z \notin F$. Let D be the balanced hull of $\{z\}$. U + D is a neighbourhood of 0 in E[$\tilde{\upsilon}$], hence it is bornivorous in E. Furthermore $\overline{U} \supset U$ and $\overline{U} \supset D$, then $2\overline{U} \supset U + D$, hence \overline{U} is bornivorous in E. If we take $\overline{U} = U'$ the theorem is satisfied.

BIBLIOGRAPHY

[1] J. DIEUDONNÉ, Sur les propriétés de permanence de certaines espaces vectoriels topologiques, Ann. Soc. Pol. Math., 25, (1952), p. 50-55.

> Manuscrit reçu le 15 juillet 1970. Manuel VALDIVIA, Facultad de Ciencias, Paseo Valencia al Mar, 13, Valencia (España).