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SOME RESULTS
ON KRONECKER, DIRICHLET

AND HELSON SETS
by Thomas William KORNER

1. Introduction.

We start with a short general discussion. The reader seeking
more information should read [8], [9] and ([13] Chap. 5). More-
over anyone acquainted with the field should simply skim
through this section which contains only definitions and well
known consequences. We work on the circle T == R/27rZ
(where R is the additive group of real numbers, Z the sub-
group of integers). As usual we define the characters /^
by Xm(^) = eimx f01* xe T. C(T) is the set of continuous func-
tions f: T -> C (where C is the set of complex numbers).
What we shall be concerned with is the possibility of approxi-
mating members of the set S = {/'€= C(T) : \f{x)\ == 1 for all
xe T} by characters. Clearly this is only possible on « thin »
subsets of T and it is these subsets we shall study.

A closed set E c T is called Kronecker if for every g e S,
£ > 0 we can find an n such that \g{x) — XreC^)! ^ e ^or

all x e E. A closed set E c T is called Dirichlet it we can
find an increasing sequence n{j) such that

sup 11 — x^.)(^)| -> 0
-r£E

as / -> oo. A set EsT (respectively EcR) is called
r

independent if given x^ . . . , o^eE distinct, ^ mqXq-==Q
q=i
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with mi, mg, . . ., m^ e Z implies mi == m2 = • • • == m^. == 0.
The relations between these 3 concepts are very close and we
shall use the following well known facts without comment.

LEMMA 1.1. — (i) Kronecker's Theorem: If x^ . . ., x^e. T
are independent^ then given any Xi, ..., \. e C with
|Xi| == . . .== [\.| = 1, NeZ, e > 0 we can find an n ^ N
5uc/i (Aa^ sup \^n{Xq) — \\ ^ e. In particular every finite

l^q^r ^
independent set is Kronecker.

[ii) Dirichlefs Theorem: Any finite set is Dirichlet.

Proof. — These results are classical ([3] Chap. 3, § 2 and
Chap. 1, § 5).

LEMMA 1.2. — (i) Every Kronecker set is independent.
(u) Every Kronecker set is Dirichlet.
{Hi) If E is a Kronecker set, fe S, s > 0, HQ e Z we can

find an n ^ n^ such that sup l/nC^) — A^)! ^ s-
x€E

r

Proof. — (i) Suppose ^ mqXq = 0 and
g=i

^P IXnA) — A^)l -> 0

l^g^r

as / -> oo. Then
r \ r ri = wo) = x</)( s "w) = n [x</)(^)]^ -^ n ifw9

\q=l / q==l q=l

and so 1 = TJ [fW^
9=1

{ii) Take c, = x^"0'4-2^). If E is Kronecker, then for
each r ^ 1 we can find an n(r) such that

^P IX<r)(^) — C,| ^ 1/2|C, — C,-i|.
a;eE

Clearly /^i), /^a)? • • • are distinct and sup lx<r)(^) — 1| -> 0
a;GE

as r-> oo. We have thus l^)! -^ oo and

^P IX|<r)l(^) — 1| == SUP |%n(r)(^) — 1| -> 0
a;€E a;€E

as r -> oo.
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(Hi) This follows from {ii).
We shall use the following trivial Lemma repeatedly.

LEMMA 1.3. — If R == {x^: meZ} is independent, EgT
{respectively E c R) uncountable, then there exists a ye E\R
such that {y} u R 15 independent.

Proof. — We prove the result for EgT. The proof for
( °°

E c R is similar. Let T == ^ ^ ?m^m : ?m ^ 0 only finitely

often, qm^^Q} (where Q is the set of rationals). Then
T is countable. In particular E\T 7^ 0 and we may choose
tor y any z e E\T.

In stating our results we shall be mainly concerned with
countable and perfect sets. The reader may therefore find
it useful to recall that,

LEMMA 1.4. — The following conditions on E c T are
equivalent:

(i) E is perfect and totally disconnected',
{ii) E with the subspace topology is homeomorphic to

00

D^ == U Dg {where Dg is the group of 2 elements with the
i

discrete topology)',
{Hi) There exist S^, $3, ... finite collections of disjoint

(closed) intervals such that setting P^ == u {I: I e 3^} we have
P^3 P^+i for m > 1, max{diam I: I e S^} -> 0 as m -> oo,
card{l e= 2^ : I c J} -> oo as m -> oo for all J e S^, and

E-U^-
ff»=l

Proof. — Standard. ([7] § 9.15 prove a more general result).
Any set E satisfying the conditions of Lemma 1.4 is called

a Cantor set. It seems worth remarking that

LEMMA 1.5. — If E is a closed independent set, then E
is the union of a countable set and a Cantor set.

Proof. — E n 27rQ == 0 so E is totally disconnected. Since
by the Theorem of Cantor-Bendixson ([6] § 27) every closed
set is the union of a perfect and a countable set, the result
follows.
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Corresponding to the strong notions of Kronecker and Diri-
chlet sets there exist weak ones. Let M(T) be the set of
measures on T and M^T) the subset of positive measures.
We say that a closed set E c T is weak Kronecker (respectively
weak Dirichlet) if for all (JL e M+(T), e > 0, ^ > 0 given fe S
we can find an n such that [L{xe E : |Xn(^) — f{x)\ > e} ^ T]
(respectively given no we can find an n ^ no such that
[L{xe E : |x»i(^) — 1| > s} ^ •/]). It should be stressed at this
point that Wik [15] uses entirely different definitions. We have,
however, followed Kahane [8] and Varopoulos [17].

At the risk of stating the obvious, we remark

LEMMA 1.6. — {i) If (A is a measure supported on a closed
countable set E then for any e > 0 we can find F a finite
subset of E such that WcE\F implies |(Ji.(W)| < s.

(n) If E is closed independent and countable, then E is
weak Kronecker.

{Hi) If E is weak Kronecker, then E is independent.
(ip) Every weak Kronecker set is weak Dirichlet.
(v) If E is a Kronecker set (JL e M+(T), fe S, e > 0, T] > 0,

no e Z we can find an n ^ no such that
[L{xeE: sup|^) — f{x)\ ^ s} < T).

a;eE

Proof. — {i) We have ^ \[s.{e)\ = [HI < oo. Selecting
a?€E r

e^ ..., epeE distinct such that ^ |^(^)| ^ Ml — e and
7=1

setting F == {(°i, . . ., <°r} we have the required result.
(ii) now follows from Lemma 1.1.
(in) Suppose <?i, . . ., ̂  distinct points of E with associated

8-measures 8^, . . . , 8^ (so j g d S q = g{eq) for geC(T) ,

1 ^ ^ < r). Let F === {^, . . ., e^} and ^ == S ^- We have
q=i

that (A e M^T) and pi is supported by FgE. Thus given
e > 0, fe S we can find an n such that

^{x^E:\^{x)-f{x)\ ^ e} ^ 1/2,

i.e. sup |/n(^) — /'(^)| < e. Thus F is Kronecker and so
a-EE

independent.
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{iv} The proof proceeds as in Lemma 1.2 {ii).
(v) We can find a closed Ei c E, n^ e Z such that

(i(E\Ei) < 73/2 and sup \^{x) - f{x)\ ^ e/2. We can find
a;€Ei

a closed Ez s E, n^ ^ n» — rii such that ^(EVEz) <S Y)/2 and
8UP k»,(a;) - 1| < e/2. Now ti(E\(Ei n E^)) < •»] and for
a;GEg

a? e EI n Eg, n = Mi + ^2?

IXn^) - /•(^)| ^ |x^) - /^)| + Ix.̂ ) - f{x)\
=\^)-i\ +|^)-/>(^|
^ £

whilst n ^ TZo. This is the required result.
The concepts of Dirichlet and weak Dirichlet sets are in a

certain sense modifications of the older concepts of an N
set and of an R set. A closed set E is called an N set if we

00 00

can find a^ > 0 such that S ^n diverges, yet ^ ^n sin nx
converges absolutely on E. Salem (B. 6 [l̂ ]1) defines
a type of set which has similar properties. A closed set E
is called an R set if we can find ^ ^ 0, ^ e= R such that

00

hm sup a^ > 0 but ^ ^n cos {nx — SJ converges pointwise
n==l

on E. (N sets are so named in honour of Nemytzkii, R sets
in honour of Rajchman.) We shall also use the concept of an
No set. A closed set E is called an NQ set if there exists
an infinite subset Y of Z with S I sin nx\ pointwise

f»6Y
convergent on E. Clearly an No set is both an N and an
R set. The reader will observe in e.g. Theorem 3 that R and
No sets appear much more amenable to our methods than N
sets. A full discussion of N, No and R sets may be found
in ([2] Chapters xn and xiu). Usually the condition E closed
is dropped, but it will be found that our results are valid in
this case also.

We require the following results of which the most important
are due to Salem.

LEMMA 1.7. — (i) Every Dirichlet set is an No set and so
an N and an R set\

(u) Every R set is weak Dirichlet {and so every No set is)\
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(Hi) Every N set is weak Dirichlet;
{w) Every closed countable set E is No (and so weak

Dirichlet).

Proof. — {i) Suppose E is a Dirichlet set. Then we can find
0 < n(l) < n{2) < . . . such that sup |^,)(^) — 1| ^ 2-^

a;€E
Setting Y = {n{r) : r ^ 1} we have the result.

(n) Let E be an R set. Then we can find a^ ^ 0, ̂  such
that Sa^ cos {nx + Sn) converges on E but we can find
0 < m(l) < m(2) < . . . and a > 0 such that a^ ^ a.
Automatically cos (m{r)x + S<r)) -> 0 pointwise on E.
Choose any XQ e E and set y = x — XQ, ̂  = ̂  + ̂ . Then
we have cos (m(r}y + ^(,)) -> 0 as r -> oo for all x e E.
In particular taking a; = a;o we have cos ^) -> 0 and so
sin m{r)y sin ^=cos m{r)y cos ^—cos (m(r)y+^)->0
whilst sin m(r}y cos ^(^ -> 0 as r -> oo. Since

|sin^m(r)l + | COS ̂ )| > 1

it follows that sin m{r)y -> 0 and so sin2 m(r)y -> 0 as
r -> oo for all rceE. Now |sin2 m(r)y\ ^ 1 for all r and
all x so by Lebesgue's theorem on dominated conver-
gence j^ sin2 m(r)y dv{x) -> 0 for all v e M+(T) whence
^ sin2 m(r)n; d\L{x) -> 0 as r -> oo for all (JL e M^T). Thus
taking e > 0, T) > 0 we can find an m such that

P.{^€= E : sin2 ma; ^ ^/S} ^ 73
and so

(i{.reE: |̂ (o;) — 1| ^ e} ^ T].

E is thus weak Dirichlet.
{Hi) The proof is quite similar to (u). Suppose E is an N

00

set. Then we can find a^ ^ 0 with ^ a^ divergent, whilst
oo oo n=i

S ^n | sin yirc| and thus ^ a^ sin2 nx are convergent on E.
"=l / P n=l \ / p \
Setting fp{x) = ( S ^n sin2 nx) / ( ^ a^) for p ^ 1 we

\7i==l / \n=l /
have 0 ^ fp{x) ^ 1 and fp(x) ^0 as p -> oo for all ^ e E.
Hence by Lebesgue's theorem f fp{x) d[L[x) —^ 0 as p —^ oo.
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But Hm inf f fp{x) d[L{x) ^ lim inf f sin2 mx d\L(x) ^ 0 so
p>oo ^E m->oo ^E ' /

Hm inf f sin2 ma? ^(n;) = 0 for all (JL e M+(T) and as in (ii)
m->ao ^E ' ' v /m->oo ^E

we see that E is weak Dirichlet.

{w} Let E == {xi, x^ . . .}. By Dirichlet's theorem we can
find an n{i) > 0 such that |x<i)(^i) — 1| ^ 2-1, an
yz(2) > yi(l) such that sup |Xn(o(^) — 1| ^ 2-2 and in

1^1.^2

general an n(r) > n(r — 1) such that sup |x^,)(a;,) — 1| ^ 2-r

1 ̂  i < r
[r ^ 2]. Clearly |sin n{r}x,\ ^ 2-r for all r ^ s ^ 1 so
00

S I sin 7z(r)^| converges for all s ^ 1, i.e. E is an No set.
r==l

Finally we require the following definitions. If (JL e M(T)
we write p.(n) = f\_^ d^. Suppose E g T is a closed set.
We write M(E) = {[L e M(T) : supp (icE}. Suppose
0 ^ u ^ 1. We say that E is at most an Hg set (a Helson
u set) if for every p > u we can find a [L e M(E) with
|| IA|| =1 and lim sup |p,(m)| ^ ^. We say that E is at

|m)->oo

least an H^ set if, for all (A e M(E), lim sup |p.(m)| ^ u. E
|m(^oo

is said to be an H^ 5e^ if both conditions are satisfied. E
is said to be Helson (or Carleson-Helson) if it is not Ho, i.e.
if there exists a 8 > 0 such that lim sup | f ̂  d\L ^ 8 C \ d\L\

\m\ ->oo 1^ l/

for all measures (A with support contained in E. The reader
who has not already done so, is strongly advised to look at
([9] Chapter xi) where the concept of a Helson set is put in
its natural setting, but this definition is all we shall require.
We note the following well known results.

LEMMA 1.8 : (i) Every weak Kronecker set is Hi.

(n) In particular every dosed countable independent set is
Hi.

Proof. — (i) It is a standard result (e.g. following directly
from § 14.12 [7]) that if [L e M(T) there exists /^eS with
j h^ d[L — ||(i |1. The lemma is thus a consequence of Lemma
1.6 (^).
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(ii) By Lemma 1.6 {ii) every closed countable independent
set is weak Kronecker.

1 have attempted in the introduction and elsewhere to
make this paper self contained. But clearly it can only be so
in the narrowest sense. In particular, well known results are
not traced back to their sources which must be sought in the
references (especially [2], [9] and [13]).

2. Results.

2 questions arise at once. The first asks what the relations
are between the concepts defined above. It would, for example,
be very interesting to know whether every weak Dirichlet set is
necessarily an N set. (Yves, Bjork) Often, to prevent triviality
(since e.g. a Kronecker set must be independent, yet {w/4} is
Dirichlet), only independent sets are considered. In Theorem 4
we answer a question of Kahane [8] by constructing an inde-
pendent Dirichlet set which is not Kronecker. Kahane has
asked further in conversation whether there exist independent
Dirichlet sets which are not even Helson. We conclude the
paper by constructing such a set {Theorem 9). In Lemma 3.1
we construct a set which is No but not Dirichlet.

In Theorem 3 we construct a weak Kronecker (and so weak
Dirichlet) perfect set which is not an R (and so not an No)
set. According to Bary ([2] Chapter 12, § 10) it was an open
question whether a set could be weak Dirichlet and yet not
an R set. But she also reports in detail work of Arbault [1]
in which he shows that there exist N sets (which by Lemma
1.7 {ii) are automatically weak Dirichlet) which are not R
sets. I do not know whether the fact that Arbault's construc-
tion also answers the question stated above has been generally
overlooked or not. In any case we tackle the proof by entirely
different methods, obtaining a stronger result (since our set
is weak Kronecker and so independent). We then vary our
construction to obtain, in Lemma 4.8, a weak Kronecker (so
independent) N set which is not an R set. That the addition
of independence to the conditions of the Theorem and Lemma
is not entirely a trivial generalisation is best seen by noting
that Arbault's proof of his result depends on the lack of
independence in the set constructed.
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Wik has shown, effectively, that there exist weak Kronecker
sets which are not Dirichlet ([15] Theorem 2). In Theorem 2
we construct a perfect non Dirichlet set every proper closed
subset of which is Kronecker. Wik's result appears as a
consequence (Corollary 2.2). In Theorem 5 we construct a
perfect Dirichlet non Kronecker set every proper closed subset
of which is Kronecker. In Corollary 5.2 we see that there exist
weak Kronecker sets which are Dirichlet but not Kronecker.
Although the 2 proofs of Wik's result spring from different
ideas (his being a modification of a theorem on the Hausdorff
measures of Kronecker sets, ours of a theorem on the union
of 2 Kronecker sets) the constructions used turn out to be
fairly similar. On the other hand our method also gives the
result of Corollary 5.2 which does not seem as accessible by
his methods. At the beginning of Section 6 we give an alterna-
tive proof of Wik's result, obtaining it as a consequence of the
existence of countable independent closed sets which are not
Kronecker.

The second question concerns the union problem. What
can we say about the finite union or the countable union of
particular types of set? In particular, is it a set of the same
type? Again, to prevent triviality, we often add the condition
that the sets be disjoint and their union independent. (As
an example of the difference this may make, recall that a
closed countable independent set is necessarily Helson [Lemma
1.8 (ii)) but that a closed countable set need not be (direct
consequence of Theorem vin of [9] Chapter xn)). The most
important unanswered question in this direction asks whether
the union of 2 Helson sets is necessarily Helson (Yes, Drury
and Varopoulos).

The 2 most powerful techniques for solving these problems
turn out to be probabilistic ([9] Chapter vm and elsewhere)
and functional analytic (this technique owes a great deal to
an idea of Kaufman [11]). Typically the results obtained tell
us that « with probability 1 or « quasi-always » certain sets
have a required property. In contrast to these non constructive
proofs we shall obtain our results by the direct construction
of suitable examples.

Bernard and Varopoulos [16] have shown by functional
analytic methods that the independent union of 2 disjoint
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Kronecker sets is « quasi-always » not Dirichlet and « quasi-
always » not Hi. (Strictly speaking this statement is mea-
ningless, since I have not indicated the space, let alone the
metric with respect to which « quasi-always » is defined. Since
a full discussion would take us too far afield, I have included
the word « quasi-always » simply to give the flavour of the
results.) In Theorem 1 we construct 2 countable disjoint
Kronecker sets whose union is independent but not Dirichlet.
A modification of this construction gives Theorem 2 which
in turn implies that the independent union of 2 disjoint
perfect Kronecker sets may be independent but not Dirichlet
(Corollary 2.1). As another example of what can occur if
independence conditions are dropped we give in Lemma 3.4
a constructive proof of a result obtained by functional analytic
methods by Varopoulos [17], which shows that the sum of
2 disjoint Kronecker sets may be the whole of T. In Theorem 6
we construct 2 disjoint perfect Kronecker sets whose union
is independent but not even weak Dirichlet. Examination of
the proof and consideration of the methods of Bernard and
Varopoulos indicate that the novelty here lies in the exhibi-
tion of an independent set which is not weak Dirichlet. Since
(as we saw in Section 1) all Kronecker sets are Dirichlet, weak
Kronecker, weak Dirichlet and N sets and all Kronecker,
Dirichlet, weak Kronecker and N sets are weak Dirichlet,
Theorem 6 provides a complete negative answer to the union
problem for these types of set. For example it improves on
the standard result (due to Marcinkiewicz) that the union of
two N sets need not be an N set ([9] Chapter vn, § 5) by
exhibiting an independent union of two N sets which is
not an N set (the standard result again depends crucially
on the lack of independence of the given union).

In Theorem 7 we show that the independent union of q
disjoint Kronecker sets may be such that it is at most Hi/^.
We very briefly discuss a result of Varopoulos [17] which
states that the independent union of q disjoint Kronecker
sets is at least H^ and so shows our result to be best possible.
A simple modification of the proof of Theorem 7 gives Theorem
8 : the closed independent union of a countable collection of
disjoint Kronecker sets need not be Helson. Rudin has shown
by probabilistic means that independent non Helson sets
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(Rudin sets) exist ([9] Chapter vn). As a by-product of Theo-
rems 7 and 8 we obtain in Lemma 7.4 and Lemma 7.8 by direct
construction examples of independent perfect non Helson
sets which both do and do not carry non zero measures a
with lim a{n) = 0. We conclude Section 7 by using our

Jn|->oo
techniques together with the result of Varopoulos just men-
tioned to prove some minor results of which the most interes-
ting is that the independent union of an H^ and an H( set
can be an Visin+s set [0 < 5, ( < I],

The paper proceeds at a leisurely pace. My excuse is that
whilst the impatient reader may in any case omit those results
and proofs which he finds uninteresting, I wish to help those
who want to construct such sets themselves by exhibiting
as varied as selection of constructions as possible. For example
there is a considerably longer discussion of independence in
Section 6 than the paper needs. In Section 7 we discuss discrete
Kronecker sets in R because the techniques used seem to be
simpler. Finally several results on Hy. sets are included only
because it seems to me that any results in this field are worth
having.

Essentially the proofs merely consist of repeated applica-
tions of Kronecker9 s theorem and the trivial observation that
for any interval I we can find an m^ such that for m > mo
the wave length of 7^ is very much smaller than the length of
I. We apply this to situations of gradually increasing com-
plexity. Thus although the proofs of our theorems (except in the
case of Theorems 2 and 5 and Theorems 7 and 8) are indepen-
dent, it may be helpful to absorb the ideas of the earlier theorems
before proceeding to the later ones. However, anyone well
versed in the subject will find that reading the heuristic
preceding Theorem 1 and the proof of Theorem 7 gives a good
idea both of the methods used and the ideas behind them.
Others may wish to omit the proof of Theorem 5 as adding
nothing to the ideas of Theorems 2 and 4, and may feel that
they do not need Theorem 6 as a stepping stone to Theorem 7
but having read the latter may feel the former easily obtainable.

Unfortunately our constructions are necessarily inductive
and the proofs thus obscure the simplicity (or triviality) of
the ideas. Thus once the reader has grasped the idea, he may
prefer to construct his own proof. Except in the case of
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Theorems 4 and 9 where some verification is required, once
the idea is recognised the result is obvious. To encourage
this process we have included a certain amount of heuristic.
The reader may also find it helpful to follow the induction
through a couple of cycles drawing a diagram of the state
of the system at each step (the results were obtained in this
manner). When doing this it becomes natural to think of the
construction as proceeding in time : at time m we examine the
system with respect to /^ and make suitable modifications.
We use this metaphor in our heuristics.

Finally we establish some notation. Since C(T) is separable,
so is S and there exist g,eS such that {gi, ga? • • • } ls

dense (under the uniform norm) in S (for convenience we
take gi = 1). Write ^i+2+...+r+^-i == & for 1 ̂  s ^ r. Then
trivially E is Kronecker if and only if inf sup \fr{x) — /,(^)| —>0

s'^1 a;GE

as r -> oo and weak Kronecker if and only if we can find
e^ -> 0 such that for every (JL e M^T)

inf [ i { x e E : \fr{x) — x.?(^)| > ^r} -> 0 as r -̂  oo.
s^l

The reader unfamiliar with the convention should note that
we write N(y, s) = {x e T : \x — y\ ^ e} [y e T, n ^ e > 0].

3. First Results.

Suppose we construct successively x^ x^ ... and set
E === {x^ x^ . . .}. Then E independent does not imply E
independent. Thus in what follows we first select a limit point
(XQ and then construct 04, ag,. . ., ay. —> ao such that, for each s,
{oci, . . ., a,, ao} is independent. Then E == {ao, 04, ocg, . . .}
is closed. Suppose y^ 2/2, . . ., ̂  e E distinct. Then, for some s,
{t/i, . . ., y^} c {ai, . . ., o^, ao} so z/i, y^ . . ., ̂  are indepen-
dent. Thus E is independent.

We use this idea in the proof that follows. Here the reader
will note that at time m we introduce a new point a^ to
prevent the set E from being well behaved with respect to
Xw

LEMMA 3.1. — There exists a closed set E which is not
Dirichlet yet independent and countable {and so weak Kronecker
and No).
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Proof. — We construct such an E. Select ao e T inde-
pendent (i.e. <Xo ^ 2^0^). The central inductive step in the
construction runs as follows. Suppose we have constructed
ao, a^, . . ., a^ independent. By Lemma 1.3 we can find OL^+I
such that 1x^+1(^4-1)—11 ^ ^l^i -- ao| < 27r/(m + 1), and
ao, a^, .... a^+i) are independent. The induction now pro-
ceeds.

We set E == {ao, a^, a^, . . .}. By the remarks above E
is independent and closed. On the other hand Ix^r) — 1| ^ 1
for all r ^ 1 so E is not Dirichlet.

The reader will notice that the early stages of the cons-
truction do not really affect the final result. This is true for
all the constructions in this paper. In fact the first few steps
are often atypical. Because of this and also because we may
wish to impose conditions that complicate the early parts
of the construction but not the later ones (e.g. that the set
lie in an interval I), we shall be deliberately vague as to
how the inductions are started. Inserting these details is a
genuinely trivial matter but would still further obscure the
ideas of the proof.

We now prove Theorem 1. The idea here is crudely as
follows. Consider the construction proceeding at times
r = 1, 2, . ... At time r == M we have a great deal of latitude
in constructing one set A, we use this latitude at times
r = M, M + I? • • • t^ ensure that A is badly behaved
with respect to %M) XM+I? • • • • By Kronecker's theorem there
will come a time P when what we have constructed of B
is well behaved with respect to ^p. By the continuity of
Xi? • • • ? XP there is a certain small latitude allowed us in
adding to our construction of B while retaining its desirable
characteristics in relation to them. As r continues to increase,
the wave length associated with ^ decreases and there will
come a time M7 when the latitude allowed in constructing
B is large compared with the wave length of ^M'- We now
reverse the roles of A and B and start again. This construc-
tion ensures that A and B are each well behaved infinitely
often but A u B never is.

THEOREM 1. — There exist A, B disjoint countable Kro-
necker sets such that A u B is independent but not Dirichlet.
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Proof. — We construct such an A and B. Select ao, Po
independent with |ao — Pol > 2/5 say. We give the central
inductive step in the construction of A and B. Suppose we
have ao, a^, . . . , OM^B), Po? Pi? • • • ? Pncn B) independent and
1/10 ^ s(n,A) ^ <M,B) > 0 such that M(n, B)s(n, A) ^ 27r.
Since ao, a^, . . . , OM^B) are independent, there exists a
P{n + 1, A) > M(n, B) such that |xp(^i,A)(a,) - /^i(a,)| ^ 2-(7l+2)
for 0 ^ 5 ^ M{n, B). Since /^ and Xp(n+i.A) are continuous
there exists an 0 < e{n + 1, A) ^ 1/2 e{n, B) such that
IXP(n4-i.A)(^) ~ /^i(^)| ^ a-C^1) for all ^e N(ao, <n + 1, A)).
There exists an M{n +1, A) > P{n + 1, A) such that
M{n + 1, A)e(M +1, B) ^ 2Tc. Select (using Lemwa 1.3)
^(n^+i, . . ., aM(n+i ,A)€= N(ao, e(n + 1, A)) such that
ag, . . . , aM(n+i^A)? Po? • • • ? PM^B) are independent. Because
M(n, B)s(n, A) ^ 27r we can find (by Lemma 1.3)
PM(H,B)+I, ..., PM(n+i,A)e N(po, £(^ A)) such that |^((B,) — 1| ^ 1
for M(n + 1, A) ^ 5^ M(n, B) + 1 and ao, . . . , OM^.A),
PO) • • • ? PM(n+i,A) are independent.

Repeating the work mutatis mutandis we obtain ao, . . . ,
^Mdn+i, B), Po, . . . , PM(n+i B) independent points and
e{n + 1, B),P(M + 1, B), M(M + 1, B) with the following
properties :

e{n + 1, A) ^ 1/2 s(n + 1, B) > 0,
M{n + 1, B)e(n + 1, A) ^ 2^,

M(n + 1, B) > P(n + 1, B) > M(n + 1, A)
and ^P |XP(^I,B)((B,) - A+i ((3,) | ^ 2-(ra+l),

O^^M(7i+l, B)

,sup |XP(^, B)(^) - ̂ î ) | ^ 2-(^),
a-€N(po, e(n-+-l,B))

whilst |^(a,) — 1| ^ 1 for

M(n + 1, B) ^ 5 ^ M(^ + 1, A) + 1.

The induction proceeds.
Let A = {a,: r ^ 0}, B = {(B,: r ^ 0}. Since a, -> OQ,

Pr -> Po as r -> oo, A and B are closed. Trivially A and B
are countable and, provided the induction is started suitably,
disjoint. Suppose y^ y^ . . . , ^ e = A u B distinct. Then, for
some s,{y^ . . . , yj c {ao, . . . , a , , p o , . . . , ( U so y^y^ . . . , 2 / ,
are independent. Thus, as before A u B is independent. By
construction sup |xp(n,A)(a,) — fn{^)\ < 2-71 so A and simi-

s'^0
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larly B are Kronecker. But max (|x,(o^) — 1|, |x,(^) — 1|) ^ 1
for s large enough (depending on how the induction is started),
so A u B cannot be Dirichlet.

The reader will note that (in heuristic terms) there is a
great deal of « slack » in our constructions, both here and later.
Having ensured the good behaviour of part of our set at
time r (i.e. for the character ^y.) we are content not to
tamper with that part so as to try to ensure good behaviour
until much later. This is, I think, unavoidable to some
degree, since a Kronecker (or similar) set has a deep structure
which does not appear explicitly in our construction. For
example, on the face of it, our methods should enable us to
construct a Kronecker set K such that 2K = {2x: xe K}
is not Kronecker (i.e. K is Kronecker but not all members
of S can be approximated by characters of the form /ara)-
The following easy Lemma shows that this is not possible.
The reader may derive some benefit by considering where a
proposed construction for a counter example breaks down.

LEMMA 3.2. — If K is a Kronecker set and q e Q\{0} then
qK. = {qx : x e K} is Kronecker.

Proof. — Clearly qK is closed. If m, M € = Z \ { O } then
^n(mxln) = Xrm(^)- The result is thus equivalent to showing
that it M€=Z+\{O} every fe S can be uniformly approxi-
mated arbitrarily well by characters of the form /rn* Since K
is closed and K =^ T there is an open interval I c T such
that I n K == 0. Thus if fe S there is a ge S such that
g]K = f\K and [arg g(()]^ is a multiple of 27m. In parti-
cular there exists an h e S such that A" == g. Suppose
e > 0 is given. Then we can find an r such that
|Xr(^) — h[x)\ ^ £/TZ for re e E and so

IU^-A^I =brnW-hn{x)\

=\7nr{x)-hn{x)\

= \^{x) — h{x) S x^)^-1-^)
15=0
n-l

^ \^{x)-h{x)\ S Ix^A71-1-^)]
s=0

= |%r(^) — h(x)\n < e for all x ^ E.
This is the required result.
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We note that if y e K then 2ny~~lK is not independent
and so not Kronecker.

In what follows we shall use repeatedly the following
simple fact:

LEMMA 3.3. — (i) Suppose Ii, ..., Is are disjoint closed
intervals in T and fe S, r(l), r(2), ..., r(s) > 1, no ^ 1,
s > 0 and 8 > 0 given. Then we can find an n > n^ disjoint
closed intervals Ip^cint Ip [1 < q < r(p), 1 < p < s] with

s r(p)

diam Ipg<8 such that \f{x) — /ra(^)[ ^ e for all x e ^ N J Ipy.
p==l ^==1

(u) Under the hypotheses of (i) we can find an n^ > no such
that for any n > n^ we can find disjoint closed intervals
Ipq^int Ip [1 ^ q ^ y*(p)? 1 < p ^ 5] with diam \pq ^ 8

s r(p)

such that | f(x} — Xn^)! ^ e /or a^ ^e I J \ } Ipg-
p==l 9==1

Proof. — Although (n) implies (i) we choose to prove the
2 results separately. We do this because our proof of (u)
leans much more heavily on the special properties of T, and
because we need this stronger and « less natural » version only
once for the non essential Lemma 6.1.

(i) By Lemma 1.3 we can find distinct independent
a^ e int Ip [1 ^ q < r(p), 1 ̂  p ^ s]. By Kronecker's
theorem we can find an n> no such that \f{^pq) — Xn(apg)| < e/2
and since f and ^ are continuous, we can find disjoint
intervals Ipq with diam \pq ^ 8, a^ e int Ip^glpggint Ip
such that \f{x) — Xn(^)| ^ e for xe Ipy [1 ^ q ^ r(p),
1 < p ^ 5] as required.

{ii) Since jf is continuous and T compact, there exists a
0 < 7) < min diam L such that sup \f[x)—f(y}\ ^ s/2.

1^P^5 ^ ja;-yj<yi
Select (closed) intervals Jp and points y? such that
Vp e int J p g Jp s int Ip and diam Jp ^ T] [1 < p ^ s]. Choose
an Mi > no such that n^ min Jp > 471;. Then if n > n^

l^P^S
we have that /„(() has period 2nln (in t) and so there
exists Zp e int Jp with x»(Zp) == ^(y?) and so

SUP |/̂ ) - Xn(^)| < ^/2.
.ej,
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By the continuity of /„ we can find closed intervals
I^cint Jp with diam Ipq < S such that |^(y) — /^)| ^ e/2
for all y ^ J p q [1 ^ q ^ r(p), 1 ̂  p ^ s]. Clearly the Jpq
have the required properties.

Using this, we can push the method of Theorem 1 a little
further to obtain Theorem 2. The idea here is that the bad
behaviour of E with respect to ^m can be ensured by bad
behaviour in a small region (within a small closed interval
F? say) outside of which we can make E well behaved. As r
increases with m we allow F? to move round and round
the circle growing ever smaller. In this way we ensure that
although E is badly behaved, the removal of that (non
empty) part of E lying within a small interval renders E
well behaved infinitely often.

THEOREM 2. — There exists a perfect non Dirichlet set E
such that every proper closed subset of E is Kronecker.

Proof. — We construct inductively 3i, ^ • • • where 3^
is a finite collection of (closed) intervals and setting
E, = u {F : F e 3,} we have 0 ^ F, and F, 3 F,+i. We

00

then set E = f \ F^ (cf. Lemma L4). The central inductive
r==l

step runs as follows. Suppose we have 3^ F? e 3^
1/10 ^ s(r) ^ 8(r) > 0, M(r) ^ N(r) > 1 defined in such a
way that M(r) s(r) ^ 2n, diam F ^ 8(r) for all Fe3^ and
diam F? ^ e(r). Let the sets of 3^ be numbered in the direc-
tion 6 from 0 to 2n as Eo, Ei, . . . , E^ say (here as elsewhere
in the proof the notation is obviously temporary to be main-
tained only in this step of the induction; if we needed to be
more specific, we would talk of Eo(r), Ei(r), . . . , E^)(^))
with E, == F?. Select o^ e int E/, [0 ^ k ^ q, k + s\ inde-
pendent. By Lemma 3.3 there exists a P(r) > M(r) and an
0 < e(r + 1) ^ 1/4 8(r) such that setting

G, = N(a,, 1/2 e(r + 1))

we have G,cF, and |XP(.)(^) - f^{x)\ ^ 2-W for all
rce G/,[0 ^ k ^ q, k ^ 5]. Choose an M(r + 1) > P(r) such
that M(r + l)e(r + 1) ^ 27r. Since M(r) diam E, ^ 27r we
can, trivially, find distinct (BMOO+I? ^(^+2? • • • ? PM(r+i)e int E,
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such that |x,(p,) - 1| > 3/2 for M(r) + 1 < re < M(r + 1).
By the continuity of ^MM+I, XM(r)+2, • . ., XMO.+I) we can find a
0 < S[r + 1) ^ e(r + 1) such that setting

Hn=N((S,, l /28(r+l))

(or more specifically H,(r) = N(^(r), 1/2 S(r + 1))) we have
H,.cE,,|^)-l| ^ 1 for all

xe H, [M(r) + 1 < re ^ M(r + 1)]
an(^ HM(,.)+I, HM(r)+2, . . ., HM(r+D

disjoint. Setting

^1=^1^" U H»>F^i=G^
0^/c^g M(r)+l<n<M(r+l)

k^s

(where G^i = Go) and N(r + i) = N(r) + 1 if s = M(r),
N(r + 1) = N(r) otherwise.

The induction now proceeds.
Since the argument now depends crucially on the behaviour

of F^ as r increases the reader is again advised to draw
a diagram and observe the behaviour of F* through several
inductive steps. We see that indeed N(r) -> oo (in more
colourful language F;? describes complete rotations), and
e(r), 8(r) -> 0, card ^ -> oo as r -> oo. Hence E is perfect
(Lemma 1.4). Moreover if FeO, [r ^ 1] then F n E ^ 0.
It follows that if n is large enough (depending on how the
induction is started), then we have for some r that
M(r + 1) ^ n ^ M(r) + 1 and therefore, selecting a

P e E n H^(r) we have (B e E and |^(p) — 1| ^ 1.

Thus E is not Dirichlet. Now suppose that A is a proper
closed subset of E. Then there exists an xe E and a 8 > 0
such that N(a;, 8) n A = 0. But we can find a qo such that
for all q > qo there exists an r with N(r) = q and
F?cN(a;, 8) (more colourfully: eventually F? lies entirely
within N(a;, 8) at some time during each revolution). Thus

IXP(r)^) - fM = \^{t) - f^{t)\ ^ 2-W = 2-^

for all ( < = A . Hence A is Kronecker. This completes the
proof.
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We note that every finite subset of E is closed, so Kro-
necker and thus independent. Hence E is independent. Since
E is perfect it is the union of 2 non void disjoint closed sets.
From considering any such 2 sets A, B we obtain

COROLLARY 2.1. — There exist 2 disjoint perfect Kronecker
sets A and B with A u B independent but not Dirichlet.

Moreover if we are given (JL e M^T), e > 0, T) > 0 we can
find an open non void subset K of E such that (i(K) < Y].
Let L = E\K. Then L is Kronecker and given fe S we
can find an n such that sup \f(x) — ^n{x)\ ^ 1/2 e and so

XGL

[ L { x ^ E : |Xn(^) -—A^)l ^ e} < •y]- We thus obtain Wik's
result.

COROLLARY 2.2. — There exists a perfect weak Kronecker
set which is not Dirichlet.

We conclude this section with a lemma (due, as we said in
Section 2, to Varopoulos [17]) which shows that, in a certain
sense, Kronecker sets are quite thick. The proof follows that
of Theorem 1 in that we balance the construction of K and
L against each other so as to ensure that each of K and L is
well behaved infinitely often, but K + L is not well behaved.

LEMMA 3.4. — We can find K, L disjoint perfect Kronecker
sets such that K + L == T.

Proof. — We construct inductively 3ti, ^29 • • • ^d
^i, ^29 • • • finite collections of disjoint (closed) intervals such
that setting K, = u {F : Fe3t,}, L, = u {F : F e ̂ } we
have K^K^+i, L^L^+i, K^ n L^ == 0. We then set

00 00

K = ( \ K^ L = ( \ L r (cf. Lemma 1.4) and show that K
r==l r=l

and L (which are certainly disjoint) have the required pro-
perties. The central inductive step runs as follows. Suppose
we have P(r, K) ^ 10 and K^, L^ defined in such a way
that int K, + int L, == T. Then (J {x + int K,) == T.

a?eintLp

Since T is compact, we can find distinct x^ ^2r? • • • ? ^n^r e lnt Lr
n(r)

such that I J (^/cr + i^ K^) == T and further every F e ̂
k=l
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contains at least 2 members of x^, x^, ..., x^,.
Since int K, is the union of a finite collection of open inter-
vals, we see that there exist disjoint closed intervals 1̂ ,
^r, • . •, I<r)r such that x^ e int 1̂  c 1̂  c int L,. [1 < k < n]
and for all z^ e ^, . .., z^ <s 1^ we have

n(r)

U (z* + int K,) == T.
k=l

Select y^eint I,, such that y^, y^ . . . , y^ are inde-
pendent. By Lemma 3.3 there exists a P(r + 1, L) > P(r, K)
and intervals J,, with ^eint J,, c J^ c ̂  and
diam J^ < 1./2 diam 1̂ , such that xeS^r implies

IXp(r+i,L)(a;) -fr^[x)\ ^ 2-'-1 [1 < k < n(r)].

Setting ^={J^.. 1 < / c < ^(r)} we have L,̂  s L,,
^p |xp(r+i,L)(a;) - /,+i(a;)| < 2-'-1 and int L,+i + int K, = T.

Mutatis mutandis we can find 3t,+i a finite collection of
disjoint intervals and P(r + 1, K) > P(r + 1, L) such that
K,+icK,, sup |/p(,+i,K)(a;) —fr+i{x)\ ^ 2-^-l and

•""r+l

int L^i + int K^i == T.

The induction now proceeds.
As usual there is a great deal of liberty allowed in starting

the induction, but it may be as well to point out that setting
^={[-^/40, Tr/40], [197T/40, 2l7t/40], [29^/40, 31^/401},
and

^o = {[27T/40, 187T/40], [227T/40, 287r/40], [327t/40, - 2^/40]}

we do indeed have int K<) + int Lo = T. We now show that
K and L have the required properties. By construction K
and L are perfect. Further, since LsL,+i, we have
^ IXP(r+i,L)(a;) -fr+i(x)\ ^ 2-r-l so that L and similarly
K are Kronecker. Now suppose ^ e T. We can find %,eK,.
\ e Lr such that %,. + ̂  = ^. By compactness we can find
m(l) < w(2) < ... such that ^ ̂  y. e T, X^ ̂  X e T
and so % + X = ^. But by construction x e K, X e L. Thus
K + L = T as we set out to prove.
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4. R Sets and Weak Kronecker Sets.

The method we have used is clearly a very easy way to
construct weak Kronecker and weak Dirichletsets. However,
there are limits to its power as we shall now see. The results
which show this, though not very deep, in turn form the heu-
ristic for Theorem 3. We make the following temporary defi-
nitions tor use in what follows. We will call a closed set E
almost Kronecker (respectively almost Dirichlet) if every proper
closed subset of E is Kronecker (respectively Dirichlet).

We first remark that, not surprisingly, not every weak
Kronecker set E is almost Dirichlet. If we do not demand E
perfect the result is trivial.

LEMMA 4.1. — There exists a countable independent [and so
weak Kronecker} set E which is not almost Dirichlet.

Proof. — Take E as in Lemma 3.1, E\{ai} is not Diri-
chlet.

For E perfect we obtain the result by a simple modification
of the construction in Theorem 2. The idea here is to ensure
that F? does not make a complete revolution. We give the
proof in full, but for most of its length it follows that in
Theorem 2 word for word, and the reader need only pay atten-
tion to the divergences.

LEMMA 4.2. — There exists a weak Kronecker set which is
perfect but not almost Dirichlet.

Proof. — Suppose we have 3p a finite collection of closed
intervals, F* e 3,, 1/10 ^ e(r) ^ 8(r) > 0, M(r) e Z with
M(r)s(r) ^ 27T, diam F ^ 8(r) for all F e 3, and
diam F? ^ e(r). Let the sets of 3r be numbered in the direction 6
increasing as Eo, Ei, . . . , E<y say with E, = F?. Select
o^fc, oi^+i e mt Efc[0 ^ k < q, k + s] independent. By Lemma
3.3 there exists a P(r) > M(r) and an 0 < e(r + 1) < 1/4 8(r)
such that setting Gi = N(o^, e(r + 1)) we have Gg^, G^k+i
disjoint subsets of ¥^[0 ^ k < q, k ^ s] and

IXP(r)(^)-/^)| ^ 2-

for all xe GI [0 < I < 2q+ 1, I + 2s, 2s + 1]. Choose an
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M(r + 1) > P(r) such that M(r + i)e(r + 1) > 2n. Since
M(r) diam E, > 27t we can, as in Theorem 2, find disjoint
subintervals HM(.)+I, . . . , HM(,+I) of E, with diameter
8(r + 1) where s(r + 1) > 8(r + 1) > 0 such that
\^{x) — 1| ^ 1 for all xe H, [M(r) + 1 < re < M(r + 1)].
Wenowset^= [J {Gj u (J {HJ,F^=G^

0<;< 2^-1-1 M(r)+l<n.^M(r+l)
(gfc2i, 2^+1

and restart the induction.
Now e(r + 1) < 1/2 e(r) so s(r) -» 0 as r ̂  oo, for

any I e 3,, card { F e 3,: I' c 1} ^ 2"-'-1 -> oo as r^oo and
setting F , = u { F : F e 3,} we have F,3F,+i. Thus

00

E == [ 1 F^ is perfect. The reader is invited to draw a diagram
r==l

and consider the behaviour of F?. We note at once that
F^cE^)+i(r) for all n ^ r and thus by well known topological
results there exists an XQ e E such that if ^ e F;? then
^ -> a;o. Further we see that XQ <t= F? for any r. With the
aid of these observations we can show E weak Kronecker
but not almost Kronecker. Suppose [JL e M+(T), e > 0, T] > 0
given. Then we can find a 8 > 0 such that setting
L = {xo} u (E\N(^o, 8)) we have (i(L) > pi(E) - y^. For r
large enough L n F? = 0 and so sup |xp(,)(;r) — f^x)\ ^ 2-^

a?6=L
i.e. L is Kronecker. Thus if /*e S we can find an n such
that sup \f{x) — ^{x)\ ^ 1/2 s and so

a?eL

[l{^eE:|^) -/•(^j ^ s} < ^.

Thus E is weak Kronecker. However, for any 8 > 0 setting
K(8) = E n N(^o, 8) we have that for r large enough
K n F^ ^ 0 and so for n large enough sup \^W — 1| ^1.
Hence K is not Dirichlet. In particular taking 8 = 1/4 diam E
so K ^ E, we see that E is not almost Dirichlet. This
completes the proof.

More disappointingly we have

LEMMA 4.3 — {i) Every almost Dirichlet Cantor set E is
an No set {and so an N set and an R set).

Proof. — Choose Li, Ki non void disjoint closed subsets
of E whose union is E. Choose Lg, Ka non void disjoint
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closed subsets of Ki whose union is Ki; L^, K^ non void
disjoint closed subsets of Kg whose union is Kg, and so on.
Setting Ey. = E\L^ we have Ep a proper closed subset
of E. Thus we can find 0 < m(l) < m(2) < • • • < m(r) < • • •
such that |Xm(r)(^) — II ^ 2-^ for all rceE^ and so
| sin m(r)x\ ^ 2-r for all rceEr. Since Li, La, . . . are
disjoint, we thus have that for any x e E, sup | sin m(r)x\ > 2"''

00

for at most 1 value of r ^ 1. Thus ^ [sin m{r)x\ converges
/. °° . \ r==l .(indeed ^ |sin m(r)x\ ^ 2 ) for all a?eE. This proves the
\ r==l /
lemma.

This result does, however, have the immediate corollary
(using Theorem 2)

LEMMA 4.3 — {ii) There exist weak Kronecker (and so inde-
pendent) sets which are No sets but not Dirichlet.

In Section 6 we shall prove this in a different way, directly
from Lemma 3.1.

A certain amount of thought shows that similar results
to that of Lemma 4.3 (i) (proved in a similar way) hold for
the set E of Lemma 4.2. Moreover by Lemma 1.7 (i^) every
closed countable set E is an No set. In seeking for a proof
of Theorem 3 we therefore try to construct sets which imitate
the « natural disorder » of a typical perfect weak Kronecker
set. I was also guided in attempting to obtain such results
as Lemma 4.3 and Theorem 3 by the following idea which the
reader may or may not find helpful. (In describing it I have
tried to follow the notation of [12] especially § 4.1, but I
hope that recourse to the reference will not be necessary.)

Consider the following game. Player A draws an infinite
rooted tree (a circuit free connected unidirectional graph
with a selected point OQ, i.e. something that looks like a tree
springing from Oo). This tree corresponds to the construction
of a Cantor set in Lemma 1.4 {Hi) and elsewhere. ^ corres-
ponds to the collection of vertices at the n^ level (i.e. to the
collection of points a^ such that we can find a path
(aoa^){a^a^){a^a^ . . . (a^-iaj). 3?n-n corresponds to that at
the n + 1th level. If !„ <= S^ l^ e S^ then the statement
!„ 2 I^+i corresponds to the statement that the vertices
a^ ^+1 representing 1^, l^+i are Joined by an edge. Player
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A then assigns a value 0 or 1 to each vertex (the vertices
labelled 0 correspond to those intervals for which we cannot
ensure misbehaviour, the others to those for which we can).
Certain restrictions may be placed on the freedom of player
A both in drawing and labelling the tree, and these determine
the character of the game. They correspond to restrictions
on the manner of our construction of E (for example : since
P is to be perfect, there must, for each a^ exist a'r+s ^ c^r+s
such that (a,, a^i)(a,+i, a,^) • • • (^r+^-i, ^r+^) and
(a,, a^+i)(a^i, 0^2) • • • (^-i? a'r+s) are paths; again, if E
is to be almost Kronecker, then without loss of generality
we may assume that at an infinite number of levels at most
1 point can be labelled 1.). Player B then chooses integers
m(l) < m(2) < • • • corresponding to the m^)111, m(2)th . . .
levels. (In the example given he can ensure that if a^ at
the mir)^ level is labelled 1 then for every path
(̂ m(r)? ^m(r)+l)(^m(r)+l? ^m(r)+2) • • • (^m(r+^)-l) ^m(r+.o) WC have

that ^m(r+5) ls labelled 0.) Player A now chooses a path
{aQC^){a^a^)[a^a^){a^a^) .... If a^) is labelled 1 then A
scores 1 point. A wins if his path gains him an infinite number
of points (i.e. if he has found P^ e 2^ with Pi 2 Pg 3 • • - and
Pm(r) badly behaved infinitely often) and loses otherwise.
(In the example given he loses and we have the germ of the
idea behind Lemma 4.3 (ui)).

Examining this game more closely, we see for example
that A can win if he can ensure that given a, he can find a (
such that for all r ^ t there is a path

(»A+l) (^+1^+2) (^+2^+3) • • • (^r-l^r)

with Or labelled 1. We shall achieve this in Theorem 3. The
construction there is planned with this and the following
trivial lemma in mind.

LEMMA 4.4. — Suppose EI, Eg, ..., E^sT are disjoint
closed sets, n > m ^ 0 and [L e M^T). Then for some
m + 1 ^ r < n we have (x(E^) ^ ll(n —• m)[[(JL|[.

Proof. — Suppose, if possible, (i(Er) > l/(n — ^)||^|| tor

all m + 1 ̂  r ^ n. Then ||^|[ > S ^(E.) = ^ (Q ̂ r\ = M
which is absurd. r=l ^ y^ ^
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Thus if at different times E^, . . ., E,_i, E,+i, . . ., E^ are
well behaved, but E, is not [m + 1 ̂  s ^ n] then at
some time a set of measure 1|^||(^ — m + 1)/(^ — m) is well
behaved. By increasing the number of sets Ei, . . . , E,» we
shall obtain good behaviour at some time, except on a set
of arbitrarily small measure.

THEOREM 3. — There exists a perfect weak Kronecker set E
such that for any Sr an(^ any n{r) ~^ °° we can fi^ a ^ e E
with sin (m(r)js + Sm(r)) "'̂ " 0. In particular E is not an R
set (and so not an No set).

Proof. — We construct inductively 3^, Sg, . . . finite collec-
tions of (closed) intervals such that setting Er == u {F : F e= 3^.}

00

we have E^D Ey+r We then put E = H E^ (cf. Lemma 1.4)
r==l

and show that E has the required properties. The induction
runs in cycles covering steps K(t) to K{t +1) — I? K(^ + I)
to K(( + 2) — 1 and so on, where K(( + 1) = K(t) + (. As
usual, we ignore the initial stages of the construction and give
only the central inductive step with t ^ 2, and K(() ^ 10.

Suppose K(() ^ r ^ K{t + 1) — 1. We write
s = r - K{t) + 1

and, to bring the notation into line with that of Theorem 2,
N(r) == t. At the r^ step we have

3^ = Jb^o u Jfc î u A^ u • • • u Jlŝ )

where the Jl^o, «A)ri? • • • ? ^rN(r) are disjoint and non empty
and F e Jlo^ implies M(r) diam F ^ 27r. We also have
%ri? ^r2? - • • ? ^rN(r)+i disjoint non empty with

%,1 U %,2 U . • . U S>rM+l = ̂ r0 U A>,i U . . • U Jl̂ ,-i.

By Lemma 3.3 we can find a P(r) > M(r) and for each
FeJl^ [0 ^ k ^ N(r), k ^ s] a (closed) interval H(F, r) c F
with diam H(F, r) ^ 1/2 diam F such that

sup |^^)-^;)| ^ 2^).
a;eH(F, r)

There exists an M(r 4" 1) > P(^) such that
M(r + 1) diam H(F, r) ^ 27c
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for all FeJb^O ^ k ^ N(r), k ^ s]. Two cases now arise
according as s < N(r) or s = N(r). First suppose s < N(r).
Since M(r) diam F ^ 2'n: for any F e Jb^ we can fwd
2(N(r) + 1) (M(r + 1) — M(r)) distinct points

a(F, I, TZ, r, 5, ^) e int F (where p = 0 or ^ == 1)

such that | sin na(F, Z, n, r, 5, 0)| ^ 19/20,

| sin MOC(F, ^ M, r, 5, 1)1 ^ 1/20 [F e Jfc,,, 1 ̂  I ^ N(r) + 1,
M(r) + 1 ̂  n ^ M(r + 1)].

Thus by continuity we can find 2(N(r) + l)(M(r + 1) — M(r))
disjoint (closed) intervals J(F, I, n, r, s, v) with

a(F, I, n, r, s, v) e int J(F, Z, n, r, 5, ^) c J(F, Z, n, r, 5, ?) c F

such that

[sin nx\ ^ 9/10 for all x e J(F, I, n, r, s, 0) and [sin nx\ ^ 1/10

for all

x e J(F, I, n, r, 5, 1) [F e .̂ , 1 ̂  I ^ N(r) + 1,
M(r) + 1 ̂  n ^ M(r + 1), ^ = 0,1].

We set

^i, = {H(F, r) : Fe^} [0 ^ k ^ N(r), /c ^ s},
^i.= {J(F, ^ n, r, 5, P) : Fe^,

1 ^ I ^ N(r) + 1, M(r) + 1 < n ^ M(r + 1), v = 0,1

and

% ,̂ = {H(F, r) : F e %„} u {J(F, Z, n, r, ,̂ ̂  : F e ̂ ,
M(r) + 1 ̂  n ^ M(r + 1), v = 0,1

[1 ^ I ^ N(r) + 1].
Now suppose s == N(r) (so that r = K(t + 1) — 1 and

we are at the end of a cycle). Since M(r) diam F ^ 2n for
any F e Jk^) it follows by a similar argument to the one
just given that we can find 2(N(r) + 2)(M(r + 1) — M(r))
disjoint intervals J(F, I, n, r, s, v) c F such that |sinn^| ^ 9/10
for all o;eJ(F, Z, n, r, 5, 0) and |sin nx\ ^ 1/10 for all

x e J(F, Z, n, r, 5, 1) [F e ̂ , 1 < I ^ N(r) + 2,
M(r) + 1 < ^ ^ M(r + 1), ^ = 0,1].
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We now set
A,^o = {J(F, I, n, r, 5, (.): F e ̂ ,, 1 < I ^ N(r) + 2,

M(r) + 1 ̂  n < M(r + 1), ^ = 0,1
Jb ,̂ = {H(F, r): F e 3U [1 ^ /c ^ N(r) + 1]

and
^^ = {J(F, Z, TZ, r, 5, (/): F e Jb,,, M(r) + 1 ̂  n ^ M(r + 1),

^==0 ,1
[1 ^ I ^ N(r) + 2]. We note that N(r + 1) = N(r) + 1 and
restart the induction.

Let us pause at this stage of the proof to examine in general
terms what we are doing. During the Ith cycle we split the
collection of intervals under consideration into ( + 1 blocks
AO, ^i, . . . , Jb< say. At the 5th step of the cycle we alter
the contents of Jbo? ^i? - - • ? ^t so ^at Jb, is badly behaved
but Jl)o5 ^i? • • • ? ^-i? ^s+i? • • • ? ^t are well behaved. Thus
each in turn of Jfc^, . . . , ̂  is badly behaved while the remain-
der of the blocks are well behaved. However, we do not attempt
to ensure bad behaviour for J<?o- At the end of the cycle we
re-partition the new collection of intervals into t + 2 blocks
(and so into a larger number of blocks) Jbo, Jbi, . .., J^+i
say in such a manner that intervals ensuring the bad behaviour
of Jbo (during the last part of t — 1th cycle) and
Jbi, Jbg? • • • ? \+i (during the parts of the t^ cycle just
discussed) are assigned to each of Jbi, cA^, . . . , ^+1.
Unfortunately the inductive hypothesis which demands
that the intervals of J^[ must be large (more exactly
M(K(< + 1)) diam F ^ 2n for all F e Jfc^+^i) means that we
cannot assign typical members of ^ to <A?i. We therefore put
the members of ^ into a separate block Jlog whose members
will, when at the end of the t + 1th cycle we form new blocks
^o? ^L • • • ? X+2? ^y? b6 distributed among JVi? ^4? • • • ? X'+2
as described below. The reader may find it useful to draw
a tree representing the behaviour of E^ during 3 or 4 cycles
of the induction.

Returning to the proof, we first show that E (which,
since max diam F < 2~K(r)+117^ -> 0 as r -> oo, is perfect)

FeJ,
is indeed weak Kronecker. Suppose (xeM^T). Set
F,,, == E n u {F: FeJIo,,} [0 ^ k ^ N(r)], and observe that
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F^k depends only on N(r) so that we may write E^ == F^
for ( = N(r) [0 ^ k ^ t]. Now E<o, E(I, . . . , E(( are disjoint

t
and [ J E^ = E so by Lemma 4.4 we can find an i ^ s ^ t

suchtha°t (JL(E^) ^ ||(Ji||/f. But |xp(i+K(04-.)(^) -/^)1 ^ 2^
for all x e U E^. Thus

k^s, l<k<t

^e E : |XP(I.K(O+ )̂ - A(^)l ^ 2-^} ^ M|/^ -> 0

as ( -^ oo and E is weak Kronecker.
We now show that E satisfies the remaining condition

of our claim. First observe that sup inf|sin {nx + Sn)l ^ 1/10
for all ^ °^^1 a7eJ<F•^r•5'u)

[F e ̂ , 1 ̂  I ^ N(r) + 2, M(r) + 1 ̂  ^ ^ M(r + 1), r ^ 10].

We are now in a position to proceed with the argument pre-
figured in our discussion of trees. Suppose Si, ^2 given.
Observe that if F e Jfc^ where K{t) ^ r ^ K(t + 1) — 1,
0 < I ^ t, then provided q ^ K{t + 2) we can find for any
0 < u ^ N(g) a G e A^n such that G c F. In particular if
Fe3^ then for p large enough (in fact for p ^ P(K(^ + 2)))
there exists a q > r (in fact such a q is given by
M{q) + 1 ̂  p ^ M{q + 1)) and a G e 3q such that
| sin (p^+Sp) | ^ 1/10 for r ceG and FaG. Now suppose
m(l) ^ m(2) ^ • • • given. Set X = {m{r) : r ^ 1}. We can
find a p(l) e X, an r(l) e Z and an Fi e 3^) with

|sin(p(l)o;+^i))| > 1/10

for all rreFi. But by the result just given we can find a
p(2) e= X with p(2) > p(l) (simply take a large enough
member of X), a q(2) > q{l) and an Fg e 3^ with
| sin (p(2)rc + Sj<2))] ^ 1/10 for all rceF^. Continuing in this
manner we obtain jo(l) < p(2) < p(3) < • • • with p(r) e X,
^(1) < ?(2) < ^(3) < ... and F^ => F^ => Fe =? . • • with F,e3^
and | sin (p(r)^ + ^(r))| > 1/10 for all rreF,[r ^ 1]. Since
F^ is closed and diam Fy. -> 0 as r -> oo we have by the

00

Second Intersection Theorem ([6] § 26) that r""^|Fr== {z}
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for some z e E. We have however shown that

sin (m(r)z + S<r)) -^ 0

and this completes the proof.
(Incidentally Theorem 3 and Lemma 4.3 (i) give an alternative

proof of Lemma 4.2 whilst both Theorem 3 and Lemma 4.2
have Wik's result as a corollary.)

It is natural to ask whether that part of the result which
concerns No sets can be improved to deal with more complex
situations involving absolute convergence. We now give a
simple modification of Theorem 3 which shows that we can
obtain similar results for cases in which Sa^ does not diverge
too slowly (and thus shows extremely clearly that the chief
difficulties involved in dealing with N sets, at least by the
methods of this paper, concern sums which diverge arbitrarily
slowly).

We need the following simple fact:

LEMMA 4.5. — Given t ^ l , m > n ^ l and I a closed
interval of T such that n diam I ^ 2n we can find a w ^ 1
and tw disjoint closed subintervals Jpjl ^ p ^ t, i ^ q ^ w]
such that for any a^ a^+i, . . ., a^ ^ 0 there exists a 1 ^ v ^ w

m m t

for which ^ ^ |sm rx\ ^ 1/10 S ^r whenever x e I J Jpy.
r=n r=n ^f

Proof. — Since we can always take subintervals, it is suffi-
cient to prove the result for t = 1. We note first that
| sin rx\ ^ sin2 rx for all r and x so that

m m

^ Or | sin rx\ ^ S ^r si112 ^*
r==n r=n

By the uniform continuity of sin2 m/, sin2 (n + l)y, . . ., sin2 my
(or directly from the theorem of Heine Borel) we can find a
w ^ 1 and disjoint points y^ y^ . . . , y^ e= int I such that
given any x e I there exists a 1 ̂  ^ < w such that
sup | sin2 rx — sin2 n/J < 1/40. Also by the continuity of

n^r-^m

sin2 ny, sin2 (n + ^)y, . • • ? sin2 my we can find disjoint inter-
vals 3q with yq e int 3q c 3q c int I such that y e J y implies
sup | sin2 ryy — sin2 ry\ < 1/40 [1 < q ^ w}. But by the

n^r^m
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definition of y^ . . ., y^ we see that if a^ a^+i, . . ., a^ ^ 0
m m

max ^ ^r sin2 ̂  ^ sup S ^r (sin2 ^/ ~~ ^/^O)
l̂ g<w r==w ye I r=w

m m

^ sup ^ a^ sin2 rz/ — 1/40 S ^r
yel r=w r=»

whence
w m m

max inf ^ ^r sin2 TO ^ sup ^ a^ sin2 ry — 1/20 ^ ar•
K?<W a-eJg r=n ye I r=n r==n

Now
m 1 /* m

sup ^ ^ sin2 ry ^ ———_ / Y a^ sin2 r( ri(
yel r=n diam 1 ^I r==n

1 m r= -.-.——^ V Or \ sin2 r( dtdiam I ̂  ^i

-ddn-il^1/2'1-''0'^)*
/I m

^ diaSnt 1 ar (1/2 diam I - 1/(2 r))

> 2 a, (1/2 - 1/(2 re diam I))
r==n

^ S a, (1/2 - l/(47r)).
r==n

Thus

max inf S ^Isin^l ^ (l/2-l/(47r) -1/20) S a,^ 1 /10 S ^
l<g^W xe3^ r=n r=n r=n

as required.
It is now clear what modifications to the proof of Theorem 3

are necessary to obtain the following result, whose statement
should be read carefully, as it is not as powerful or, I hope,
quite as weak as it may appear at first sight.

LEMMA 4.6. — Given m(l) < m(2) < m(3) < • • • we can
construct a perfect weak Kronecker set E such that if a^ ^ 0

m(a+l) oo

we have that lim sup ^ a^> 0 implies that ^ a |sin pz
u->w /i=m(u)+l p=l p

diverges for some z e E.

Proof. — The proof proceeds in parallel to that of Theorem 3.
We use the same notation as was established in the first two
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paragraphs of the proof of that result and give the central
inductive step in the same form. The reader need only pay
attention to the divergences. We let X = {m(u): u ^ 1}.

By Lemma 3.3 we can find a P(r) > M(r) and for each
FeJb^ [0 ^ k ^ N(r), k + s\ a (closed) interval H(F, r) c F
with diam H(F, r) ^ 1/2 diam F such that

sup |%P(^)-/N(^)| ^ 2-^).
a;eH(F, r)

There exists an M(r + 1) <= X such that M(r + 1) > P(r)
and M(r + 1) diam H(F, r) ^ 2^ for all

FeJI^ [0 ^ k ^ N(r), k + s\

Two cases now arise according as s < N(r) or s == N(r).
First suppose s < N(r). By Lemma 4.5 since M(r) diam F > 2n
we can find, for any F <= Jb^ a w(F, r) and w(F, r)(N(r) + 1)
disjoint intervals

J(F, I, n, r, ^)cF[i ^ I ^ N(r) + i, 1 ̂  n ^ w(F, r)]

with the property that for any 1 ^ I ^ N(r) + 1 and any
^C^+l? ^M(r)+2? • • - 5 ^(r+l) ^ 0 WC have

M(r-H) M(r+l)

max inf ^ ah|sin hx\ ^ 1/10 S ah-
l^n<w(F, r) a?eJ(F, I , n, r, .?) /»=M(r)+l /i==M(r)+l

We set A^, = {H(F, r) : Fe^,} [0 ^ k ^ N(r), /c + s\,
^r+i. := {J(F, I, n, r, s ) : i ^ I ^ N(r) + 1, 1 ^ n ^ w(F, r),
FeJb,J and
6^ = {H(F, r) : F e ̂ } u {J(F, Z, ^ r, s) : 1 ̂  M ^ ^(F, r),

FeA,}
[1 ^ I ^ N(r) + 1].

Now suppose s = N(r). By Lemma 4.5 since

M(r) diam F > 27T

we can find for any F e A),̂ ) a w(F) and w(F, r)(N(r) + 2)
disjoint intervals

J(F, Z, M, r, 5)cF[l ^ Z ^ N(T-) + 2, 1 ^ n < w(F, r)]

with the property that for any 1 ^ 1 ^ N(r) + 2 and any
12
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^M(r)+l? ^M(r)+2? • • • ? ^M(r+l) ^ 0 WC have

M(r-4-l) M(r-4-l)

max inf ^ a^sin hx\ > 1/10 S ^/i.
l<n<w(F, r) ;ceJ(F, /, n, r, 5) /i==M(r)+l /i=M(r)+l

We set

^r+i,o == {J(F, I, n, r, s) : 1 ̂  I ^ N(r) + 2,
1 ^ n < w(F, r), Fejfc,,}

A>,+i/c - {H(F, r ) : F e %„} [1 ^ k ^ N(r) + 1]
and

^r+n == {J(F, I, n , r , s ) : 1 ^ n ^ w(F, r), Fe^,}
[1 ^ I ^ N(r) + 2].

We now restart the induction.
As before E is weak Kronecker. Suppose now

ai, Og, 03, . . ., ^

given with a^ ^ 0. If F e 3y. then for u large enough there
exists a q and a G e 3^ such that

M(tt+l) M(u-hl)

5 o/Jsin /^| ^ 1 / 1 0 S ^h
P=M(u)+l h=M(u)+l

for all x e G and F 2 G. Now suppose
m(n-)-l)

lim, sup ^ a^,=== 8 > 0.
U->oo /i=W(tt)+l

Then
M(u-+-l) [ M(tt4-l) )

lim sup S ^ ^ 8- Let Y === j^: ^ ^ ^ 8/2(
o>^ /i==M(u)+l ( /»=M(u)+l )

so that Y is infinite. Then as in the proof of Theorem 3 we
can obtain u{l) < u(2) < u(3) < • • • with u(r) e Y,
q(i) < q{2) < q{3) < . . . and F^F^F^ . . . with F, e 3^

M(u(r)4-l) M(u(r)-t-l)

and inf S ajsin hx\ > 1/10 S ^h ^ 8/20. Let
xe^r /i==M(u(r))+l /i=M(tt(r))+l

——^
{2;} = = ( i F ^ . Then ^ ^hl8111 ̂ | diverges as was to be shown.

r==l /»==l
Arbault (Chapter m, § 1 [1]) has shown that there exist N

sets which are not R sets and so not No sets. (In fact he
simply proves the existence of R sets which are not No,
but, as Bary points out, the stronger result easily follows on
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examination of his construction (Chapter xii, § 7 [2])). His
ingenious proof effectively depends on showing that a perfect

00

subset E of the points of convergence of ^ \.\n |sin 2n^x\
exists such that for any n(l) < n(2) < • • • n=l

lim sup | sin n(k)y\ > 0 for some y e E.
k->^

Since E is automatically an R set this gives the result.
We conclude this section by giving an alternative proof

obtained by modifying the construction in Theorem 3. The set
E we obtain is independent (since weak Kronecker) and this,
as we said in Section 2, constitutes the novelty of the result.
The nature of Arbault's proof does not seem to yield such an
additional condition very easily. Lemma 4.7 (ii) forms an
expected complement to Lemma 4.6. Before commencing the
proof, we briefly state the idea behind it. This is to remark

00

that 2i i/^ ^n may converge if a^ is usually small but at
71=1

increasingly rare intervals takes values near 1 (e.g. to take an
extreme example : if a^ = 1 when ne {m4; meZ}, a^ = 0

00 00 \

otherwise we have ^ l/^ ^ = S n~A < °° )• We obtain
n=l 11=1 /

this kind of situation in which for any particular z e E,
sin m{r)z is large very infrequently by allowing the number
of blocks Jl)o? • • • ? ^m which we have been considering to
increase rapidly.

LEMMA 4.7 : (i) There exists a perfect weak Kronecker set E
which is an N set and yet such that for any Sr ^d
any m(r) -> oo we can find a z e E with sin (m(r)z + ̂ )) -^ 0.
In particular E is not an R set (and so not an No set).

{ii) Given m(l) < m(2) < m(3) < • • • we can construct
a perfect weak Kronecker set E such that, if a^ ^ 0,

w»(u-H)

lim sup ^ a^ > 0
"^°o /i=m(u)-H

00

implies ^ a^ |sin hz\ divergent for some z e E, but E is an
R set. /l=l

Proof. — We adopt the notation established in the
first paragraph of the proof of Theorem 3 but with
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K{t + 1) = K(^) + ^4? and attempt, as far as possible, the
mimic the remainder of that proof. As usual the reader should
simply note the divergences.

Suppose K{t) < r ^ K{t + 1) — 1. We write

s = r - K{t) + 1, L(r, q) = (t + q^ and N(r) = t.

At the r^ step we have 3^ == Jbpo u Jfc^ u Jls?^ u • • • u <A^LO.,I)
where the Jb^o, ^15 • • • ? ^r^r,!) are disjoint and non empty
and FeJIo^ implies M(r) diam F > 2Tc. We also have
%ri? ^r2? • • • ? ^ri<r,i) disjoint non empty with

^rl u ^r2 U • • • U 3SrL(r,l) === ^rO u ̂ rl U • • • U ̂ ,5-1-

By Lemma 3.3 applied twice we can find a P(r) > Q(r) > M(r)
and for each F <= A^[0 ^ k < L(r, 0), k ^ s] a closed interval
H(F, r )cF with diam H(F, r) ^ 1/2 diam F such that

sup |sinQ(r)^| ^ sup |/Q(r)(^) — 1-1 ^ l/^ and
a?eH(F, r) a?€H(F, r)

sup |xp(,)(aQ - /•̂ (.»)| < 2-N('•).
a;6H(F, r)

There exists an M(r + !•) > P(r) such that
M(r + 1) diam H(F, r) > 2n

for all F e Jl>rk[0 < k ^ N(r), /c 7^ A]. Two cases now arise
according as s < N(r) or s = N(r). First suppose s < N(r).
As in Theorem 3 we can find 2 L(r, l)(M(r+ 1) — M(r)) dis-
joint (closed) intervals J(F, I, n, r, s, v) c F such that
| sin na;| > 9/10 for all a;eJ(F, I, n, r, s, 0) and
| sin nx\ < 1/10 for all a;eJ(F, I, n, r, s, 1)
[F e ̂ ,, 1 < I < L(r, 1), M(r) + 1 ̂  n < M(r + 1), v = 0,1].

We set Jb,+ik == {H(F, r) : ̂ } [0 < k < L(r, 0), A- ^ s]

Jls î, = {J(F, I, n, r, s, P) : F e ̂ ,, 1 < Z < L(r, 1),
M(r) + TO < n < M(T- + 1), 0 < v < 1}

and
^ == {H(F, r) : F e ̂ } u {J(F, ^, n, r, s, ?) : F e A,,,

M(r)+ 1 ^ ra < M(T- + 1), 0 < P < 1}
[1 < Z < L(r, 1)].

Now suppose s = N(r). As before, we can find

2N(r, 2)(M(r + 1) - M(r))
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disjoint intervals J(F, I, n, r, s, ^) c F such that

| sin nx\ ^ 9/10

for all .z;eJ(F, I, n, r, s, 0) and |sin nx\ ^ 1/10 for all
xe. J(F, I, n, r, 5, 1)

[F e Jb,,, 1 < ̂  L(r, 2), 1 + M(r) ^ n ^ M(r + 1),^ = 0,1].

We now set

A>r+io = {J(F, ^ n, r, s, ^: FeJb,,, 1 ^ Z ^ L(r, 2),
M(r) + 1 ^ n ^ M(r + 1), 0 ^ v ^ 1} ,

Jb î, = {H(F, r) : FEE^,,} [1 ^ /c ^ L(r, 1)] and
^ - {J(F, Z, n, r, 5, P): Fe^,

1 + M(r) ^ M ^ M(r + 1), 0 ^ v ^ 1 }

[1 ^ I ^ L(r, 2)]. We note that L(r + 1, q) = L(r, ^ + 1)
and restart the induction.

As before we see that E is weak Kronecker and that
for any ^ and any m(r) -> oo there exists a z <= E with
sin (m{r)z + S<r)) -^^ 0. We now show that

00

S l/n[sin Q(n)^|
n=l

converges for all xe E. Since Q(^) -> oo this will show that
E is an N set and complete the proof. Suppose y e E. Then,
for each r, y e F(y, r) e Jb^y) for some ^(z/) and some F(y, r).
We observe that s{y) is a function of t = N(r) only and so
we may write s{y) = u{t). Now 1/r |sin ry\ ^ 1/r2 for
r ^ u(t} and 1/r [sin ry\ ^ 1/r ^ ( (—I)- 4 for r=u{t) [t ^ 3].

00 00

Since ^ l/^2 and ^ ((—I)-4 converge absolutely, both the
r=l oo n==2

convergence of ^ ifri |sin Q(n)^| and the lemma follow.
n=l

Proof of (n). — This is obtained by modifying the proof
of Lemma 4.7 in the same way as we have just modified the
proof of Theorem 3 to get a proof of (i). We leave this as a,
very mildly, instructive exercise. It need hardly be remarked
that we can construct an E satisfying the conditions of (i)
and [ii) (and therefore of Lemma 4.7 and Theorem 3) simul-
taneously. This too is left as an exercise.
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5. Kronecker and Dirichlet Sets.

The main result of this section is Theorem 4 that there
exists a countable independent Dirichlet set which is not
Kronecker. As usual we give a long heuristic preamble which
may be skipped or not as the reader feels more useful.

We revert to the methods of the first part of Section 3
selecting a y independent (i.e. y ^ ^rcQj and choosing
distinct points a^, ag, 03, . . . successively such that a,, —>• y
as r -> oo and { y 5 a^, . . ., o .̂} is independent. It should be
noted that (by choice rather than absolute necessity) y ls

not treated on par with the a^ in this construction, but is
given a less prominent role. We set E = {y? 04, a^, . ..} and
have E closed and independent. If we can ensure that for
every 1 ̂  w we can find an r ^ 1 such that /^(ay.) is far
from — 1 we shall have obtained E non Kronecker (since
— 1 cannot be approximated by characters on E). Suppose
we have so far succeeded that we have found a^, 03, . . ., a^
independent such that for every 1 ̂  w ^ N we can find
an h ^ r ^ 1 for which ^(oc,.) is far from — 1. By Kro-
necker's theorem we can now find a P ^ 4N, say, such that
Xp(r) ls close to 1 and Xp(a^) is very close indeed to 1 for
1 ^ r ^ A. Let us closely examine what this means. It means
that, for 1 ̂  r ^ h, /^(ocy.) is « practically periodic » in w
with « period » P, i.e. that the values of Xi^r)) /u^^)?
/y+2p(a^), . . . , ^y+(p(a^) are very close for t quite large (but
not too large). In particular we have that for every \w\ < N
there exists an 1 ̂  r ^ h such that /y,(a^) and thus ^w+tp^r)
is far from — 1 for t not too large (since

\Ux) + l| = lx-^)l|l + x-^)l = h-^x) + l|,
^^(a^) far from — 1 implies x-u,(a^) far from — 1). However,
we have no control over the constructed points in the « gaps »

N < w < P — N, P + N < w < 2P — N,

and so on.
Clearly we must add more points to ensure that

sup [Xw(^) + l j is large in these gaps. But here we recall that
a?eE
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we wish E to be Dirichlet. It would therefore be appropriate,
in view of our definition of P, to have sup |/p(*r) — 1| small.

a;eE
Ignoring for the moment the independence condition this
suggests adding points kq of the form 2^/P for which
certainly %p(/^) == 1. This is however not the only compli-
cation, since we wish E to have a single limit point y. We
therefore confine our scrutiny to those kq near y K among
these, given any N < w ^ P — N, we can find a kq such
th^ Hw(kq) is far from — 1 (and so since ^(kq) is periodic
in w with period P we have z^p(/c,), x^p(^), ...,Z^p(/c,)
far from — 1) then perturbing the kq slightly to obtain
oc^+i, . . . , a^ with Y, ai, ag, . . . , a^ independent, we may
hope to have for some large N' that sup |xu,(a,.) + 1[ is large

for all 1 ̂  r ^ N7 yet sup J^p(oc,)^l| is small. We then
restart the induction, i^^'

On the face of it this does not look a very promising program,
since even if the k.y can be chosen to satisfy our conditions,
it is by no means clear that the induction will not break down.
Yet, surprisingly, this naive approach works. As we remarked
in Section 2 this proof stands out from the others in this paper
in that once their idea is grasped it is obvious that they work,
whereas here the idea does not seem sufficiently powerful
and only the full proof can provide the necessary verification.

First we have a, perhaps overcomplicated, proof of the
following easy result:

LEMMA 5.1. — Suppose a, &, N, P e Z and

(b — a)N > P > 4N > 0.

Let T be a constant with [r] = 1 and set kq = 2gw/P for
a ^ q ^ 6. Then for any N ^ r ^ P — N we can find a
a ^ p ^ b such that |xr(^p) — T! ^ 1/2.

Proof. - |/,(/cJ - x.(U ^ |xA) - T| + |^(/cJ - r| so
that sup [^(/c,) - r| = 1/2 sup |^(/cJ - x,(/cj|. Now

a <Q^sb a ^n <m^b

IXr(^) - Xr(U =br{^ - /c,) - 1| = | exp(27riur/P) - 1|
where u = m — n. We therefore consider exp(27riur/P) as
u increases from 0 to b — a. Either 7c/2 ^ 27rr/P ^ 3^/2 in
which case |exp(27uu/P) — 1| ^ 1 for u = 1 or the unit
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vector representing exp(27riu/P) in the complex plane
rotates through an angle less than (in modulus) 7r/2 as u
increases by 1. But {b — a)N > P so the unit vector repre-
senting exp(27riu/P) must rotate through over 27r (in
modulus) as u increases from 0 to b — a, and in the second
case it is clear that the unit vector must lie in the left hand
half {ze C: Rez ^ 0} of the complex plane for some
0 ^ u < b — a, i.e. |exp (27uu/P) — 1| ^ 1 for some
0 ^ n ^ b — a.

Thus

sup |x.(/c,) - T| ^ 1/2 sup |exp (27uur/P) - 1| ^ i/2
a^q^b O^u^b—a

as required.
Using this we now prove

THEOREM 4. — There exists a countable independent Dirichlet
set E which is not Kronecker.

Proof. — We construct such a set E. Select y independent.
We give the central inductive step in the construction of E.
Suppose we have at the n^ stage y? a!? ^y • • - ? ^(/o inde-
pendent, N(^) = 2ra+7P(y^), P{n) > 10 such that

sup |x.(0 + 1| = 1/8 (1 + 2-71) for all 1 ^ r ^ N(n).
l<M /̂i(n)

Now by Kronecker's theorem there exists a

P{n + 1) ^ 4N(n)

such that [xp(n+i)(aj — 1| ^ 2-<2"4-12) for all 1 ^ w < /i(n)
and |xp(^i)(Y) - i| ^ 2-("+2). Trivially

t
IX(P(n+l)(au>) — I) ^ S IX.iPO.+l̂ 0 )̂ — Xfr-^)P(n+l)(au') |

^=1

^ (|XP(n+i)(au.) — 1|
^ S^11^ for 1 < w ^ h(n), 1 < ( < 2"+8.

Set N(re + 1) = 2»+8P(ra + 1). Since

2^)p(re——^>P(n+l)
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we can find a{n + 1), b(n + 1) e Z such that

[&(n + 1) - a(n + l)]N(n) ^ P(n + 1)
/ ^ x &(TI + 1) - g{n + 1) 2-<»+4)

P(n+ l ) " P(n)
and

r2a(n_4_i)7t 2fe(7i + i)7c-|
' L P(n + 1) ' P(n + 1) J

Set /c,,,+i = p y7t ^ for a{n + 1) < y < &(n 4- 1). Then

trivially Xp(n+i)(/f,,,+i) = 1. Also if

(( - l)P{n + 1) + N(n) < r < (P(n + 1) - N(n)

then by Lemma 5.1

SUP |/r(^n+l) + 1| > 1/2 ^ 1/4(1 + 2^»+1)),
n(n+l)<g^6(n+l) ' • ''

whilst if 0 < v < N(/i), 0 < ( ^ 2»+8 then

SUP |X(P(n+l)+,(a«,) + 1|
K"'iS/i('>)

= X^n) 1^^-) + ̂ -(^l

> i<S) ̂ -v{v-^ + ̂  - l5C^+l)(a«-) + 111
= ̂ "P^ II1 + X,(a»)| - |x,p(n+i)(a») + 1)1
> |1'/8(1 + 2-») - 2-'-4|

and similarly

SUP |X(P(n+l)+,(au,) + 1| ^ 1/8(1 + 2-<»+1)).
l<u)<h(>i) '

Now writing

Y(n + 1) = {(P(^ + 1) + N(n) < r
< (( + l)P(ra + 1) - N(^): 0 < « 2"+8 - 1}

we know that the characters /,. with r e Y(re + 1) are conti-
nuous so by Lemma 1.3 we can find

r2a(n + l)7t 2fe(n + 1)̂ 1
a^-! e L p ( , + i ) ' -p(, + i) J

« near to /̂ n)+,,,,+i » [0 < r < 6(re + 1) — a{n + 1)] such
that writing h{n + 1) = A(ra) + 1 + A(n + 1) - a(n + 1) we
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have Y> a!, •••,«-h(n+i) independent,

^X.J^1^ - 1 ' < 2-<n+l)

and .(̂ ĵ x) hr^ + 1! ^ W + ̂ "+1))- This toge-
ther with what we already know about ai, a^, . . ., a.̂  gives

SUP |X,K) + 1| > 1/8 (1 + 2-<»+1)) for
Ki»<h(n+l) . '

1 < r < N(n + 1), and |xp(,+i)(a,) - 1| < 2-<»+1)

for 1 ^ w < A(n+ 1). Moreover jy -^ < p21^— 27. implies
r[72. -1- 1^

|XP(,+I)(^) - 1| < |xp(n+i)(y) - 1| + |XP(,+i)(a;) - XP(,+I)(Y)|
= IXP(n+i)(Y) — 1| + |exp (i(y — a;)P(re + 1)) — 1|
^ 2-<"+2) -f- 2-<"+2> = 2-<"+l>

and looking at (*) we see that all the points we construct
in the later stages will indeed satisfy this condition. We now
recommence the induction.

Taking E = = { Y } u { a , ^ : w 5s 1} we have at once E
closed. Also E is independent, since if y, <K-J(I), a./
are given, then /(I), /(2), . . ., ,(m) < h{n) for some 'n, and
so Y> "-jw, a/o), . . . , a^) are independent. By construction
P{n) -> oo and sup |XP(,)(.K) — 1| < 2-» -> 0 as n — oo so
E is Dirichlet. But sup \^{x) + 1| ^ 1/8 for all r s» 0

•ESE
so E is not Kronecker.

Varopoulos [18] has shown that the independent union
of a Kronecker set and a single point is still Kronecker. Thus
^ = {r} u {«.,: r ^ s} also satisfies the conditions of our
theorem. However, by inspection inf sup |Xr(^)+ 1| -^0 as

'•?* xeE(.s)
s -> oo. Moreover a little thought shows that the convergence
can be very rapid. (On the other hand, writing

F(s} = { y } u {a,: r ^ s r > 1}

we have inf sup \^(x) + 1| -> inf sup \^(x) + 1| and indeed
r>l xeV(s) r>l a;eE

the removal of points constructed in the later stages need
have very little effect.)

The following easy Lemma also shows how closely the beha-
viour of ^ on a Dirichlet set E for large n is bound up
with its behaviour for small n.
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LEMMA 5.2. — If E is weak Dirichlet and (A e M(E) then
lim sup |(I(M)| = sup |(l(n)|. Jn particular, if (JL ^ 0 ^en

| ra(->^ oo TI

lim sup |p.(7z)| > 0.
(nl-^oo

Proo/'. — Suppose s > 0, m, p e Z given. Then by defi-
nition we can find a q > m — p such that

I M { ^ I X ^ ) - I | ^ ^/20} ^ e/4.

Setting n == y 4- p, we have n > m and

l^-^l-l/Xn^

> /Xp^ -l/Oc.-Xp)^

^ I^P)|-/IXn-Zp|^

=\M\ -/|x,-l| ̂
^ | ( 1 (P ) [ - ( 27T£ /20+2£ /4 )

> 1^(P) | -S .

Thus limsup|p.(yz)| ^ sup|p.(p)| and similarly
n->—oo ''

lim sup |p.(7z)[ ^ sup |p.(p)|.
ft^OO

Combining the ideas of Theorems 2 and 4 we have Theorem 5.
This is included chiefly for the sake of completeness, since the
main result, that there exist perfect independent Dirichlet
non Kronecker sets, can be obtained directly from Theorem 4
using Lemma 6.1 below, whilst in Theorem 9 we obtain a much
stronger result.

THEOREM 5. — There exists a perfect Dirichlet non Kronecker
set E such that every proper closed subset of E is Kronecker.

Proof. — We obtain E as the closure of a set F constructed
by an induction of which the following is the n^ step. We
have A(n), B{n) 2 finite sets of points (A.(n) consists of
points constructed in this cycle, B(n) of points constructed
earlier) such that C(n) == A(n) u B(n) is independent, and
b^eB(n) {b^ is a marker point just as F* was a marker set
in Theorem 2). We also have N(^) = 27l+7 P(n), P(n) ^ 10
(playing the roles assigned to them in Theorem 4) and M(n)
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(a counter, telling us that we are on the M^)111 cycle of the
induction, i.e. playing the role of N(r) in Theorem 2), such
that sup \^{x) + 1| > 1/8(1 + 2-") for all 1 ̂  r ^ N(n).

a?eG(n)
Now there exists a Q(^ + 1) ^ 2N(^) such that

sup |A^) - XQ^I)(^)I ^ 2-<M(raW)
a?eC(n)

and a P{n + 1) ^ 2Q(^ + 1) such that
IXp(n+i)(^) - 1| ^ 2-(27l+12) for all ^eC(n).

As in Theorem 4 we can find a finite set of points
/ 2-(»+4) \

D(»+l).N(t.,p^2.)

such that setting C(n + 1) == D(M + 1) u A(^) u B{n) we
have C(n + 1) independent,

for
sup \^{x) + 1| ^ 1/8 (1 + 2-(7l+l))

a;€C(n+l)

1 ^ r ^ N(n + 1) = 27l+8P(^^ + 1)

and |xp(n+i)(^) — 1| ^ 2-<ra+l) for all ^ eC(n + 1). Two
cases now arise (according as we have or have not completed
a cycle, i.e. a complete rotation of the marker point). Let the
2 points in B(^) u {0} nearest to &„ in the direction 6
increasing from 0 to 2it be c^ d^ in that order. If c^ ^ 0
set fc^i == €„, B{n + 1) = B{n), A{n + 1) = A.{n) u D(n + 1)
and M{n + 1) = M(n). If ^ == 0 set

&^i = 4, B(n + 1) = C(n + 1), A(n + 1) = 0

and M(M + 1) == M(n) + 1. We now restart the induction.
00

Let F == I J C{n) and set E = F. By the arguments of
n==l

Theorem 4 sup |XP^)(^) — 1| == sup |xp(n)(^) — 1| ^ 2-<n+l)-> 0.
rcGE a;GF

Clearly E is perfect. Suppose K is a proper closed subset
of E. To show K Kronecker we argue much as in Theorem 2
and note that there exists a ye E/K and a 8 > 0 such that
N(y, 8) n K=== 0, and that there exists a qo > 20 such that
for all q^ qo we can find an n with q == M(n) and
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/ 2-(n+4) \
N \ P(n} ^7T)C^^^9 8)- ^̂  ^mainder of the argument
(which, however, the reader may be prepared to take on trust)
is slightly obscured by notational difficulties. Recall the defi-
nitions of g,, f, given at the end of Section 2. The result
will be proved if given any g, and e > 0 we can find an
I such that sup|g^) - ̂ {x)\ < s. To do this we first note

that g, is continuous and so there exists a 73 > 0 such
that ^P , \Si^}-gi[y}\ < s/3. By the definition of

z* v G 1 * \2—jl-<<|

A? /2? /3? • • . we can find arbitrarily large q with f == xr.. In
particular we can find n, q with a == M(n} f = e

/ -̂(n+4) \ \ /? /g 6t?

N(,6n•^(n)-27^)CN(^/? 8) and 2-71 ^ 73? ^^ ^ £/3- Then

2-<ra+4)setting 8 === p ^ 27T so 8 < 73, we have

8UP |XQ(n+l)(^) - /M(^)|
a;EE

^ .ec î̂ i h(K't+^z) - ̂ (z)'

+ ̂  ̂  IXQ(,+I)(Z) - XQ(n+l)(2/)|

+s^ ^^-^"M

< 2-(M(")+2) + sup inf |exp (Q(n + l)(z - „)) _ l|
YSE zeC(n) 1 '• ^ i \ y i l \

+ s^ ̂  W - ̂

^ 2-<M?+2) + exp (/2-<B+4) Q^+1) 27r^— 1

+.^^,<al^-^l
<S e/3 + s/3 + s/3 == e.

This completes the proof.
We obtain the following corollaries analogous to those of

Theorem 2, again included mainly for completeness.

COROLLARY 5.1. — There exist K, L disjoint perfect Kro-
necker sets such that K u L is independent Dirichlet but not
Kronecker.

COROLLARY 5.2. — There exists a perfect independent weak
Kronecker set E which is Dirichlet but not Kronecker.
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In passing it should be noted that Theorem 2 renders any
attempt to obtain an independent Dirichlet non Kronecker
set directly by taking a Dirichlet subset of an independent
non Kronecker set considerably more complicated than it
appears at first sight.

Because of the interest attached to the classification of
subgroups of S (and not because of any intrinsic interest)
we remark that a trivial modification of Theorem 4 gives

LEMMA 5.3. — If /*€= S and f ^ {^: ^sZ} then there
exists a countable independent Dirichlet set E for which
infsup|/^) — f{x)\ + 0.
n€Z a;€E

Proof. — Choose y independent. By the continuity of f
(and the compactness of T) we can find a T) > 0 such that
xe N(y, T]) implies \f{x) — /"(y)! ^ ^/^- Then with the nota-
tion of Lemma 5.1 if [k^ k^] c N(a;, T)) we have

suplx^)-/^)] ^ 1/4. Now bn:n^Z}
a<q<b

is a closed subset of S so that inf sup |/n(^) — A^)! ^ ^
raez a*eT

for some 1/16 > 8 > 0. Using Lemma 1.3 (i) we can thus

choose P(l) such that 2— ^ r-, N(l) = 2^(1), and find

ai, ag, . . . , a^i) with y? al5 • • • ? ah(l) independent and
sup |Xr(0^) + 1| ^ 1/8 S (1 + 2-1). An easy rewriting of the

!<w^hW
inductive argument of Theorem 4 (e.g. we might take P{n + 1)
such that sup |xr(aJ + 1| ^ 1/8 8 (1 + 2-71)) now gives
the result. ^w<hw

Mela has raised in conversation the question of how far
the results of Theorem 1 and Theorem 4 carry over from T
to R. The rest of this section will be devoted to this topic.
We prove no deep results and will not use what we do prove
later so that the reader may, if he wishes, simply skip this
part of the paper.

First we establish some appropriate definitions. A closed
set E c R is called Dirichlet it (setting j,\{t) = expiXt for
t €= R, X e R) we can find X(r) -> co such that

sup ]xx(r)(^) — 1[ -> 0 as r -> co.
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It is more difficult to find a notion of a Kronecker set for R
parallel to that for T and 2 alternative definitions have been
proposed. We call a discrete set E c R (i.e. a set E for which

inf \x — y\ > 0) discrete Kronecker if given an s > 0
x, yeE,x^y °

and any f: E -> C with \f(E)\ == 1 we can find a X e R
with sup |^(o;) — f(x)\ ^ £. Varopoulos [19] has proposed
that a closed set E c R be called uniform Kronecker if given
an e > 0 and any uniformly continuous fe C(R) with
/•(O) = 1 and |/*(E)| = 1 we can find a X e R with
sup |n(^) — f{x)\ ^ e. We shall deal with discrete Kronecker
a;GE

sets. But if the reader bears in mind the obvious fact that
for E discrete such that 0 <t E, E is discrete Kronecker
if and only if E is uniform Kronecker, he will be able to
extract similar results for unbounded uniform Kronecker sets
as we obtain for discrete Kronecker sets.

It is at once obvious (using similar proofs to those of Section
1) that discrete Kronecker sets (and uniform Kronecker sets)
are independent and Dirichlet. We show that there exist
discrete independent Dirichlet sets which are not Kronecker
and that the union of 2 discrete Kronecker sets may be inde-
pendent and discrete yet not even Dirichlet. Our proofs depend
essentially on the following 2 simple facts (the first is a very
simple and well known version of a theorem of Hartman and
Ryll-Nardzewski [5]).

LEMMA 5.4: (i) — Suppose E=={x,: i^ 1}, with
^•+1 > ^i > 0 [z ^ i] say, is an independent discrete set with
^•+i/^ -> oo. Then E is discrete Kronecker.

(ii) Suppose E = {x,: i ^ 1} with x,^ > x, > 0 [i ^ 1]
00

say. Then if E is discrete Kronecker ^ (^+1 — ^)~1 con-
verges. i=l

Proof (i). — Suppose 0 < z/i < y^ < ... < ^ and
2/i? 2/25 • • • ? Vn independent. Suppose ?/;+i/?/, > A > 1
for i ^ n. Set F = {y,: i ^ 1} and suppose g : F -> C
such that |g(F)[ = 1. By Kronecker's theorem there exists
a X > 0 such that sup \^{y,) — f(y,)\ ^ £. Now since

Kî :n
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expit has period 2n there exists a 8(1) with |8(1)| ^ ^/n+i/71

such that xx+8(i)(2/n+i) = f{yn+i)' Similarly there exist 8(2),
8(3), . . . , 8(r), . . . with |8(r)| ^ y^n and

n+S(l)+S(2)+...+8(r)(2/n+r) = f{Vn+r)'
00

Since t/,+, ^ A^ |8(r)| ^ y^A^ and X + ^ 8(^ con-
verges to T] say. Now 1

\^{yn+r) — f{yn+r)\ = |Xri(2/n+r) — XX+S(1)+.. .+8(r)(2/n+r) |

== exp , (y^ i 8(5)) - 1
\ s=r+l /
00

< Vn+r S S(5)
s=-r+l

^ S 2/n+r|S(s)[
t=r+l

< S A- = A-l/(l - A-1)
M=l

Similarly, if 1 ^ i ^ n |x,(^) - /'(^l ^e + A-1/(1-A-1).
Since A""1/(I -— A~1) -> 0 as A -> oo this proves the result.

{ii) Write E^ == {x^: n ^ ^ ^ 1}. We define inductively
functions /„: E^-^ C with |/n(E^)| = 1 such that
^(^) == fm^r) ^or a^ r ^ m ^ n. Eventually we shall define
f: E -> C with I^E)! - 1 by /•(^) = />,(^). Setting

X(n) == X(^i, ^2, . . ., ^9 /n)
= inf {X > 0 : |x^(^) - /"»(^)| < 1/100 for 1 < r ^ n}

we see that 0 < X(l) < X(2) < .. . < X(n).
The central inductive step runs as follows. Suppose fn and

so \{n) defined. Set /n+i(a;r) == /^(-^r) for 1 ̂  r < re and
/n+i(^n+i) = — X5.(n)(^+i)- Then if X > 0 and

|X^(^) - fn^r)\ ^ 1/100 for 1 ^ r < n + 1

we have X ^ X(n) and |xx(-»»+i) + X^n)(a;n+^)l < 1/100, whilst

1%X(^) — (̂»)(̂ >)1 < IXx(^n) — /'n(a'n)l

+ |XW^) - /'n )̂! < 2/100.

Thus |x^(n)(.»n+i) + 1| < 1/100 whilst

|X).-^)(^) - 1| < 2/100,
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so adding, |x^-^n)(a;n+i) + n-̂ n)̂ )! < 3/100 whence

ln-X,)(^i - ̂ ) + 1| < 3/100.
Thus

|X - Hn}\\x^ - x,\ > 7t/2

and so X > X(n) + 7r/(2(a;n+i — a;,,)). Hence

X(ra + 1) > X(n) + 7t/(2(^i - a;,)).
oo

It S (^n+i — xn)~l diverges, we have \{n) -> oo as
m=l

n -> oo. There then exists no X ^ 0 such that

sup |z,(^) - /•(0| ^ i/loo
r^-1

and so (either by repeating the argument this time for X ^ 1
or by using a result of the type established in Lemma 1.2 {Hi))
E cannot be discrete Kronecker.

We also need

LEMMA 5.5. — There exists an independent Dirichlet set
E = {x^: r ^ 1} with \x^ — 2rn\ ^ 1/lOr.

Proof. — We construct x^ x^ . . ., x^ . . . inductively. At
the n^ step we have x^ x^ . . ., x^ independent, an N(n) e Z
and a 0 < 8(n) ^ 1/(10(^ + 1))- By Lemma 1.3 we can find
^n+i e N(2(n + l)^? ^(yl)) with x^ x^ . . ., x^+i independent.
By Kronecker's theorem there exists an N(n + 1) > N(n)
such that |xN(n4-i)(^r) — - 1 1 ^ 2~n for 1 ̂  r ^ n. By the conti-
nuity of )CN(i), ZN(2)? • • • ? XN(n+i) and the fact that

7^(2(n + 2)Tc) = 1

there exists a 0 < S{n + 1) ^ l/(10(n + 2)) such that

\^{x) - 1| ^ 2-

for all x^ N(2(n + 2)7r, 8(n +1)) and 1 ^ r ^ n + 1. We
now restart the induction.

Setting E == [x^: r ^ 1} we have by construction
\x^ — 2rn\ ^ l/(10r) and sup |xN(n)(^) — 1| < 2-71. Since

a?GE

N(n) -> oo this shows E Dirichlet. Suppose x^y . . ., x^^ E.
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Then setting max r(/c) = n we have that
i^/c^

{^(1), ^<2), . • .? ^r(.)} c {^1, ̂  . • ., ^}

and so is independent. Thus E is independent.
Dirichlet sets need not have the simple form given here.

A little thought shows that the construction above can be
modified to give e.g. an unbounded independent perfect set
which is Dirichlet. Varopoulos [19] has also found uniform
Kronecker and thus Dirichlet sets of a similarly complex
type. However all we need here is the simple construction of
Lemma 5.5 and the results of Lemma 5.4 to obtain

LEMMA 5.6. — (i) There exists an independent discrete Diri-
chlet set which is not discrete Kronecker.

(u) There exist 2 disjoint discrete Kronecker sets whose union
is discrete independent and Dirichlet but not a discrete Kro-
necker set.

Proof. — Take y, = x^, z, = x^^ where x^ x^ ^3, . . .
and E are as constructed in Lemma 5.5 and m(r) = 2^.
Set K = {y,: r ^ 1}, L = {z,: r ^ 1} and M = K u L.

00 00

Now t/i < Zi < 2/2 < 2̂ < • • • and S {Vr — ^)~1 == S r~1

P=l r==l
diverges, so, by Lemma 5.4 (u), M is not Kronecker. But
M c E so M is discrete, independent and Dirichlet. This
proves (i). On the other hand t/r+i/2/r -> °°5 ^r+i/^r -^ 00 so,
by Lemma 5.4 {i) K and L are discrete Kronecker. This
proves {ii).

It is worth noting though we did not explicitly demand
it in the statement of the Lemma that in these counter exam-
ples |z, — y^\ -> co. ^

We have also promised to give an example of a union which
is not even Dirichlet. This is obtained by a simple modification
of the proof of Lemma 5.4 (zi) and the reader may well wish
to skip this.

LEMMA 5.7. — There exist 2 disjoint Kronecker sets whose
union is discrete and independent but not Dirichlet.

Proof. — We construct induct! vely x^ y^ x^ y^ . . . .
Suppose x^ t/i, x^ y^ . . . , x^ y^ have been constructed
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independent with 1 < x^ < y^ < x^ < • • • < x^ < y^ We
write

X*(n) = inf {X ^ 100 : |xx(^) - 1| ^ 1/100,
|xx(^) - 1| ^ 1/100, 1 ̂  r ^ n}.

By Lemma 1.3 we can find an x^+i ^ (n + 1)̂  with
^i? 2/1? • • -?^ 2/n? ^n+i independent. Since xx%)(^) has period
27c/X*(yi) ^ 7T/50 (as a function of t) we can find again by
Lemma 1.3 using the continuity of %^) a y^+i with

^n+i + n - 1/10 ^ ^+1 ^ ^+i + n + 1/10,
|xW2/n.l) + 1| < 1/100

and x^ y^ . . . , ^, y^ ^+1, i/n+i independent. We write

\(n} = int {X ^ 100 : |xx(^r) - 1| ^ 1/100,
lxx(2/.) - 1| ^ 1/100, 1 ^ r ^ n + 1, 1 ^ 5 ^ n}.

Now suppose X ^ 100 and

|^(^) - 1| ^ 1/100, |xx(2/.) - 1| ^ 1/100 for 1 ^ r ^ ^ + 1.

Then as in Lemma 5.4 {ii) we see that X ^ X(n) ^ X*(^) and

|XX-X(n)(^+l — 2/n+l) + 1|

= |XX-X(n)(^n+l) + XX-X(n)(?/n+l)|

^ |XX-X(n)(!/n+l) + 1| + |XX-X(n)(^n+l) — 1|

= \t\{yn+l) + ZX(n)(2/n+l)| + IXx(^-l) — XX(n)(^+l)l

^ |^(yn+l) - 1| + |XX(n)(2/n+l) + 1|

+ IX .̂l) - 1| + |XX(n)(^l) - 1| ^ 4/100.

Thus |X - X(n)[|z/^i — x^\ ^ 7r/2 and so

X ^ X(n) + 7r/(2(^i - ̂ i)) ^ X*(n) + 7r/2n,

whence X*(n + 1) ^ ^*(^) + 7r/2^.
Setting K = {x,: r ^ 1}, L == {y,: r ^ 1} and M == K u L

we have, by the usual argument, M discrete and independent.
Since X*(n) -> oo there does not exist a X ^ 100 for which
sup |^x(^) — 1| ^ 1/100 and so M is not Dirichlet. On the
rcGM

other hand ^n+i/^n -> oo, yn+ilVn -> 00 s0 ^at K and ^L
are discrete Kronecker by Lemma 5.4 (i). This completes
the proof.
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Our answers for R are thus considerably simpler than
those for T. This may be because in the case of R we have
not asked the right questions.

6. Independence and Measure,

In this section we lay the foundations for Section 7. In the
first part we prove a series of simple lemmas. Some of these,
like e.g. Lemma 6.1, clear up points from earlier sections,
some are included, like the necessity part of Lemma 6.3, for
interest and to convey the drift of our argument, but some
are basic to the understanding of what follows. Assuming
the reader already knows Lemma 6.2 and the sufficiency part
of Lemma 6.3, they are Lemma 6.4, Lemma 6.11 (i), and
Lemma 6.11 {ii). Though easy, they must be fully understood
in order to follow the arguments of Section 7. In the second
part we use them to prove Theorem 6. In a certain sense this
provides a « dress rehearsal » for Section 7.

The first lemma provides an alternative method for exten-
ding some of our results on countable closed sets to cover
perfect sets.

LEMMA 6.1. — Suppose E is a countable closed set
(i) We can find an No (and so weak Dirichlet) perfect set

P 2 E ;

(zi) If E is independent we can find a weak Kronecker (and
so independent) No perfect set P 3 E;

(ui) If E is a Kronecker set we can find a perfect Kronecker
set P 2 E;

(ip) If E is a Dirichlet set we can find a perfect Dirichlet
set P = ? E ;

(^) If E is an independent Dirichlet set we can find a weak
Kronecker (and so independent) perfect Dirichlet set P 3 E.

Proof. — It should be remarked that the proofs for E of a
simple form (with 1 or 2 limit points, say) are considerably
shorter. Since this is all we require in the discussion that
follows, the reader may wish to prove these results for himself
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in the simple form. The proofs of (i) and {ii) and of (Hi) and
(i?) are similar and the reader having read one may simply
note the dissimilarities in the proof of the other.

Take E = {x^ x^ x^ . . .} where the x^ are distinct.
We proceed in each case by constructing inductively 2?i,
3?2? • • • finite collections of disjoint closed sets with
max diam F -> 0 as n -> oo. We set P^ = u {F : F e 2^}
Fe^
and ensure that 2^ satisfies the conditions of Lemma 1.4 (lii)
whilst P^E [n ^ 1]. Setting P == lim P^ we have

n>3o

P perfect and P 2 E. We give the central inductive step
and then examine P so constructed. Note that since
P^E, 2^ is the union of 2 disjoint sets 3 ,̂ ^ such that
setting K^ = u {F : F e 3£J, 1̂  = u {F : F e ̂ } we have
K^ n E = E (so L^ n E = 0) and such that F e ̂  implies
F n E 7^ 0. (Q <^d {ii)' The construction is similar for {i)
and (n). In (i) we set ^ ^^ 1, in (u) /^ === f^ Suppose we
have M{n) and 2^ = 31^ u ^. By Lemma 3.3 (n) (in (i) we
use the weak form with /* == 1, in (ii) the strong form with f
not constant) we can find an R(^ + 1) > M(n) such that
given v ^ R(n + 1) we can find for each Fe^ disjoint
subintervals F7, F" with diam F\ diam F" ^ 1/3 diam F
and \^{x) — h^{x)\ ^ 2-(7^+l) for all x e ¥ ' u ¥ \ Now
(by Dirichlet's theorem in (i), by Kronecker's theorem in {ii))
we can find M(n + 1) ^ R(^ + 1) such that

SUp |ZM(n+l)(^) - W^)| ^ 2-("+2).
l̂ r^n+1

By the continuity of XM(ra+i) and h^i there exists a
n+l

8{n + 1) > 0 such that xe. [_j N(.r,, 8(^ + 1)) implies
r=l

IXM(n+i)(^) — ^+i(^)| ^ 2-(ra+l\ Thus we can find 2^+i a
collection of disjoint closed intervals such that E c P^ c P^
and max diam G ^ 1/3 max diam F with the following

Ge^+i FG^
properties. If F e ̂  we can find F7, F" e 2^-^ disjoint with
P, F^cF , moreover \^n^W - h^{x)\ ^ 2-(n+l) for
all a; e G e ^n+i with G £ F. No 2 of x^ . . ., a^+i belong
to the same member G of ^n+r If

x^Ge2^ [1 ^ r < M+ 1]
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then sup jxM^i/aO - h^{x)\ < 2^»+D. If Fe^ then there

exists an P e S^ with P c F and F n E = 0 (so there
exists an F" <s s£,̂  with F" c F and F" n E 56 0). The
induction now restarts.

We now consider the P so constructed in the 2 cases.
First we take the construction for (i) with h^ = 1. Consider
x 6 P. Suppose x 0= L» for all n. Then a; e n K,, and so there
exists a y,, «== E such that if a; «s F, e ̂  then </„ e F,[re ^ 1]
Since diam F, -^ 0 as re -^ oo, y^ -^ x and since E
closed a;eE. If xeL, for some r then

IS

IWa;) - 1| < 2-^+1)

for all s ^ r + 1. If x e E then x = a;, for some r and
IXM(,)(a;) - 1| < 2-^+1) for all s ^ r. In either case (and so

for all x e P ) ^ [sin M(n)a;| converges. Thus P is an N
n=l "

set and (i) is proved.
Next we consider the case (u). As above we see that

oo

^ sin M^^^a; converges for all xsP (recall that

^-n^D+i == 1) and so P is an No set. It only remains to

show that P is a weak Kronecker set. Suppose p. e M+(P),
7] > 0 are given. For each r we can find a p, > 0 such
that (x(N(a;,, 2p,)\{a-,}) ̂ -^a^. Now the family {N(a;,, p,)};^
form a covering by intervals of the compact set E so that
we can find a finite subcover {N(a^, p^)}^i say. Set

k

J = p n UN(^), 2p^), H = P\J.
Then

(.(H) = (X(P) - (.(J)

> (^(P) - 2 (^N(^), p^))
^=1

k

= (l(p) ~ .s ^(N^)' P^))\^)}) + (x({^)})]

^ t^(P) - |̂  [i^(N(.r,, p,)\{.rj) + (z({a.,})]
> (x(P) - i/2 - (X(E).



SOME RESULTS ON KRONECKER, DIRICHLET AND HELSON SETS 271

Now let p = min p^. If xe. H then \x — y\ ^ p > 0
K^c

for all y €= E. But max diam F -> 0 as n -> oo so for some
Fe^

HI we have that n ^ n^ implies diam F ^ 1/2 p for all
F e £„. In particular K^ n H == ^ for all yi > n^ + 1. Thus
sup |xM(n)(^) — /n(^)| ^ 2-71 for all n ^ n^ + 2.
a-eH

Now consider pi|E ((JL restricted to E). Since E is coun-
table, we can find an m such that

(l({ l̂, X^ .. ., ̂ }) ^ (Jl(E) — 7].

Set Tig == max (w, yi) 4- 4. Then setting

H^ = H u {.ri, ^, . . . , x^}

we have |/M(n)(^) — /n(^)[ ^ 2-71 for all n ^ n^ and
pi(HJ ^ pi(P) - 73. Thus

^{^P: I%M(̂ ) -/>^)| ^ 2-^} ^ 73

for all n ^ n^ and P is weak Kronecker.
We note that using this method it is as easy in {i) to

construct P an No set as it is to construct P a weak
Dirichlet set.

(lit) and {w} Again the construction is similar for {Hi) and
(^). In {Hi) we set h^ = fn, in (^) h^ = 1. Suppose we have
M(n) and ^ = ̂  u ^. By Lemma 3.3 (u) (in (i^) we use
the weak form with f = 1, in (^'i) the strong form with f
non constant) we can find an R(n + 1) > M{n) such that
given v ^ R(^ + 1) we can find for each F e= U^ disjoint
subintervals F', F" with diam F', diam F' ^ 1/3 diam F
and \^{x) - h^{x)\ ^ 2-(n+l) for all ^ e F ' u F ' . Now by
the definition of E we can find a M(n + 1) ^ R(M + 1)
such that sup |xM(n+i)(y) — h^{y)\ < 2-<7l+2\ By the conti-
nuity of XM(n+i) and A^+i (and the compactness of T) there
exists a 8{n + 1) > 0 such that for all y e E, z e NQ/, S(M + 1))
implies |xM(n+i)(^) — ^+i(^)| ^ 2-<7l+2). Now the family
{int N(y, S(n-{- !))}^eE form an open covering of the compact
set E. We can therefore find a subcovering

{int N(2/^,8(^+1))}^,
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Observing that

{int (N(y^, S{n + 1)) n F): F e 3^ 1 ̂  ̂  k}

is then itself a set of open intervals (together possibly with 0)
covering E we see that we can find S^+i a collection of
disjoint closed intervals with the following properties. As
demanded in the introduction P^ 2 Pn+i D E and

max diam G ^ 1/3 max diam F.
Ge^ Fe^

If Fe^ we can find F', F" e ̂ +1 disjoint with F', F" c F,
moreover |xM(n+i)(^) — ^+i(^)| ^ 2-<n+l> for all xeGeS^
with G c F. We now restart the induction.

We now consider the P constructed in case (zii). Since
PcPn we have [xM(n)(^) — h^x)\ ^ 2-" for all xeP and
P is Kronecker as required. A similar proof gives {w).

(^) It is clear that we need only alternate the inductive
steps of {ii) and {iv) (i.e. first proceed as in (n), then as in
(i(^), then as in (u), then as in (i^), and so on) to obtain a
suitable P.

As promised Lemma 6.1 (^) and Theorem 4 give at once
an alternative proof of

COROLLARY 5.2. — There exists a perfect weak Kronecker
(and so independent) Dirichlet non Kronecker set.

Proof. — Let E be as in Theorem 4, form P as in Lemma
6.1 (^). P is perfect weak Kronecker and Dirichlet. But
E c P and E is not Kronecker so P can not be.

Similarly Wik's result (our Corollary 2.2) that there exist
weak Kronecker non Dirichlet sets becomes a consequence
of the fact that there exist closed countable independent sets
E which are not Dirichlet {Lemma 3.1). This is perhaps the
neatest of the several proofs of Wik's result in our paper.
Again Lemma 3.1 combined with Lemma 6.1 {ii) gives the
existence of weak Kronecker (and so independent) perfect
No sets which are not Dirichlet {Lemma 4.3 (^)). The results
of Lemma 6.1 also enable us to obtain Corollary 2.1 (the inde-
pendent union of 2 disjoint Kronecker perfect sets need not
be Dirichlet) directly from Theorem 1.
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Up to now we have proved sets independent by showing
them weak Kronecker. But in Section 7 we shall want to
construct independent closed sets which are not Hi (and so
in particular not weak Kronecker). We therefore develop
methods for constructing independent sets in a series of lemmas
stated and proved on the lines of ([8] Chapter i, § 11) (from
where in particular Lemma 6.2 and the sufficiency part of
Lemma 6.3 are taken directly). We start with a definition.
Suppose Ii, I^, . . .5 In are disjoint (closed) sets, we say that
Ii, Ig, . . . , !„ are M-independent if whenever

Xi^ I, [1 < i ^ n],

n n

it follows that 0 < ^ |m,[ < M implies ^ mjXj 1=- 0 [M ^ 1].
y==i . y=i

Similarly we call x^ x^ . . ., Xn M-independent if
n ft

0 < S l^/l ^ M implies ^ mjXj + 0.
y=i j=i

For example we have

LEMMA 6.2: {i) In R given Ii, Î , ..., In disjoint closed
internals and x^ x^ . . ., Xn M-independent (so in particular
given x^ x^ . . ., Xn independent) with x,;e int Ii [1 ^ i ^ n}
we can find Ji, Jg, . . ., 3n closed intervals such that

x^ e int J^ £ I,• [1 ^ i ^ n] and Ji, Jg, . . ., J^

are M-independent.
Thus by Lemma 1.3 given Ii, 1^, . . . , !„ disjoint closed

intervals we can find Ji, Jg, . . . , Jn closed subintervals
which are M-independent.

{ii) The result of {i) holds in T.

Proof. — In B^ the point x == {x^ x^ . . ., Xn) does not
lie in any of the closed hyperplanes

n.,.., .., „ = Sz : S rn^ = 0? FM ^ S |m,| > 0"]
( y=i ) L y=i J

and so there exists a closed hypercube

Ji X Ja X • • • X Jnc Ii X la X • • • X !„
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such that x e int (Ji x Ja X • • • X JJ and

( J i X J , X . . . X J , ) n |J 11,^,.,^ ==0 .
M>amJ>o

This proves (i); (n) follows as a corollary or by a similar
method.

Suppose E is a Cantor set constructed after the manner
of Lemma 1.4 {Hi}. We show that there is one and (in a certain
very limited sense) only one method of obtaining E inde-
pendent.

LEMMA 6.3. — With the notation of Lemma 1.4 {Hi) E is
independent if and only if gwen 8 > 0, m^ m^ . . ., m^ e Z\{0}
there exists an io such that x^ x^ . . ., x^P,, |̂  — x\ ^ 8

n

for k ^ j together imply ^ m,x, ^ 0, for all i ^ i^
i

Proof. — Sufficiency. Suppose x^ x^ . . ., ̂  e E are distinct.
Then we can find a 8 ^ 0 such that \x^ — x^\ ^ 8 for
k ^ /'. Given m^ m^ . . ., m^ ^ 0 we can therefore find
an io as above. But x^ x^ . . . , ^ e P ^ (since P,̂  E) and

so ^ m^ ^ 0. Hence E is independent as required.

Necessity. Suppose the condition fails. Then there exist
8 > 0, mi, m^ . . ., m^eZ\{0} such that for infinitely many
i there exist x^, x^, . . . , x^ e P, such that \x^ — Xj,\ ^ 8

71

for k + j [1 ^ /c, / < ^] and ^ m,^, == 0. Without loss

of generality we may assume max diam A ^ 8/2. Since £
Ae^

is finite there exist AI, A.i, ..., A; e 2^ distinct such that for
infinitely many i > 2 there exist

a;i, 6 Ai n P(, a;2. e At n P., . . . , x^ e A; n P;
n

with ^ ^r^ri = 0. Since £3 is finite, there exist
r==l

Af, Aj, ..., A^e $„ with A^sA^ [1 ^ s ^ n]
such that for infinitely many i > 3 there exist

xu e Aj n P., a;2, 6 A| n P., . . ., a;,.. e A^ n P, with S ^r^r; = 0.
r=l
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00

We continue inductively. Let {yj = ( \ A^ [1^5^] (that
00 • '

R ^l

A^ contains one and only one point results from the
(=1
Second Intersection Theorem ([6] § 26), cf. our proof of
Theorem 3). Select y^ e A? [1 ^ s ^ n} such that

n

S m^ = 0 [u = i, 2, 3, . . . ] (if a;;, <= A; n P, for some
r=l

i ^ u then ^eA?). Now y^ -> y, as u -> oo so
n

S w,y, = 0. But y , e P [1 ^ 5 ^ M] and (since y, e A^)

2/1? 2/2? • • • ? 2 / n are distinct so P is not independent.
One simple way to obtain the condition above is to demand

that for any M we can find arbitrarily large i such that the
intervals making up S, are M-independent. Speaking very
roughly this is what occurs when we construct E Kronecker.
Again we might demand that all the intervals making up ^
except I; say together with {xo} are M-independent. Then
if I, -> {xo} as i -> oo we have E independent. This
corresponds to the construction in Lemma 4.2 of a weak
Kronecker set. As a heuristic principle we may say that
wherever these kinds of method are used to construct inde-
pendent perfect sets with certain properties, we can construct
Kronecker or weak Kronecker sets with the same properties.

We need in fact a slightly more subtle approach to deal
with constructions in which we are « only allowed to tamper
with a small bit of the set at a time ». The result is one which
may be thought rather trivial to be announced with such a
fanfare, but must nevertheless be fully absorbed.

LEMMA 6.4. — Suppose

£1, £2, . . ., ̂  {where N = (y) [M ^ n]

are collections of disjoint (closed) internals such that setting
P,= u {F:Fe£J [1 < ̂  N] we have P^P^ • • •^P^E

n

where E is a closed set. Suppose S, = [_) ̂  where ^

are disjoint and non empty [1 < / < n, 1 ^ i ^ N] and
setting A,, == u {F : F e Jl̂ .} we have A,, == P, n A^. (Thus
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we have divided our sets into n blocks.) Put

Ej. == E n Aiy [1 ^ / < n].

Let a be a bijective map cr : {1, . . ., N} -> {6 : 6 infective
map 6 : {1, ..., M} -> {1, ..., n}}. Then if the sets
^-WOXp) [1- ^ p ^ M] are ^.-independent (and so in particular

M
if the intervals of I J A )̂)̂ ) are M-independent

p==i
[1 ^ i < N] we have that Ei, Eg, . . ., E^ are M-indepen-
dent.

n

Proof. — Suppose Xj e Ey and 0 < ^ | my| ^ M. Then
y=i

at most M of mi, mg, . . ., m^ can be non zero. In particular
we can take an 1 ^ i ^ N such that /^ {(a{i))r: M ^ r ^ 1}
implies my == 0. Now ^(<j(i)Xr)e ^i'(<J(OXr) [1 ^ ^* ^ M] and
A,(cr(oxi)? A-WOX2)? • • - ^iWW are M-independent. Thus

n M

S ^j= S ^(oxr^acoxr) ^ °- Hence Ei, Ea, . . . , E^ are
7=1^ r=l
M-independent.

A more colourful way of stating the theorem is that if
(in non rigorous terms) we can ensure that every combination
of M blocks from <A>i, . . ., ̂  is M-independent, then the
blocks J(oi, . . . , J^^ will become M-independent.

In the next part of this section we diverge from the main-
stream of the paper to consider some easy technical results
on independence which might be found useful by those wishing
to develop the methods of this paper and some of which form
a background for Theorem 9. This constitutes easily the
dullest part of the paper and those readers uninterested in
Theorem 9 will probably prefer to resume reading at the end
of Lemma 6.10.

The first 3 lemmas discuss how badly sets must be changed
to ensure certain types of independence, and constitute an
improvement on Lemma 6.2. In particular they show that in
our standard construction some intervals may be left «large ».

LEMMA 6.5. — Suppose TZi, n^ . . . , n^ m^y m^ . . . , m,
t

given with ^ |^| > 0. Suppose Ii, Ig, . .., 1 ,̂ Ji, Jg, . . ., J^
1=1

are disjoint closed intervals in R. Then we can find closed
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internals 1[ c 1̂  J} c Ĵ . [1 ^ i ^ ^ 1 ^ j ^ s] such that
diam Ii' ==1/4 diam 1^; y^ o^e 1̂  y^e Jy imply

n^ + ̂ 2 + • • • + ̂ w + rmyi + ^22/2 + • • • + w^ ^ 0.
TAe result also holds with

{mi, mg, . . ., mj == 0, {Ji, Jg, . . ., JJ == 0.

Proof. — Select y'j e int Jy [1 ^ / ^ s] and consider in R^
( ( ) 5

the hyperplane II == ]^: ^ n^ == y( where y = — S ĵ!/̂
( i=i ) i

and the hypercuboid F = [z: Zi e !„ 1 ̂  i ^ ^}. It is clear
that we can find a hypercuboid F" of side at least 1/2 that
of r lying within F" such that int F" does not intersect
II. In other words we can find I^'c 1̂  a closed interval with
diam IJ ^ 1/2 diam I, [1 ^ i ^ ^] such that setting
F" = [z: z, e F, 1 ̂  i < ^} we have int F" n II == 0. Thus we
can find s > 0, F g 1̂  a closed interval with diam \[ ^ 1/4 diam 1̂
[1 ^ i ^ t] such that if P == {z: ^el^, 1 ^ i ^ t},

t
n1 == {z: Y — e ^ ^ /z^ ^ Y + e} we have IT n P = 0.

i=l
s

Select 8 such that 8 ^ 1^1 < s and l^^}? 8)c J j ' Settingy=i
J^. === N(^, 8), the lemma follows at once.

We obtain as a corollary or, by repeating the proof,

LEMMA 6.6. — There exists a X == X(mi, m^ . . ., m.y) > 0

[ 1dependent only on m^ mg, ..., m, S 1^1 > 0| /or which
7=1 J

^ following is true. Suppose n^ n^ ..., n^ gwen with
t
^ |^i| > 0. Suppose Ii, Ig, . . ., L, Ji, J2? • • • ? J^ ^^ disjoint
1=1 .
closed internals in T 5M<A t/iat ^ e I, [1 ^ i < t] implies

t
^ n^Xi ^ 0. TAen we can find closed intervals
i==l

l[ c Î , J;.c Ĵ . [1 ^ i ^ t,i ^ j ^ s]

such that diam 1̂  ^ ^(m^, Wa, ..., m,) diam 1^; yet ^ e Ip
yy e J} y^M

n^ + ^2^2 + • • • + ̂ A + rmyi + ^22/2 + • • - + ̂ sVs ^ 0-
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This result holds also with

{mi, mg, . . ., m,} == 0, {Ji, Jg, . . ., JJ == 0.

As a trivial consequence we have by induction

LEMMA 6.7. — Suppose Ii, Ig, . . ., I(, Ji, Jg, . . . ., J, are
disjoint closed internals in T such that Ii, Ig, . . . , 1^ ar^
M-independent. Suppose Jpg^Jp [1 ^ ? ^ r(p), 1 ̂  p ^ 5]
and J^i, Jp2, . . . , Jp^p) are disjoint closed intervals. Then
there exits a X = XM(r(l), r(2), . . ., r(s)) > 0, depending only on
M and r(l), r(2), . . ., r($), ^uc/i (Aa( we COTZ find closed inter-
vals I |<=I, , J ' p q ^ J p q [i ^ i ^ t, 1 ^ q ^ r(p), 1 < p ^ s]

r(P)

with diam ![ ^ X diam I, /or wicA ^ <= 1^, y? e [ j J
^ 5 y=i

imply ^ n^, + S mpyp ^ 0 whenever
1=1 p=i

M^ S |n;|, S |mp| > 0.
1=1 p=l

On the face of it this is a stronger result than Lemma 6.2,
but it turns out that (at least in the work that follows) the
latter will suffice. We note that the values of X can easily
be calculated (though naturally they become rather compli-
cated) and might be used to obtain numerical bounds.

In a similar spirit we ask what happens to certain of our
basic tools (in particular Kronecker's Theorem and Lemma 1.3)
if we relax the demand for independence merely asking for
M-independence.

LEMMA 6.8. — (i) If R= {x^: meZ} is M-independent,
E c T (respectively E c R) uncountable, then there exists a
y e E\R such that {y} u R is M-independent.

(ii) If x^ x^ . . ., x^ are M-independent, E c T {respectively
EcR) infinite, then there exists a yeE\{x^ x^ ..., x^}
such that y, rri, . . ., x^ are M-independent.

Proof. — As for Lemma 1.3.
More interestingly (though not unexpectedly) we have the

following form of Kronecker's Theorem.

LEMMA 6.9. — (i) For fixed n there exists a
r(M) = r(yi, M) -> 0 as M -> oo
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such that if x^ x^ . . ., x^ are M'-independent and

N-N- • • • = N = 1
we have inf sup |%r(^) ~- \\ ^ T(M). Moreover if

r€Z l^s<n

X^ X^ . . ., ^e27TQ

(j^n ^e n-tuple (x î), /^(a^ • • • ? Xm(^)) is periodic in m.

Proof. — This is a result of number theory known as the
Quantitative Kronecker Theorem ([3] Chapter V, § 8). Values
of r(M) can be calculated.

For the purposes we shall suggest, however, the following
trivial result will suffice.

LEMMA 6.9. — {ii) If pi, pa, • • - 5 Ph are distinct primes and
TI, rg, . . ., r^ are such that 0 < T\ < pi [1 ^ i ^ h] then
setting Xi == 27crjp;,y = min ps and P == pip2- • 'Ph ^e have

l^s <h
for any [Xi| == \\^\ == . . .== |X^| == 1 t/^

inf sup |/^(^) — \\ ^ ^ I q .
l^m^P l^s^h

Moreover the h-tuple (x^(^i), Z^a)? • • • ? Xm^/i)) ^^ period!
P in m.

We note that given 8,s > 0, i/i, 1/2, . . . , y/ie T we can
find pi, pa, . . ., ph and 7*1, rg, . . ., r^ satisfying the conditions
of the lemma such that n / q ^ e and sup |z/, — x^\ ^ 8.

1 <s<h
These results provide a method of extending to the theorems

so far discussed the technique illustrated in the following
alternative proof of

THEOREM 4. — There exists a countable independent Diri-
chlet set E which is not Kronecker.

Proof. — We construct such a set E. Suppose we have
at the n^ stage y^, a^, o^, . . ., a^^ e 2-n:(^ ^-independent,
N(^) == 2ra+7P(^), P(n) > 10 such that

sup |x,(aJ + 1| ^ 1/8 (1 + 2-")
l^w<h(n)

for all 1 < r ^ N(^) and 8(n) > 0. Now by Lemma 6.2 (i)
we can find a 1/4 8(n) > S{n + 1) > 0 such that
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N(y^ 8(n+l)) , N(04,, ^+1)), N(a^, 8(n + 1)), . . .,
N(a^^, 8(n 4- 1)) are Tz-independent. Now

(Xr(am), Xr(a2n)) . . ., lr{^Kn)n))

has period Po(^). Let P(n + 1) be a multiple of Po(n)
such that P(n + 1) > 4N(n) and set

N(n + 1) = 2ra+8P(^^ + 1).

Since X(p(n+i)+.(a^) ̂  X»(au,n) we have

sup bp(̂ i)+^J + 1| ^ 1/8(1 + 2-") for 0 ^ v < N(M)
l<w<h(n)

or P(ra + 1) — N(n) < p < P(n + 1). Taking

a(n + 1), &(re + 1) e Z
such that

[b{n + 1) - a(n + I)]N(M) > P(n + 1)
fe(M + 1) - a(n + 1) ^ 2-<'1^)

P(7l+l) " P(M)
and

, Mn + 1) 2fe(n + 1) 1
^[P^+l) TC? P(n+l) J

we set kg^i = — TC? for a(ra + 1) ^ g < 6(ra + 1). Tri-
r^?l -I- 1^

vially %p(,+i)(/f^,+i) = 1. Also

SUp |XtP(n+l)+«(^,n+l) + 1| > 1/2 ^ 1/8(1 + 2-")
a(»+l)<?^6(n+l)

for N(re) < P < P(n + 1) - N(n).
By the continuity of %i, %a, • • • , XN(n+i) we can, using

Lemma 6.8 (u), find Yn+i, a^+i, aa^, . . . , a^+i^+i
ra + 1 — independent such that

IT»+I — Ynl? ["'In+l — l^lnl; l^n+l — a2nl^ • • • »

I^WB+I — ^OOol < S(/l + 1)/4

whilst
IXr(Y») — Xr(Yn+l)|, SUp |x,(a^) — Xr(a^n+l)|,

l<w<;ft(»)

SUP IXr(/Ca(n+l)+»-h(n)-l,n+l)-Zr(a»,n+l)| ^ 1/8 2-<»+1)
h(ra)4-l̂ w^/i(n4-l)
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for 1 ^ r ^ N(n + 1) where

h{n + 1) = h{n) + 1 + b{n + 1) - a(n + 1).

Thus sup |x,(a^+i) + 1| ^ 1/8 (1 + 2-<"+1)),
l<u /̂i(n+l) • / \ ' / ?

SUP IXP(n+l)(a^,n+l) — 1| < 1/8 2-<7l+l)
l<u /̂i(n4-l)

and for 1 < u < n

A) '^(a——) - ill < ̂  IWa.J - 1| + 1/8 2-<»^

whilst |/p(«)(Yn+i) - 1| <S |Xp(,)(Y») - 1| + 1/8 2-<»+D and

„, ^P IXp(n)(a»,,+i) - 1| < 2-».
h(n)+l^w^h(n+l),

Now Yn -> T say and a^ -> a^, say. By construction
E == { y ? ^^ s^? • • •} is closed with y as limit point. Further

sup |xp(n)(^) — 1| ^ 2-ra+l and inf sup \^(x) + 1| ^ 1/8.
a?eE r>0 a-eE '

Finally consider a finite subset {x^ x^ . . ., ^} of E say.
We have {x^ x^ . . ., x^} c {y, a^ . . ., a^} for some m. But
given any n large enough (so that h(n) ^ m + 1) we have
I T - Tj ^ 1/2 8(^ + 1) and |a^ - a,[ ^ 1/2 8(^+1) for
1 ^ w ^ m and so y, a^, . . ., a^ are n-independent. Since
we can take n arbitrarily large, this shows y? a!? ..., a
and so {x^ . . ., x^} independent. This gives E independent
and completes the proof.

Although the 2 versions of the proof of Theorem 4 are very
similar and require the same amount of work, I think that the
second just given is easier to extend (and I will take it as a
model in my proof of Theorem 9).

The method used above to construct for example y inde-
pendent as the limit of y^ n-independent rationals is strongly
reminiscent of Liouville's construction of transcendental
numbers ([4] Chapter n, § 7). Let us call a set E c T (respec-
tively E c R) algebraically independent if given x^ x^ . . ., x^

distinct, ^ Iq^q = 0 with ^, ^, . . . , ^ algebraic implies
q=l ( M A

^ =^= ... =^=0. Set WM= j ^ e R : ;S m^=0 in
( ?==0

13
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M \

R for some m^ m^ ..., m^ e Z with 0 < S I^J ^ M(-
q=o 5

Call a collection of disjoint (closed) sets Ii, . . ., !„ algebrai-
cally ^.-independent it whenever x^ e !„ ^ e WM [1 ^ ^ ^ n]

S ij^j = o
y=i

implies l^ = l^ = • • • == ^ == 0. We then have the following
extensions of previous results {Lemma 6.2 and Lemma 6.8 (u)) :

LEMMA 6.10: {i) In R {respectively T) g^pen I^, Ig, . . ., !„
disjoint closed intervals and x^ x^ ..., x^ algebraically
^[-independent with x^ e int I; [1 < i ^ n] we can find
Ji, Ja, . . . , J^ closed intervals such that

Xi e int Jf £ I; [1 < i < n]

and Ji, Jg, ..., Jn ^re algebraically ^.-independent.
{ii) If x^ x^, ..., ^ are algebraically ^.-independent

E s T {respectively E c R) infinite^ then there exists a
y e E\{rCi, x^ .. ., x^} such that y, x^ . .., x^, are algebraically
^[.-independent.

{Hi) Transcendental numbers exist.

Proof. — (i) As for Lemma 6.2.
{ii) As for Lemma 6.8 (u).
{Hi) Suppose we have constructed x^ algebraically n-inde-

pendent and &„ > 0. We can find a S^-n with

1/4 8^ > 8^ > 0 such that ye N(^, S^+i)

implies y algebraically n-independent. By {ii) we can find an
^n+i e N(^, 8»+i/4) which is algebraically n + 1-independent.
Now ^->a; say where ^eN(a;^,8^+^) for all 72. Thus rp/27c
is algebraically independent i.e. transcendental. (Strictly
speaking any y e= R belonging to the equivalence class of
xlln e T is transcendental.)

The concept of algebraic independence does not seem to
be very deep. For example {\/2n} is Kronecker in T but
not algebraically independent. However, if the reader wishes,
it is an easy if lengthy process, using mainly Lemma 6.10 (i),
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to substitute algebraic M-independent for M-independent,
algebraically independent for independent, and algebraically
independent Kronecker for Kronecker in the results of this
paper.

We now return to the central argument of this section.
In Theorem 6 and Section 7 we shall want to construct not
merely an independent perfect set E but a measure (JL
supported on E which is badly behaved. The hint as to how
to do this is provided by the observation that, for example,
it (i(T) = 1 then jl d[L = 1 whatever the finer structure
of p.. Again if f{x) = — 1 for xe[0, 71), f{x) = 1 for
rre [TC, 27c) then provided (A([O, n)) = 1/2, (JL([TT, 27T;)) = 1/2
we have J fd\L = 0 whatever the finer structure. We develop
this idea in two lemmas, the first of which, Lemma 6.12 (<;),
is used in our proof of Theorem 6, and the second, Lemma 6.12
(n), in Section 7. We make the following definitions. Given
Ii, la, . . ., I n ^ T disjoint closed intervals and a a measure

n

with supp cr c ̂ _j 1̂ . we call a ' a descendant measure of a
1=1 »

(with respect to Ii, Ig, ..., !„) if supp a ' c I J ^ and

^^(ly) [1 ^ / < ^]. It Ii, ^ ... , InST 'and a are
as above and further a | ly = Ay[ji| ly where Ay is a constant
[1 ^ / ^ n] and (A is Haar measure we call a a distributed
measure on Ii, Ig, ..., 1 .̂ To avoid complications in the
statement and proofs of results, we shall use both definitions
in the mildly abusive style of the following remarks, the last
2 of which justify the nomenclature « descendant ».

LEMMA 6.11: (i) If CT is a measure and Ii, 12, . . ., !„ disjoint
n

closed internals with supp a c ̂ J ̂  then if I}c Î . are closed
1=1

internals [1 ^ /' ^ n], then there exists a unique descendant
distributed measure on 1[, Ig, . . ., 1 .̂

(u) If d is a distributed measure on Î , Ig, . . ., !„ disjoint
intervals and 8, s > 0 are gi^en, we can find

Ip^lp [1 ^ q ^ r(p), 1 < p ^ n]
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disjoint (closed) internals and a' a descendant distributed mea-
sure such that diam Ipq < 8, <^(Ipg) ^ e.

{Hi) Suppose $1, 3?2? • • • collections of disjoint internals such
that setting P^ = u {F : F e £,} we We P^+i c P, [r ^ 1].
Suppose di, erg, ... measures with supp cr,.c Pr such that
dr+i i8 a descendant measure of a^ with respect to 2^ [r ^ 1].
Then o^ is a descendant measure of dj. with respect to 2j. for
all i ^ r < s.

(ip) Under the conditions of {Hi), if c^ —^ a in the weak star
topology as n -> oo then a is a descendant measure of a^.
with respect to 2^ for all r ^ 1.

We now come to 2 key lemmas. They are obvious, but must
be fully digested. If the reader considers them together with
Lemma 6.1 {Hi) and [iv) above, he will see how we hope
to proceed.

LEMMA 6.12: (i) Suppose Ii, la, ..., 1^ closed {but not
necessarily disjoint) internals and a is any absolutely continuous

n

(with respect to Haar measure) measure with supp a c i J 1^.
1=1

Then we can find closed disjoint intervals Ji, Jg, . . ., J^ with
m n

[ J JyC ^ J 1^ and a measure G' distributed on Ji, Jg, . . ., J^
j=i 1=1

such that if o" is any descendant measure of a' {with respect
to Ji, Jg, . . . , Jrn) we ^aye ^'(Ifc) == ^(Ifc) [1 < A* ^ n].

Proof. — Consider the end points of I^, Ig, . . ., !„. Let them
be 01,02, . . ., On where 0 ^ Oi < a^ < 03 < • • • < a^ < 2n.
Define o' as follows. Let

[a^ + {^v+i — ^)/4:? ^+1 — (^u+i — ^)/^] = Ky

and (T'IK^ = (2(r([ay,a,+i])/(o^i — a,))(i|Ky whilst
a—l

"MJ^ =:0- Let J1?J2? • • • ? J m
»=1

be disjoint intervals making up the support of d'. Suppose
now <s" is a descendant measure of a ' (with respect to
Ji, Ja, ..., Jm)- Then for any 1 ̂  k ^ n we can find
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X c {1, 2, . .., u} such that Ky c 1̂  if y e X and I/, n Ky === 0
otherwise. We then have

<^W = S ^"(K,) = 5 ^'(K«) == o(I,).
v€x vex

LEMMA 6.12 : (ii) Suppose I is a closed internal and a
is a distributed measure on I. Suppose further h^ h^ . . ., h^
are continuous functions and e > 0 are given. Then we can
find disjoint closed subintervals Ji, Jg, . . ., J^ and a measure
a' distributed on J^, Jg, . . ., J^ such that if a " is any descen-
dant measure of a' (with respect to Ji, Jg, . . ., J^) we have

f hi da" — f hi da ^ e [1 ^ i ^ n].

Proof. — Without loss of generality take h^ and a real.
Let I = [a, b] where 0 ^ a ^ b < 2-n:. Recall that for h
a real continuous function (so that the Lebesgue and
Riemann definition of integral coincide) there exists a 8
such that for all dissections D :

a == XQ < x^ < x^ < • • • < Xi == b

with 8 ^ max \x^ — ^r-il we have setting k = or( I ) / (& — a)
1'^r^l

and writing

S(D, A) = k S (^r - ̂ r-i)M,(A)
r=l

where

M^(A) = sup {h{x) : xe [rr^i, x^]}

5(D, A) = /C S (̂ r - ̂ r-l)^r(A)
r==l

where

mr(h) = inf {A(^) : xe. [x^-i, x^.]}

that

S(D, h) ^ fhda ^ 5(D, A) and |S(D, h) ~ ^(D, h)\ ^ e.

In particular there exists a dissection Do :

^ = VQ < 2/i < • - • < Vm = b
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such that S(Do, h,) ^ f h^ da ^ ^(Do, h^) and

|S(Do, hi) — 5(Do, A,) | ^ s for 1 ^ i ^ n.

Let J, = [z/,_i + (y, - y,-i)/4, y, - [y, - ̂ )/4] and
/ m \

(T'|J, = 2/qji[J, [1 < s ^ n] whilst ^ n\(J J,)== 0. Then

if o" is a descendant measure of a ' (with respect to
Ji, Jg, . . ., JJ we have

S(Do, A,) = S M^o^J,) ^ f f d a " ^ ^ ^A)<^(J.)
5=1 t/ 5=1

= ^(DO, ^)

and so J hi da — J h, da" < s for 1 ̂  i < n as required.
These lemmas are, of course, very closely related and,

indeed, each can be deduced from the other. They are capable
of considerable generalisation but the restriction A, conti-
nuous in Lemma 6.12 (u) cannot be removed without altering
the character of the result (consider a " the finite sum of point
masses). jWe add the probably unnecessary caveat that
whatever the character of a we have

H(E)inf |/^)| < ffda ^ |o|(E) sup |/^)|
a;€E l/ a;gE

for all f continuous, E closed.
We now employ the machinery set up in this section to

prove

THEOREM 6. — There exist 2 disjoint perfect Kronecker sets
L and M such that L u M is independent but not weak Diri-
chlet.

Description of Proof. — We proceed as in Theorem 1 b"y
balancing the construction of one set against the other so
that at any time either L or M is badly behaved. To sim-
plify matters we split the proof into steps.

The first 2 lemmas are purely manipulative and enable us
to « prepare » the sets. The first enables us to « switch » from
L to M, the second to « divide » the sets so far constructed
sufficiently finely to proceed.
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LEMMA 6 A. — Suppose we are given T), 8 > 0, Ii, Ig, . . ., I^,
Ji, J25 • • • ? J^ disjoint closed intervals such that n diam J p ^ 2^
[1 ^ p ^ 5], N > n and a a positive measure distributed
on Ii, Ig, . . ., I,, Ji, Jg, . . ., J^. rA<°M we can find an m > N,
Jpg^Jp [1 ^ g ^ r(p), 1 ̂  p < 5] disjoint closed intervals
and a1 a descendant measure of a distributed on

Jll? Jl2? • • • ? Jlr(l)» . . . , Jpr? (p)? II? . . . , I(

with the following properties. If o" is a descendant measure of
a1 then for m ^ I ^ n we have

^{^ix^)-- i i > i} ^ i/^fu^Y
\ p=i /

Further m diam I, ^ 27T [1 ^ i ^ t], diam J^ ^ Y] an^
a'J^ ^ 8 [1 < g < r(p), 1 < p < 5].

Proof. — Select m > n such that

m diam 1^ ^ 2-n: [1 ^ i ^ (]

and remark that since n diam J p ^ 2n [1 ^ p ^ s] we have
(. s \

for m ^ I ^ n setting E^ ==^e [ J Jp: |̂ ) — 1| ^ 1^
/ s \ < p î )

that ^Ei ^ 1/4 ^((jjp). Now use Lemma 6.12 (i) (and
\ p=i /

less crucially Lemmas 6.11 (u) and {Hi)).

LEMMA 6 B. — Under the hypotheses of Lemma 6A we can
find an m > N, Jp^cJp [1 ^ q ^ r(p), 1 < p < 5], Li c 1̂
[1 ^ I ^ u(/c), 1 ̂  k ^ <] disjoint closed intervals and a '
a descendant measure of a distributed on the J^, 1̂  with
the following properties. If a " is a descendant measure of a '
then for m ^ I ^ n

^ {^ : l/^) - 11 > 1} ^ 1/4 min ( o ( l j l\ a (Q J,)V
\ V fc=i / \ p=i //

Further m diam J p q ^ 2n [1 ^ q < r(p), 1 ^ p ^ 5] w/u^
diam Jp^, diam 1^ < T] ayzrf

(T^^, a71,, ^ 8 [1 ^ Z ^ u(/c), 1 ^ /c ^ (].
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Proof. — Apply Lemma 6A twice, interchanging the role
of the « I intervals » and « J intervals » on the second
occasion.

Next we have a lemma which enables us to proceed along
the lines of the proof of Theorem 1.

LEMMA 6 C. — Suppose we are given f e S, 8 > 0 and
Ii, la, . . ., I(, Ji, Jg, . . ., J, disjoint closed internals such that
n diam Jp > ^n together with a a positive measure distri-
buted on Ii, Ig, ... I(, Ji, Jg? . . . ? <L. Then we can find
m > N > n, disjoint closed intervals I^I^ [i ^ i ^ t],
J c Jp [1 ^ q ^ ^(jp), 1 ^ p ^ s] and o' a descendant
measure of G distributed on the 1[, 3pq with the following

t
properties. If xe I j 1[ then \^{x) — 1| ^ 8 and if a " is a

1=1
descendant measure of a' then

/ s \

^ " {^:|X^) -1| ^ 1} > i/^^(U^) f^ m^l^n'
\ p=i /

In addition m diam }.[ > 2iv.

Proof. — By Lemma 3.3 (i) we can find an N > n and
Ii'gli closed intervals such that |Xn(^) —f{x}\ ^ 8 for all

t
x e I J I,'. Let a ' " be the unique descendant distributed

i=i
measure of CT on I^, Ig, . . . , I{, Ji, Jg, . . . , J, and apply
Lemma 6 A to Ii, Ig, . . ., I{, Ji, Jg, . . ., J,, (y^, ^ and N.

The next 2 lemmas cover the other part of the construction,
that ensuring independence. The reader should reread Lemma
6.4 to see what is going on.

LEMMA 6D. — Suppose we ha^e Ii, Ig, . . ., 1^, Ji, Jg, . . ., Jy,
Jy+i, ..., Jy+s disjoint closed internals. Suppose Jpq^Jp
[1 ^ q ^ ^(p)) 1 ^ p ^ ^ + 5] disjoint closed internals and
or a positive distributed measure on the Ii, Jp .̂ Suppose e > 0,
M a/zrf n given with n diam 5pq ^ 27c. Then we can find
closed intervals

I;.c 1̂ . [1 < / < /c], Jp,cJ^ [1 ^ q < r(p), 1 ^ p ^ ^],

J^c J^ [1 < w < A(p, gr), 1 ^ y ^ r(p), ^ + 1 ^ P < ^ + ^ ]
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an m > n and a' a descendant measure of <r (with respect
10 1/? Jp?) distributed on the

I}> JM [1 < P < ^], Jp,» [p + 1 < jo < v + 5]

suchthat the following is true. The I;, J;, [1 < p ^ p] f^m
an M-independent set, m diam I; ^ 2^ and if a" is a descen-
dant measure of a then

^ " {^ hr{x) - 1| ^ 1} > 1/4 a (Q J,) for m ^ r ^ n .
\p=ii+i /

Proof. — By Lewma 6.2 we can find I;sl^ [1 < / < A.]
" gllp9• ^ ^ ^ ^ r^)' 1 < P < ^ closed intervals which

are M-independent. Now we apply Lewma 6 A, taking the
^ J?? LI f P < ^] as « I intervals », the Jpg [v + 1 < p < s]
as « J intervals » and the unique descendant distributed
measure a " ' of a on the

^ JM [1 < P < v], Jp, [p + 1 < p ^ s]

as our starting measure.
In the heuristic terminology of Lemma 6.4 we have obtained

block-wise M-mdependence of Ii, Iz, . . ., 1̂  J J J
(We shall call the J,, J,, . . . , J,, in ̂ ^^'00^0^
« free intervals »). Following the obvious line of attack we have

LEMMA 6 E. - Suppose we haw I^, Ig, . . . , !„ J^, J,, . . . , J
disjoint closed intervals and a a positive distributed measure
on them. Suppose

o(J,) ^ 1/2 M a (|J J,) (so if a ( \ \ Jj > 0
'^"^l •/ \ \u^l /

it follows automatically that s > 2M, we shall take s ^ 2M
in any case} and n diam Jp > 2^ but diam J, < 8 [1 < n < s]
and diam I, < 8 [1 < i< (]. Then we can find an m > n
and

I.,= I, [1 < / < u(i), i ^ i < t ] , J ^ s ^ [ i ^ q ^ r(p), 1 < p ^ s]

disjoint closed intervals together with a' a descendant measure
of a distributed on them having the following properties. If



290 T. W. KORNER

a " is a descendant measure of a' then m ^ r ^ n implies

( s \
a " {x: \^{x) ~ 1| > 1} ^ 1/8 <r U^) whilst

p=i /

m diam 1^ ^ 2^ [1 ^ / ^ u(i), 1 ̂  i < (].
t Bd) s r(p)

If we set P == U LJ ̂  u LJ LJ J^ then

1=1 y=i p=i y=i

^i, Zg, ..., ZM G P? |^c — ^1 > ^ /or M ^ /c > ^ > 1
M M

and M ^ ^ [mj > 0 together imply ^ m^k ^ 0.
k==l fc=l

Proof. — We apply Lemma 6 D followed by Lemma 6 A
repeatedly, taking every possible combination of M members
of {Ji, Jg, . .., J,} as free intervals. The result now follows
as in Lemma 6.4 (or indeed directly from it).

We can now combine these results to obtain the

Proof of Theorem 6. — We construct inductively ^, M>^
2 finite collections of disjoint closed intervals and <^ a positive
distributed measure on ^ u M)^ with the following properties.
Setting L^= u { F : Fe^}, M^ = u { F : FeJIIbJ we have
L^L^i, M^M^+i, (^(MJ== <^(LJ = 1/2 and ^+1 a des-
cendant measure of (T^ with respect to ^ u Jllb^. Also there
exist m{l) < m(2) < m(3) < • • • (to be chosen consistent
with our demands in the next paragraph) such that for any
descendant measure a' of cr^ we have

a' {x: |̂ ) — 1| > 1} ^ 1/16 for m{n) < r ^ m{n + 1).

Let p = 1, 2,3, . . .,. We can further arrange, using Lemmas
6 B and 6 C, that for some A(L, p) and some n = /c(L, p) say
(and so for all n > /c(L, p)) |Xh(L.p)(^) — fp[x}\ ^ 2-^ for all
x e Ln and similarly for some A(M, p) and some n = /c(M, p)
say (and so for all n > A-(M, p)) |Xh(M,p)(^) — fp[x)\ < 2^ for
all x e M^. By Lemma 6 B we can arrange that for some
n == rio(p) ^y (and so for all n ^ ^(p))

max d i am{F : Fe^uJIIb^}, max {o^I : I e ̂  u jllb^} < 1/p.

Thus by Lemma 6 E we can ensure that for some n^{p) (and
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so for all n ^ ^i(p))

x^ x^ ..., Xp^ L^u M^,
P

min \x^ — x^\ ^ 1/p, p ^ 5 l^nl > 0
P^U>0^1 M=l

P

together imply ^ m^Xy ^ 0-
K==l 00 00

We now set L == | 1 Ln, M = j | M^ and note that or,-»?
ra==l n==l

tends (in the weak star topology) to a positive or with
supp 0" c L u M and cr(L u M) == 1. By the usual arguments
L and M are perfect Kronecker sets and L u M is inde-
pendent {Lemma 6.3). But c{x: \^{x) — 1| > 1} > 1/16 for
r ^ m(l) [Lemma 6.11) so L u M is not weak Dirichlet.

The reader will no doubt have remarked that with a little
care Lemmas 6 A and 6 B can be dispensed with (after all,
eventually ^, Mo^ must split as finely as required), but I
feel that to do this (or indeed to employ Lemma 6.7 which
can be used to effect 2 parts of the construction at once),
only shortens, but does not simplify the proof. He will also
remark that we have not used the best constants (for example
in Lemma 6 C). In fact with a little work we could obtain

LEMMA 6.13. — There exist 2 disjoint perfect Kronecker sets
L and M such that L u M is independent^ but there exists a
positive measure a on L u M with cr(L u M) = 1 and

lim inf a [x: Ixr^) — ^1 ^ c} ^ 1-/2 ^ {y e T : [exp iy — \\ ^ c}
= 1/2 (x {ye T : |exp iy - 1| ^ c}

for all |X[ == 1 and 1 ^ c ^ — 1 (pi Haar measure).
The reader who wishes to prove it would perhaps be well

advised to defer this until after reading Section 7, though it is
possible to do it with the tools at our disposal. The idea is
firstly to let the total mass carried by the free intervals of
Lemmas 6 D and 6 E become small in the later stages. Secondly
we modify all of Lemmas 6 B to 6 E in accordance with the
following modification of Lemma 6 A.

LEMMA 6.14. — Suppose we are gwen

T], 8 > 0, P, Q, ReZ+= {r ^ 1 : reZ }
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{in particular we may have 2R > Q), Ii, Ig, . . ., 1 ,̂ J^ J2, . . ., J,
disjoint dosed internals such that n diam J p ^ 2Qn [1 < p ^ s],
N > n and a a positive measure distributed on Ii, Ig, . . ., I<,
Ji, J2? . . .5 J,. TAeyi we COTZ find an m > N,

J^cJ^ [1 ^ g ^ r(p), 1 ^ p ^ s]

disjoint closed internals and a ' a descendant measure of a
distributed on J^, J^, . . ., J^, J^, . . ., J^, I^, L,, . . ., I,
with the following properties. If G " is a descendant measure
of cr' then for m ^ I ^ n and 2^ ^ k, q ^ 2~p we ha^e
^'! {^''hiW - exp 2l7^/c/2p| ^ qfV}

^ ((2Q - l)/4Q)(x { y e T : |exp^ - 11 > ^2P}.
Further m diam I, ^ 2TcR [1 ^ i ^ (], diam J^ ^ T) and!
(y'Jp^ ^ S [1 ^ q ^ r(p), 1 ^ p ^ 5].

Proof. — Note that setting

! s \

E^ = x^ (J J^: |^(^) - exp 2l7^/c/2p| ^ g/211

p=i )
we have crE^ ^ ((2Q - i)/4Q)[ji {y e T : |exp iy - 1| ^ y^?}
and proceed as in Lemma 6 A.

We can now repeat the construction in the proof of Theorem 6
to obtain L, M disjoint Kronecker perfect sets with L u M
independent and a positive measure a on L u M with
<r(L u M) = 1 and

l iminf(r{a; : |^)—X| ^ c} ^ 1/2 (JL {y e T : |exp iy — 1| > c}
r"^ oo

where c and arg X/2 are dyadic fractions (i.e. have the form
/c^), 1 ̂  c ^ — 1 and |X| = 1. The full result follows by
continuity.

For the sake of consistency we note that in Theorems 1
and 2 (and where appropriate, as e.g. in Lemma 2.1) we can
by a similar argument replace the statement E non Dirichlet
by

lim inf sup \^{x) — X| > 0 for all |X| = 1.
r-> oo a;€E

In Section 7 we shall use slightly more delicate methods
than we used in Theorem 6. These can be adapted to prove the
results we have just obtained (and to give in Lemma 7.5 an
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interesting alternative construction to those used elsewhere
in Section 7). In order to emphasize the parallelism, we essen-
tially restate Lemma 6.14 as

LEMMA 6.15. — (i) Suppose K is a closed interval, T^ a
positive distributed measure, of mass 1, on it and B^ N^ > 1,
e,. > 0 given. Then we can find an N^+i > N^ such that
setting Q^ == 2\ we have

^ {^: |Xm(^) — exp 27u/c/Q,| ^ y/Q,}
^ (1 - e,/2)p. {ye T : |expn/ - 1| > g/Q,}

/or |m| ^ N î, Q, ^ \k\, g ^ 0.
(^i) Further if s, > 0, N,+i, B,, K, T, 5a<^/y ̂  conclusion

of{i) and M^+i > M^+i and 7^+1 > 0 are given, we can find
closed disjoint intervals I^i, Ipa, . . . , IK^K witA

diam 1̂  < •^-n

ayid T^+i a descendant measure of T^ distributed on the
IK/ [ l ^ / ^ 5] 5ucA that

<+i {^'' hmW - exp 27u7c/Q,| ^ g/QJ
> (1 - e.Mye T : [expiz/ - 1| ^ g/Q,}

/or M,̂  ^ |m| ^ M ,̂ Q, ^ [/c[, g > 0 aMrf T^i any
descendant measure of r^+i.

7. Kronecker and Helson Sets.

We shall need

LEMMA 7.1. — (i) Suppose K is a closed interval, T^ a
positive distributed measure on it, and N^ ^ 1, e^ > 0 given.
Then we can find an N^+i > N^ such that \ C ̂  d^ < e,/2
/or |m| ^ N,^. IJ

(n) Further, if ^ > 0, N,+i, K, T^ 5a^5/y (Ae conclusion of
(i) and N^+i > N^+i and 7^+1 > 0 are given, we can find
disjoint closed intervals l^, 1^, . . ., I^c K with

diam 1̂  ^ 7]^i

and T^+i a descendant measure of T^ distributed on
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the l^j [1 ^ / ^ s] such that j /^ d^n+i ^ £r /or

N^+i ^ |w| < N^+i and Tn+i any descendant measure of ^n+r

Proof. — (i) This is the Riemann-Lebesgue Lemma ([10]
§ 2.8)

{ii) Follows as a direct consequence of (i) and Lemma 6.12
(^).

The construction we are about to use is perhaps easier to
follow (especially in the light of our earlier work) than to
describe. The reader may thus be well advised to read the
construction first (as far as Lemma 7.2 say) and then read
the heuristic. But in this case I do not think that it should
be skipped altogether. Essentially we refine our earlier methods
(used e.g. in Theorem 6) by tampering only with very small
parts (by mass) of our construction at a time. In Theorem 6,
we tampered, roughly speaking, with 1/2 at a time. Let us
examine a little more closely what will happen to a single
interval K. Associated with K is an integer Ny.+i and an
Sy. > 0. There is also a measure <7y[u == r 4- I? r + 2, . . .]
such that (rJK is a constant distributed measure. At some
time N^ later than Ny.+i we decide to act. In the manner
of Lemma 7.1 we find disjoint closed subintervals

IKI? I&2? • • • ? IK^

and define a^+i so that CT^+]J K is the distributed descendant
measure of oj K and such that for any descendant measure
(^+1 of On,\J 1m ^n+i ^ ^ ^OT ^r+i ^ \m\ ^ N^. We then
find an N^+i such that (among other properties)

\f^ Xm ^n+l ^ ^+1 tor U ^ N^+i
^J

(where s^+i is chosen in advance). The N^+i is then associated
with each IK/.

In naive terms the IK/ are « out of control » for the period
N^ < m < N^+i (ignoring modulus signs). They return to
our control from N^+i onwards. But immediately we assert
this control in the manner of Lemma 7.1, at the same time
niaking further adjustments (to ensure block-wise indepen-
dence say) at N( say, the new subintervals pass from our
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control until N^+i. By only asserting our control (in order
to ensure independence say) on a small collection of intervals
(i.e. a collection carrying only a small mass) we ensure that
only a small portion is out of control in the period following
our intervention. In this way we can ensure that an increasing
part of the set is under increasingly strict control.

This may seem a rather simple minded way of looking at
the matter, but none the less the results were obtained in this
way. Moreover it emphasizes certain limitations of the method
which seem to put a natural barrier on certain improvements.
For example very heavy (and to a great extent unknown)
constraints are laid on the I^y (they must be « well distri-
buted » over K). The reader should contrast this with the
construction in Theorem 3 where rigid control is exercised
throughout. The constructions of this section are built up
from the following

Central Inductive Step. — At the n^ stage we have a posi-
tive measure <r,, integers

0 < Ni < N3 < • • • < N^ < N^i,

^in? ^2n? • • • ? ^nn disjoint finite collections of disjoint (closed)
intervals and £1, £2? • - • ? ^n > 0 with the following properties.

71

Setting 8^ = |̂ J 8^ and P^ = u {F e= 8^: 1 ̂  i ̂  n} we have
1=1

or^ distributed on 8^ (so suppo^cpj. Moreover if F e 8^

then |^Xm^ < "l" )̂ for 1 ^ 1 ^ Nr+l E1 ^ r ^ n]-

Suppose we now select e^+i, 7^+1 > 0 and 3^£^. (This
is the first point * say at which we can exercise choice.)
Set L^ == u {F : F e 3t^} and orn(L^) == A^. We now commence
our construction. For each K e= ̂  we have K e 8^ for some
n ^ r ^ 1. By our inductive hypothesis

ix̂Xm dy., < -|-<i,(K) for N,,i >m> N^,.

As in Lemma 7.1 we can find f\n+z > SKI? ^2? • • .? S^(K) > 0
and closed disjoint intervals

IK/C K with diam 1̂  < T]^ [1 ^ / < s{K)]
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s(K)

such that ^ 8^ = ^(K) and if ^ is any measure withy=i ^K)
+(IK,) == 8^ andsupp ^ c^J 1̂  then | /%, ̂  < ^n(K) for

y=i
N,4-1 ^ |m| ^ N^i. Now select

JK^IK, [1 < / ^ 5(K),Ke3y

m any desired way (this is the second point * * say at
which we can exercise choice). Let

n+i = {JKJ: l ^ / ^ 5(K), Ke3t} and 8, ̂  = g,,\̂ .°n+l n-t

Construct a^ with supp a^ c P^^ such that (T^ == (T^
on E^\L^ and ^n+ii^Kj is proportional to Lebesgue measure
on J^. and ^+i(J^) === 8 .̂. Finally we note as in Lemma 7.1
(i) that by the Riemann-Lebesgue Lemma there exists an

Nn+2 > N^ such that |j^^ dc^ = ̂  <r^(I) for all

\Tn\ ^ N^+2 and leg^i^^. We can now restart the induction.
Starting the induction in any way we please, we consider

00

^ == f \^n an(^ or ^e ^ak star limit of cr^ as n -> co.
71=1

By construction P is closed and a a positive measure.
supported on it Further (T is a descendant measure of a
(with respect to 8,+i) so that if K e X, n 8,, we have

n+1

|^pX.^ ^ s ,a(KnP) for N,,1 ^ \m\ ^ N^i.

(If on the other hand Keg,, but K^3t, for any n ^ r
then IXnp xm da ^ "f" CT(K n p) ^ £^(K n P) fora11 H ^ N^i
automatically.) Thus if |w| ^ N3 so that N^a ^ |m| ^ N^i
for some n ^ 1 we have

ix^^^i^^^+i^j^x.^
< o(P n LJ + 2 ^ S,(T(P n K)

r=lKe^\3t,
< <r(P n LJ + sup S,CT(P\L^)

r>l
= A, + sup e,(o(P) - A,).

r̂ l
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Taking Ao = sup A^, £9 == sup ^ ^d (as we shall hence-
n l̂ r>l

forth) <7i(Pi) = 1 (so that cr(P) = 1) we have

f ^da ^ Ao + £o.

^Vo^. — In fact we can allow even more freedom in the
construction of P by e.g. dropping the restriction a^ positive
(but recall the caveat after Lemma 6.12) (ii) or by taking, at
* * , instead of 1 subinterval of IKJ several disjoint ones.
(In this manner all the sets we shall construct in this section
can be obtained with arbitrary Hausdorff dimension.) We
shall not, however, need these refinements except in
Lemma 7.12.

We now begin to use the freedom allowed us in the choice
of 3ti, 3^2, . . . . Suppose (as we shall from now on) that
T]^ -> 0. As an inductive hypothesis suppose we know at the
n^ stage that §1 ,̂ §2^5 • • • ? ^iw = 0- Let

8^1, = {I,: 1 < i ^ k}. Set ^ = {IJ [ l ^ i ^ k].

Then A^+i < 7^+1 and ^+1 w+k+i ===0- In "this way we can
ensure that for any given r we have &rn== 0 ^OT large enough
n. (For later reference let us call the set of integers w + l

used in ensuring this the set U. We can always take U such
that Z+\U is infinite, and in what follows we shall do this.
Note that An -> 0 as u -> oo with ue U.) If this is done,
we have P perfect and by the formula

\f^m da ^ Ao + so for H > N2

proved above we have

\flmda ^ sup A,+ sup e, for |m| ^ N^+2
lt/p s^n+l s^k{m)

where k{n) = inf {h: 8^ ^ 0} — 1 -> oo as n -> ao. In
particular

lim sup | f ̂  do- ^ A + e
|m|->oo |Jp

where A == lim sup A^, e == lim sup e^. In what follows all
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our P will be assumed constructed in this manner. Moreover
we shall take s, -> 0 so that

lim sup | ( ̂  da < A
|m|->- oo L/p

and so P is at most an HA set. (In particular if A == 0
then P is not a Helson set.)

Independence. — Suppose 1 > B > 0, M > 1 and WQ > 1
given. We can find an N ^ 2M such that 1/N < B. Since
^ ->• 0 and k(m) -> oo as m -> oo we can find a w > Wy + 1
such that for any I e §„ we have diam I < 1/2 M and
<U < 1/(4N2). Let 8,= {I . : 1 < ̂  k} and note that
k > 4N^ (since <r(P») = 1). We set q = (.^ and define
successively 3 ,̂ 3£ ,̂ ...,3t^ by W

3t«,+i = {F e 8^.: F c 1^..) u 1^ o u . •. u Î i,..)}

where p(l, i) < p(2, i), < ... < p(M, i) range over all
possible values with 1 < p(u) ^ M as i increases from 1 to
q (cf. restatement of Lemma 6.4). We now use the fredom
we have at the point * * by taking (as we may bv
Lemma 6.2) the v -

JK,[I < / < s(K), Ke^;]

to be M-independent. By Lemma 6.4 we see that if

^, ̂ 2, • • • , • » „ 6 ?„+„+! and [a;, — a;d ^ 1/M
for

M > I > t ^ i then M ^ ^ jwd > 1
implies (=i

M
S rn^ ^ 0. Moreover A,+, = ^ ^(1^.,)) < B.;=i t=i

We can repeat this process for successively larger ny and N
and successively smaller B and 8 (with values tending to
0 say). By Lemma 6.3. — P is then independent. Call the set
of integers w + i used in the process V (so V £ Z\U). We
note that A, -> 0 as r -> oo for p e V (since the values of
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B tend to zero). We can always take V such that Z-\(V u U)
is infinite.

But first we consider the case in which we only require that
A^ —^ 0 as n ->• oo (for example when we take

V u U = { r e Z : r ^ 2}

as we always can). Then A === 0 and we have shown by
construction

LEMMA 7.4. — There exists a perfect independent non Helson
set P. {Moreover there exists a measure a supported on P
such that I /^ da -> 0 as \m\ -> oo.)»/p /

We now digress very slightly to obtain the result by a
different method.

Comparing Lemma 7.1 with Lemma 6.15 we see that the
work of this section gives mutatis mutandis (and allowing
B^ -> oo as r -> oo) :

LEMMA 7.5. — There exists a perfect independent set P and
a positive measure a of mass 1 supported on P such that

lim inf a {x e P : \^{x) — X| ^ c} ^ (JL {y e T : |exp iy — \\ ^ c}
| HI [-^ oo

for all |X| = 1, 1 ̂  c ^ 0, i.e.

^eP: IXm(^) -̂ | ^ c} -> [ J L { t / e T : |exp iy — X| ^ c}

05 |m| -> oo /or aH |X| = 1, 1 ̂  c ^ 0 (p. 15 Tifaar measure).
In particular if h is a piece-wise continuous function h: II — C
{where Tl = {zeC: \z\ = 1}) we have

Jy ^°Xm da -> j^ho^ d^ as \m\ -> oo.

We see at once that J 1 da -> f 1 d\L = 1 as | m| -^ oo so

that G(P) = 1. Again ^ ̂  rfo -> ̂  ̂  ̂  = 0 so that P, CT
satisfy the conditions of Lemma 7.4. But more is true. We have
for example j^ sgn (sin mx) da{x) -> f^ sgn (sin x) da{x) == 0

and J^ sin2 mx da{x) -> C sin2 x da{x) ==1/2.
That Lemmas 7.4 and 7.5 are equivalent may be seen by

approximating h by polynomials.
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As a particular case of Lemma 7.5 we have

LEMMA 7.6. — There exists a perfect independent set P and
a positive measure a supported on P such that

lim inf a{x e P : cos mx ^ 0} > TT.
|ml-> oo

However, -K seems to be a natural constant resulting from
the method. It would, therefore, be interesting to know
whether this constant can be increased.

We now return to the main theme of this section by modi-
fying our inductive construction to give

THEOREM 7. — There exist Lj, Lg, . . ., L^ disjoint perfect
Kronecker sets such that Li u L^ u • • • u Lq is independent but
at most Hi/^.

Proof. — Start the induction in such a way that for some k
<i

g^ == I J J14 where setting M^ == u {F : F e JUly} we have
r==l

Mi, Mg, . . . , My disjoint and o^Mr = ifq [1 < r < q\.
Suppose n and p are given. Set

3^- { I^n : I^M,} [1 ^ r ^ q].
We now use the freedom we have at the point * * by
taking (as we may by Lemma 3.3 (i)) the JK, such that there
exists an Q(p, r) with |/Q(p.r)(^) — fpW\ ^2-^ for all
^ € = J K / [1 ^ / < 5(K), K<=3^,].

We repeat this process for p = 1, 2, 3, . . .. Let
L, = M, n P. Then sup |XQ(P..)(^) - fp{x)\ ^ 2-P so L, is

xe\
Kronecker. Li, Lg, . . ., Ly are disjoint and perfect by cons-
truction. Call the set of integers w + r used in the process
D (so D c Z \ ( U u V ) taken infinite). We note that
Ad == 1/g -> llq as d -> oo for ^ e D. It is possible to ensure
then (for example by taking D u U u V = = { r e Z : r ^ 2 } )
that A = ifq and so P == Li u La u • • • u Lq is at most
Hi/g. This gives the result.

The modifications discussed for Lemma 7.5 now give (taking
q •==. 2) Lemma 6.13 and so Theorem 6. We can, of course,
obtain other results by taking q -^ 2, but this and the same
task for Theorem 8 is left to the reader.
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Varopoulos [18] has greatly increased the value of this
result by showing that the independent union of q Kronecker
sets is at least Hi^. Our result is thus best possible. We will
conclude this section by obtaining some further (rather simple)
consequences of this theorem, but we first obtain a result
dependent only on the methods so far developed.

THEOREM 8. — There exist a countable collection

LOI Li, Lo • • •'0 J ^l 5 ^2

of disjoint perfect Kronecker sets such that P = I J Lq is a
closed (indeed perfect) independent non Helson set. ^=°

Proof. — Choose y independent and set Lo = {y}.
Automatically Lo is Kronecker {Lemma 1.1 (i)). Let

F, - [Y + l/(3g), T + 1/(3<? + 1)]

for q = 1, 2, 3, .... Set ^ = {F<J and let (^ be the distri-
buted measure on Vq with o^(Fy) = 1. For each 8^ we
now commence the inductive construction established in this
section choosing Y^, e^ > 0, 3^ and finding 8^, a^ N^, and
A^ in the usual manner. (Note that N^ need not have the
same value as N^4"1). It is clear that we can arrange to have
£^ ^i "^ 0 as ^ "̂  ^ I q as n -> oo while ensuring at the
same time that the following conditions are fulfilled. Given
any M we have for large enough n that if x^ x^ . . ., x^

M

Lo u [̂ J Pi and \Xi — ^| ^ 1/M [M ^ I > t ^ 1] then
^=1

M M

M = ^ | m\ ^ 1 implies S m^ ^ 0. (This is done by
;=i z=i

ensuring block-wise independence as above.) The usual argu-
00

ment now shows P = Lo u I J P^ independent.
g==i

Further we demand that P^ is the (independent) union
of q disjoint Kronecker sets Li+a . . .+g+r say such that

lim s u p l f Xm d^ ^ llq.
\m\->w I ^ P -

(This is done as in Theorem 7).
Summing up we see that P is the perfect (since y ls a
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limit point of P) independent union of the disjoint perfect
Kronecker sets Lo, Li, Lg, .... Moreover we can find positive
measures <y1, <y2, c3, ... of mass 1 supported by P such
that lim sup f %^ d^ ^ ifq as q -> oo. Thus P is non

(OT|-> 00 (^P

Helson.
The interest of this result is twofold. Firstly any countable

independent set is H. Secondly (and more importantly)
well known results give

LEMMA 7.7. — If P is given as in Theorem 8 and
a is a measure supported by P with H(P) > 0 then
lim sup [^(m)) > 0.

Proof. — Since ^ H(Lg) === H ( l _ J L^ ) > 0 there exi exists
g=o q==o

a P > 0 such that |cr|(Ly) > 0. We can also find a closed
set U with intL,3L^ and |cr|(L^\L,) ^ 1/4H(L,). Choose
a continuous function co : T -> [0, 1] with <o(L,,) === 1 and
<x>(T\Lp) == 0. Since Ly is Kronecker and so by Lemma 1.7 (i)
Hi we have

lim sup|/y-m<^ ^ lim sup I f ^da -1/4H(L,)==3/4H(L,,).
OT->OO {^V m->oo i~-«-'t»

Now we can find a trigonometric polynomial T say with
sup |T(y) — <o(2/)| < 1/4 |(r|(L,) (e.g. by Fejer's Theorem [10]

^3, 1). Then

lim sup / T^-rn do ^ lim sup / (ox-m da — 1/4 I <7 [ (Ly)
m->oo ^P m->oo I^P

^ 1/2 |o|(L,) > 0.

But if lim sup / /_„, dc = 0 then lim sup / T^_^ da = 0
m->oo ^P m->oo <y

which yields a contradiction. This proves the lemma.
Summing up we have proved by construction

LEMMA 7.8. — There exists an independent perfect non
Helson set P which supports no non zero measure T such that
r(m) —> 0 as \m\ —> oo.

One weakness of our methods is that while we can construct
(e.g. in Theorem 7) sets which are at most H,, say, we cannot
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ensure that they are exactly H,. We conclude by giving
some (admittedly simple) examples of what can be achieved
with the help of « converse » results, in this case those of Varo-
poulos, which we give in a form adapted to our particular
purposes.

LEMMA 7.9. — If A is a closed independent set with
A. == AI u Aa u • • • u A^ where the Ai, A^, . . ., An are disjoint
and the union of any m of them is Kronecker, then A is at
least H^n.

This lemma is the only major result used in the paper which
we shall not prove. The proof is based on totally different
principles to those used here [18].

Using it or a simpler estimation we obtain, for example, the
following 3 results. In each case we give a fairly detailed but
not complete sketch of the proof.

LEMMA 7.10. — There exists a perfect set E such that
q
S E = T yet E is at least Hi-a^.
i

Proof. — We construct E == Ei u Ea u • - • u E^ where
Ei, Eg, .. ., E^ are disjoint perfect sets such that every union
of q — 1 of them is Kronecker. The proof follows Lemma 3.4.
Suppose at the r = nq + m^ step [1 ^ m ^ q — 1] we
have ^ir? ^2r? • • • ? ^qr disjoint collections of disjoint closed
sets such that setting L^ = u {F : F e ̂ } we have

q

S int L,, = T.
v=l

As in Lemma 3.4 we can find 2^+i, ^2r+i? • • - ? ^g.r+i such that
q

^.r+i^mr, S i^t L^+i==T, if I €= ̂ ,, then there exists
v==l

Ii? h^^wr+i disjoint with Ii, Ig £ I [w ^ m],
1/2 max{diam I : I e ̂ , w ^ m}

^ max{diam J : J e= 3^+i, w ^ m}

and further there exists an N0'4"1^ such that

|X^)(^) - f(x)\ ^ 2-" for all x^ [_) L,.,̂ .
w^-m

Setting Ey == n Lyr we have the required result.
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LEMMA 7. 11. — There exists a perfect independent set E
which is at least Hi_i^ but not weak Dirichlet.

Proof. — We adapt the proof of Theorem 6 in the same way.
At the n^ step we have ^, 3 ,̂ . . ., ^yn disjoint collections
of disjoint closed sets such that

max {diam I: I e= ̂  q ^ v ^ 1} -> 0
as n —> oo and a positive measure cr^ such that setting
L^== u { F : Fe^J we have G^(LJ = 1/g [1 < p ^ q].
We can ensure that, given any n large enough, there exists
a y{n) such that

^^L^:\^{x) - 1| ^ 1} > l/(16y)^(L^) = l/(16y),
but none the less the following is true. Given 1 < w ^ q
and p ^ 1 we can find an A(p, w) such that

l̂ (p. .)(̂ ) - W\ < 2-^ for o;e (J L,,
v^.w

for all r large enough. (We do this as in Lemma 6 C.) Moreover,
we can ensure as in Lemma 6 D that, given an M, we

q

have that if x^ x^ . . ., XM^ \ J L u r ^d \xl — ^j| ^ ^IM.
u===i M

[M ^ Z > / ^ 1] then M ^ ^ 1^1 ^ 1 implies
r^^ ^W 7^ 0. Setting Ey == | | Ly^ and a to be the weak

1=^1 n==l
<7

star limit of o^ we have E == I J Ey is independent and at
v==l

least tli-i/q (since the union of any q — 1 of the
EI, Eg, . . ., Ey is Kronecker), but supp G c E, c?(E) == 1 and
<J{ r l ; : IXm(^) — 1| ^ 1} > l/(16y) for m large enough, so E
is not weak Dirichlet.

Finally we give the following (possibly deeper) result.

LEMMA 7.12. — Given 1 ^ 5, t > 0 we can find L a perfect
H, 5e^ ayzd M a perfect H( 5^ 5^cA that L, M are disjoint^
but P == L u M is an independent H^s+f) se^'

Proof. — To get the idea of the proof suppose s == /c/Z,
( = k^m (where /c, l^ m are positive integers). Consider I + m
blocks Jbi, Jbg, . . . , ^, ^+1; • • • 5 ^+m- Suppose we ensure
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that any k of them (but no more) are well behaved. Then at
various times a proportion kjl === s of the Jbi, . . ., J(^ are well
behaved, a proportion kjm = t of Jb^+i, . . ., Jl^+^ are well
behaved and a proportion kf{l + ^) == ^/(^ + ^) of
Jfci, . . .5 J^+ni are well behaved.

Select
1 == Z(l) < ;(2) < ;(3) < ..., 1 = m(l) < m(2) < m(3) < .

such that l{v + 1) is an integer multiple of l(^), m[y + 1) of
m(^) [^ ^ 1] and ?(w)/(7(w) + m(w)) -> ^/(^ + ^) as w -> oo
(so that m{w)f(l(w} + m(w)) -^ 5/(5 + ^))- Now choose A*(l),
/c(2), /c(3), . . . such that k{w)ll(w) -> 5 (so that /c(w)/m(w) -> ^).

We now construct P in the inductive manner established
in this section. Choose Lo, Mo disjoint intervals. We start
the induction in such a way that, for some ^(1), H>^ = ^n u M^
where setting L^ = u { I : le^u}, Mi == u { I : leJIfbn} we
have ^n(i)(Li) = tl{t + ^), cr^Mi) == sl{t + 5). Automati-
cally |^o(^) — A(^)l =:= 0 ^ 2~1 for all rce L^ u Mi. Suppose

l(p) w(p)

that for some n(p) we have 8^p) = I J ̂  u [ J jllo^ where
M=l &=1

setting L^p == u { I : le^p}, Mftp = u { I : lejilb^} we have
Lip, Lgp, . . ., L^)p disjoint subsets of Lo; Mip, Mgp, . . ., M^)?
disjoint subsets of Mo with

and
^^(Lip) — a^L^p) — ... — ^^p)(L^p)p)

^^^(^p) = ̂ (l^p) = = = • • • = ^<p)(M^)p).
Suppose we are given some N > n(p). By using the freedom
given us at * * (taking several subsets of the IK/ if neces-
sary) we can ensure that for some n{p + 1) ^ N,

KP+l) m(p+l)

^p+i) = U ̂ u U ̂ ^+1
a==l 6=1

where, with the usual notation, each i'ap+i ls a subset of
some L<;p, each M^p+i of some Mdp and

^nCp+l^Lip+l) = ^n(p+l)(L2p+l) == • • • == CT^(p+l)(Ll(p+l),p+l),
CTn(p+^)(Mlp+l) == ^n(p+l)(M2p+i) = = . . . = = (7^p+i)(M^p+i^p+i).

Next we choose 3^p+i)+i, 3n(p+i)+2, • • • , ^n(p+i)+A(p+i) (where
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i(p + 1) = ("•(? +^ ̂  ̂  + 1))) ,̂, ,„„ ̂  ̂

^nCp+D+r consist of every possible union of k{p + 1) distinct
sets from the ,̂ ,̂,, . . . , ̂ ,̂ ^ ,̂ ^ ,̂ . . . ,
^'Vp+D.p+i. betting

^nCp+D+r-i = {K e S^p+i)+^ : K c I <= 3^p+i)+,}

[1 < r < A(p + 1)] we can ensure, as in Theorem 7, that for
some Q(p+l, r) we have that a;6je8^^ where
"i2"8^''0'^^'' ""P1""5 IXo(p+i, r)(a0 - /p+i(a;)| ^ 2-<P+1). In
addition setting F^^==u{I: I e 3^^} we have
A«(p+i)+r == <^(F,(p+i)+^)

< k(p) max (<r(Lip+i), o(Mip+i))
= /f(p) max ((/(/(?)(( + s)), sl{m{p)(t + «)))
=Bp

where Bp = max {tk{p)ll(p), sk{p)lm(p)l(t + s) -^ tsUt + s)
as p -> oo.

We repeat this process for p = 2, 3, 4, . . . . By the usual
method we can ensure P independent and still obtain
A = hm sup A, == lim sup Bp = stf(t + s). Thus P is an

r*oo pxo

independent at most H,(/((+,) set. Similar arguments show
that we can, in addition, have L = Lo n P an at most H
set where

e = (I/A) lim sup / sup <T(F^^ n L)\
P^ \h(P)?r>l ''WTr ' )

= (s + <)/(hm sup (tk(p)l(l{p)(s + ()))
lp>'oo

= {{s + t)lt){tsl{s + <)) = ̂

i.e. L is at most an H, set. Similarly M is at most an H(
set. By construction P is the union of l(p) + m{p) disjoint
sets LS = L,p n P, M? = M»p n P [1 < a ^ l(p), 1 < b ^ m{p)~\
such that the union F say of any k{p) of them satisfies
ŝ j> lxQ(aQ —fp{x)\ ^ 2-P for some Q. Further the Lf+1,
M§+1 form subsets of the L?, Mg each Lf having the same
number of subsets and each M^ having the same number
of subsets. Since k(p)ll{p) -> s, w(p)/Z(p) -> t (and so
(A-(p) + m{p)ll{p) -> «(/(( + ^)) given any e > 0 we can find
a p(e) and /f(e) < /f(p(e)) such that every union of /c(e)
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sets taken from the L^0, M^0 is Kronecker and
7c(s)/(;(p) + m(p)) > s t l { t +s ) e.

By the result of Varopoulos P is at least an H^/^+o_g set.
Since e is arbitrary, P is at least an H^+() set. Similarly
L is an H^ set, M an H( set. This concludes the proof.

Incidentally we have now constructed independent H( sets
for all 1 ̂  ( ^ 0. For various reasons, most of which become
clear on reading the proof, there seems to be a natural barrier
at stf(t + s) when using our method. It would, therefore,
be extremely interesting to have an improvement on this,
i.e. to construct an H, and an H( set whose independent
union was not at least H^+o. (A proof that this was
impossible would, of course, show that the independent union
of 2 Helson sets was Helson.)

8. Dirichlet and Helson Sets.

The object of this final section is to prove
THEOREM 9. — There exists a perfect independent Dirichlet

set which is not Helson (and so in particular not weak Kronecker).
The reader is advised to refresh his memory of Lemmas 5.1

and 5.2 together with the alternative proof of Theorem 4
given in Section 6.

In seeking a proof we naturally first try to obtain analogues
of the results used in the proof of Theorem 4. For example a
suitable analogue of Lemma 5.1 turns out to be

LEMMA 8.1. — Suppose N, K, P, p are positive integers

with P > 4N and KK ^ 12 800 p3. Then setting b,=2^
^ K P

we have for P — N ^ r ^ N that ^ Xr(&n) ^ K/(4p).
i=—K

Proof. — Take a particular P — K ^ r ^ K. By Lemma
I TC

5.1 there exists a ^ ...-—, ^ q > 0 such that
|6 400 p3

|x^)~l |^ 1/2.
Now consider bqy b^ ..., &goo pg- These 800 p points lie
on the circle n = = { X : | X [ = = l } g C . Thus at least one pair
of them must be a distance apart of no more than 7r/(400p)
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(and so less than 1/(100 p) apart, possrbly even coincident).
We can therefore find 1 < s < t^ 800 p such that

IxA^-ll-l^^-^^^^100^'
and thus 1 < w < 800 p with |x.M - 1| < 1/(100 p).

Taking any integers h, I we have
w-lh-^-w—1

S Xr(^+0
u==b

S Xr(^u)

|T°_X&)|

1 - Xr(^)

1

Thus setting k =\m-\_qw\

" 50 p
1 we have

j fc—11 ^w—1

<£ S S ^——)+^lx,WI
5 Xr(0

u=—K h. ̂ O 1 ^ — 0

^Ip4-2^

^+800P•6^73

K
^4?

We also wish to know how much we can tamper with what
we have already constructed.

LEMMA 8.2. - Suppose 8 > 0 and h,, ^, . _ . , ̂ c^
gi^en. Then there exists an „ = ̂  h,, h., • • •^ > ° ̂
|L following property. Suppose ^ a., .. ., a, ̂ n ctpo^
of T and a a measure on a^, a,, ..., a with ^
Then if a[ is a measure supported by N(a;, 8) with

<rKN(a., 8)) - o(a;) [1 < i < n]

we ha.e, setting .' = S „ that \fh, da' - f h, d. ̂  for
all 1 < / < N.

Proof. - Since ^, ̂ , . . ., ̂  are uniformly contmuous (o^
directly from the Heine Boreltheorem , we can find an s > 0
such that W - W ^ 8/2 tor all \x - y\ < ., i ^ J < ^-
Setting eo= s / 2 we have the result.
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Unfortunately the conditions of the 2 lemmas cannot be
satisfied simultaneously. On the one hand, in order to use
Lemma 8.1 to control the behaviour of our construction with
respect to .̂? we must make alterations over a length large
with respect to the wave length of ^- O11 ^e other hand,
to preserve this good behaviour by the means suggested in
Lemma 8.2, later alterations must only involve lengths small
with respect to the wavelength of ^- Nor can we simply
ignore this gap as, to a limited extent, we could in the inductive
construction of Section 7. For examining Lemma 5.2 we see
that if we allow |<S(n)| to be large for any n, then

lim sup \6{r)\ = sup \6{r)\
jrl-^oo rez

will be large.
Let us examine more closely how we propose to use Lemma

8.1. Suppose we have a finite set A == C u D of points (where
C and D are disjoint) and a measure <r on A with ||cr|| = 1.

For each ae D we form /c(a, u) == —- + a for \u\ < K

with K and P as in the statement of Lemma 8.1. Setting

D' = {/c(a, u): aeD, \u\ ^ K}

<i'(/c(a, u)) = ̂  a{a)

G'(a) === 0(0)
(/(E) = 0

for

for
for

a e D, |u| ^ K

a e C
E n (C u D') = 0

we have U^ |) == 1 and supp CT' c C u D'.
Clearly if P — N ^ r ^ N

r^.^+i.'KcxjJ^^x^'+I.KC)IX a€D

o{a}S 7.r{bn)^ s
a e D | u = — K

1
2K + 1 +H(C)

<^+1.1(C) .

Thus, if originally / ^y. da ^ 5— + M(C), we can tamper
I^D OR

with C as much as we like without making things worse
(at least in the interval P — N ^ r ^ N).

There remains the question of what happens when
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0 < r < N. We note first that if C = 0 then although

2K + 1 ^ %'•(^'a) == ^ say need not be small, we do at least
have |y| < 1 and therefore

\f^r da' = H|/^ da ^\f^da\.

Of course, we wish to work with C ^ 0 and o(C) > 0
It can then be true that |Y'|, IT"! < 1 yet not true that

•^"f^d.+T'f^^f^d..

However, if y', y" remain close to y then

Y/ %r cfo remains small. ThisBT^X^+Y'/^^
observation gives us the final pie^e of the jigsaw. Let us write

y(r, e) == — J^ ̂  d\L where (A is Haar measure

^•.Q'-uTT.i^)-1"" L=[(L]
We then have

LEMMA 8.3. - For fixed r, y(^ s, Q) ̂  T(r, e) 05 Q ̂  oo.
In particular gwen S > 0 and N a positive integer, we can
find a Q(8, N) such that

|T(^ £) — Y(^ £, Q)| < 8 for all 0 ^ r < N.
We are now in a position to give the central inductive step.

One of the main points to notice is how we avoid making
circular definitions.

Central inductive step. — In what follows h(n) and m(n)
will be positive integers which we shall choose so that

(1.1) m{n) ^ m{n + 1) ^ m(n) + 1
(1.2) h{n) ^ h{n + 1) ^ h{n) + 1, h(n) < n - 1

and 8(r), ^(n) real numbers such that

(1.3) 0 < 7 3 ( n + l ) < 7](n) < 1,
(i-^) 7](n) = min 8(r)

0 "r /̂i(n)
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(again we will choose 8(^)5 ^W as the induction proceeds).
Suppose that at the n^ stage of our construction we have :
(2.1) A.{n) a finite set of points
(2.2) B{n, 1), B(n, 2), . . . , B{n, k{n)) disjoint sets with

A(n) = B(n, 1) u B(n, 2) u ... u B(n, k{n)).
(2.3) a(n, 0), a(n, 1), . . ., (s{n, h{n)) real measures supported

by A(n) with [\a{n, /)|| =1 [0 < / < A(n)].
(2.4) P(n) > 2", /c(n) ^ /c(n — 1) > 0 integers
(2.5) 1/(4 m{n) + 2), 2-n/P(M) > e(n) > 0

with the following properties
(2.6) If a e A then Xp(n)(^) = 1

(2.7) |a(^,)|B(n,Q ^-^-r8^
Tlv\^ ftf j

[0 < /' < A(re), i ^ I ^ k{n)]
(2.8) diam B(ra, Z) == max {[a; — y\ : x, y e B(ra, I ) }

< 4 - e(re) [1 < I ^ k{n}]m[n)
(2.9) card B(n, 1) > 2»+4 [1 < I < /c(n)]

(2.10) \f^ Xr ^(n, /)| < (l + -^ - ̂ r) 8(/) tor all
r [0 ^ / < A(n)]. (The « important » conditions are, of
course, (2.6) and (2.10)).

From here the inductive step may proceed in 2 ways which
we shall call case 1 and case 2. We set A(n) == C(n) u D(n)
where C{n) n D(yi) == 0 and C{n) n B(n, Z) has the value
^ or B(n, Z) (i.e. each of C(7z), D(7z) is the union of blocks
B(M, Z)) [1 < I ^ k{n)].

In case 2 we take C(n) == 0.
In case 1 we let C(/z) be the union of selected B(n, Z)

subject to the overriding condition

la(^,/)lC(n) ^ 8(,) [ O ^ / ^ ^M)].

In particular we can and shall ensure that in case 1 C(n)
is the union of at least m{n) selected B(TZ, I) (cf. the methods
for achieving blockwise independence in Section 6).

The reader is advised to keep the more complex case 1 in
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mind while studying the induction and afterwards consider
case 2 as a simpler version.

We now define successively z ' ( n + 1), N(n + I)? Q(^ + 1)?
L (^+ l ) , C-^+l) , T(/, ^+1), ^(n+1), C^n+l ) ,
^{n + 1), P(n + 1), K(M + 1), c(n + 1), A(n + 1) and
^ri + 1, /).

Set

(3.1) ^{n + 1) = 1/8 min (e(n), l/(4m(n) + 8),
inf{|a; — y\ : x, y <= A(^), a; ^ y}).

Choose an N(zz + 1) > P(^) such that

(3.2) N(^ + l)^^^ + 1) ^ 12 800 (2^([^] + l))3- By

Lemma 8.3 we can find a Q(M + 1) such that

(3.3) |T(r, s'(n + 1)) - y(r, e^r, + 1), Q)l ^ 2-(ra+5) y](M)
whenever Q ^ Q(/2 + 1) and 0 ^ r ^ N(^) whilst

^^)=[^^i]^-•
Let C'{n) = {l(a, u) : aeC(re) |u| < L(n + 1)} where

c\

l{a, u) == a + TY/—i A\ (we should more properly talk of'^[n -(- ± )
l(a, u, n + 1)). Set

r(n, /• + l){l(a, u))

- 2L(n4-li)+l CT(n) /)(a) [a e c(n)' I "I ^ L(n + 1)^
T(n,/'+l)E=0 if EnC' ( ra)=0

Then

f^d^n,j + 1) - Y^, s'(n + l))J^,(fo(n,/)

= |T(r, £'(/i4- 1), Q(n+ 1)) - Y(r, s'(n+ 1))||^ ̂ , ̂ (n, /)|
< 2-(B+5)7l(/^).

(If C(n) = 0 then we adopt the usual conventions concerning
0.) By Lemma 8.2 we can find an 0 < s'"{n + 1) < 1/2 e'(n + 1)
such that

\l"{a, u) - l{a, u}\ < z'"(n + 1) [a<=C(/i), |u| < L{n + 1)]
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implies (in obvious notation)

f^(lf/{a,u))d^n,j+ 1) - f ̂ (l(a, u)) d^ (n, / + 1)|
^ 2-<ra+5)7](n)

[ 0 < / ^ h{n)]. By Lemma 6.8 (n) we can find I'{a, u) e 27rQ
such that \V{a, u) — l(a, u)\ < 1/2 ^{n + 1), and writing
C^n) = {l'{a, u): aeC(yi), |u| ^ L(n + 1)} we have C^n)
m(n)-independent. As a consequence of these conditions we
have

(3.4) C' (n) c 2TcQ

^ IX^)^^^9 / + 1) - T(^ ^(^ + 1))J^ ^(n, /)
^ 2-<ra+4)Y)(n) [b ^ / ^ h(n)]

(3.6) [a-Z^a, u)| ^ ^'{n + 1)
for all

ae C(yz),|u[ ^ L(M 4- 1).

Finally, by Lemma 6.2 we can find a

0 < £"(n+ 1) < 1/4 z"\n+ 1)
such that

(3.7) If

|&, - c;[ ^ ^(n +1) [1 ^ r ^ m(^i)]

where q, €2, . . ., G^) e C^n) are distinct, we have b^ feg, . . .,
^m(n) w(^)-independent.

We note (though it is not necessary in the proof of Theorem 9)
that we could choose C'(n) to satisfy (ignoring a certain
amount of notational confusion) the conditions of Lemma 6.9
(ii) for C'(n) == {x^ x^ . . ., x^} with q ^ m(n).

Our next task is to choose P(n + 1), K(n + 1). This we
do so that

(4.1) P{n + 1) ^ Q(M + 1), 2^

(4.2) P (y^+l )c / is integral for all c ' ^ C { n )(4-3' ^ [̂î
(4.4) K(ra + 1) > 2'<»>+4.

14



314 T. W. KOBNER

(Note. Speaking in a mildly abusive manner, we see that
(4.1) and (4.4) are both satisfied for all P(ra + 1) large enough,
whilst (4.2) is satisfied by all P(n + 1) with a certain divisor!
(If C(n) = 0 then this divisor can, of course, be taken to
be 1). We can thus indeed satisfy (4.1), (4.2), (4.4) simultane-
ously. We further remark (though we shall not need this in
the proof of the main theorem), that if P(re + 1) satisfies
(4.1), (4.2) and (4.4), then so does sP(n +1) [s ^ 1, seZ].
As a particular instance, suppose we undertake t such cons-
tructions simultaneously [t ^ i, t<&Z] forming A^n), e1^),
P'(n) and so on [1 < i ^ t]. With an obvious notation,
suppose that P'(re + 1) satisfies (4. !)<•>, (4.2)0 and (4.4)0.

Then so does P(n + 1) = fj P^n + 1). We may, therefore,
i •/=l

always arrange our construction so as to have

PI(M) = P2(^) = . . . = pt(^)

for all sufficiently large n.)
We take

(4.5) s(n + 1) = ̂  min (p|̂ ^ - " {n + !))•

In the next part of the construction we define

A.{n + 1) and a{n + I,/).

For each a <= D(n) form points b{a, u) (or, more accurately,

6(a, u, n + 1)), with &(a, u) = p^^ [H < K(n+ 1)].

D/^) = {b{a, u): ae D(n), |u| ^ K(n + 1)}

and G-(n + 1, /) be the measure on A.(n + 1) == C^n) u D'(^)
defined for 0 ^ / ^ h{n) by

.(n+l,,)(r(«,,))=,^^
for aeC(n), |u| < L(ra+ 1)

°("+1'"(*(«•-"-s-K^fTifor aeD(n), |u| < K(n+ 1).
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For notational purposes set

B'(n, 1} == {I'{a, u): aeB(n, I), \u\ < L(n + 1)}
»f B(n, 1) s C(re)

B'(n, 1) = {k(a, u) : aeB(n, Z), |u| <$ K(n + 1)}
B(n, 1) s D(n)if

F(ra, a) = {;'(a, w) : |u| < L(n +1)} if aeC{n)
F(ra, a) == {/c(a, u) : [u| < K{n +1)} if ae D(ra).

We now examine some of the consequences of our definitions.
Recall that a(n, /') is real and so <r(n + 1, /) is. Thus in
particular

\f x. da{n + 1, /) /X- r^ (n+ l , / )

This, of course, is simply a technical convenience for, as the
reader will easily see, the work of this section goes through
with <r(n, /) complex. But the choice of <r(n, /) real does
shorten the next piece of working.

(5.1) If
0 < r ^ N(ra + 1) (and so if — N(n + 1) < r < 0)

we have

f Xr da{n + 1, /)

= Ln> xr ̂  + 1' /') + JL xr ̂ n + l ' ^\=IX(^ r (^T(n ' /+ l)
+ Y(r, s'(n + 1), P(n + 1)) f^ 7.r da{n, /)|

< |y(r, .'{n + 1)) \f^ ̂  d^f) + f^ ̂  da{n, ̂

+ IX(»)xr ̂  /+ 1) - ̂  e'(ra + i)) Xn)3cr ̂ '̂ ̂
+ (y(r ,s ' (n+l))-Y(r ,s ' ( ra+l) , P(TI+1))) ̂  ̂  ̂ (^/')

^ L^^ ^ +2-("+2^(n)

^(l+^-^)8(/) [ 0 < / < A ( n ) ]

using (3.5), (4.1) and (3.3), the fact that \y{r, e'(n + 1))| < 1
and our original inductive hypothesis (2.10), together with
condition (1.4).

14.
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We also see that

(5.2) If N(n + 1) < r ^ P(n + 1) - N(n + 1), then
/,. da{n + 1, /)I/

< \<n + 1, /)|(C^)) + f^ ^ ̂  da(n + 1, /)

T lCT(ral)lic(nU) ̂ IY(r) e7(" ̂  1)? p(ra + l))IKn' ̂ 'W^^ 0(/) + ^-^"-^^(Tt)

^ (1 + i- - 2^) 8(^ ^0 ^ ̂  ^re)^V

using the definition of C(n), (3.2) and Lewmo 8.1, and condi-
tions (1.4) and (1.2).

Moreover by construction

(5-3) XP(,+I)(O) = 1 for all a e A(ra + 1)

and so, combining (5.1) and (5.2) we have

/Z.^(n+l,/) <(l+-^-^)8(/)(5.4)

fora11 r [0 < / ^A(^)].

Tidying up we note

(5.5) |l<i(n + 1, /)|| =1 [0 < / < A(n)]
(5.6) diam B'{n, 1) < diam B(re, Z) — s(n + 1)

+ e(ra) [1 < I ^ k{n)]

(since s'(n + 1) < 1/8 s(n), s'(n + 1) + ̂  + 1) < 1/4 e(n)
and s(n + 1) < 1/4 e^re + 1)). ' ' '

(5.7) diam F(n, a) < 1/8 max diam B(n, 1) [aeA.(n}'\
l«$t(n) \ ' / L \ I S

(since s'(n + 1) < 1/8 max{|o; - y\: x, yeA(n) a; ^ y } and
by (2.9) card B(n, Z) > 16).

(5.8) |a(7t + 1, /)| F(n, a)

^ 1/16 i^) 1<T("' /)1(B("' ^) [0 ^ 7 ^ ̂  aeA(n)]

(since card B(n, Z) > 16).

(5.9) card F(re, a) ^ 2»+6 [aeA(n)].
In case 1 we set k(n + 1) = /c(n), B(n + 1, 1} = B^n, n

[1 < I < /c(n)] and m{n + 1) == w(n). In case 2 we set
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k{n + 1) = card A(n) and, writing

A(n) == {a(n, 1): k{n + 1) > ̂  1},
we put

B(n +1, f) = F(^, a(n, I)).

We allow (but do not insist that) m{n + 1) = m(n) + 1.
In both cases we have

(5.10) |< r (n+l , /)| (B(n+l , Z))

^ -m^-l 1) t0 ^ / ^ /l^)' 1 < ̂  A-(ra + 1)]

(5.11) diam B(ra + 1, ;)

^ m(nTT) ~~ £(n + 1) [i < l ^ k(n + 1)]

(recalling (3.1)).
(5.12) card B{n + 1, I) > 2»+5.
Now suppose we can ensure that whenever

h{n + 1) = h(n) + 1

we have a real measure o(n + 1, h{n + 1)) on A(ra + 1)
such that

(5.4') |/xr ^(n+1, A ( n + i ) ) |

^ (i + -IT - 2^1) Wn + 1))
for all r,

(5.5') ||<r(n + 1, /)|| == 1.
(5.10') |< r ( r a+ l , /) | (B(n+l, I))

^- f̂ [i<^*C.+l)].
Then, comparing (2.3) with (5.10), (2.4) with (4.1), (2.5)
with (3.1) and (4.5), (2.6) with (5.3), (2.7) with (5.10), (2.8)
with (5.11), (2.9) with (5.12), and (2.10) with (5.4), we see that
we can restart the induction. (We shall leave the non central
question of how to define h{n + 1) and, when

h{n + 1) = h{n} + 1,

a(n + 1, h(n + 1)) till later.)
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This completes the more difficult and important part of
the construction. We now obtain some consequences.

Structure of the Limit Set. — In our construction there is a
natural definition of a descendant point. Formally we say
that if a e A(n) then the descendant points of a are the
members of F(M, a). We call a descendant of a descendant
a descendant and so on inductively. If b e A(n) then by
construction, if c e A(n + m) say is a descendant of 6, we
have, chiefly by (3.1),

| fc-c| < S ̂  + r) + ̂  + r)
r==l

< 2 1 e'(n + r)
r==l

< 2e'(n + 1) S (1/4)-
r=o

^ 1/3 min (s(n), max{|;2; — y\: Xy yeA(n), a; ^ y}).

Thus, if we let E be the topological limit of A(^), i.e. if we
set E == {x: 3x{n) e A(^) with x[n) —> x as n —> 00} we
easily see that E is perfect.

Moreover, if rreE, then \x—a| ^ 1/3 e{n) for some
a <= A(n) and so

|Xp^(rr) - 1| < |xp(n)(^) - XP(n)(^)l ^ P(^ - |̂ ^ 2-71.

Thus /p^) -> 1 uniforuly on E and by (2.4) P(7z) -> 00
as n -> oo giving E Dirichlet.

Now consider (r(m,/) for some fixed m such that / ^ A(m).
We can find a continuous function f with ||/'||̂  == 1 and
f(z) = sgn cr(m, /)(a) for all \z — a\ ^ x(^i) where

x(n) == max {|.r — y\ : x, y e A(n), a; ^ y}.

For n ^ m we have, by the considerations above,

ffda(n,,)= S /-(»)(^/')(»)) = 1.
" aeA(n)

Thus ^(n, /) has a weak star limit point (r(/) with support
in E (indeed, it isobvious that <?(/) is the weak star limit)

with norm 1. Since f ̂  da(n, /) ^ M + y — -^) 8(/) tor
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all r and all n ^ m it follows that

/ Xr ^(/)| ^ (l + -1-) 8(/) tor all r.

Setting 8 == i n f ( ( l + —) 8(/n we see that E is an at
j^i\\ ^ / /

most H§ set.

Independence. — By repeating case 1 with every possible
combination of m{q) selected B(<jr, I ) at stages

q,q+ 1, . . . , g+^ '

say, we can ensure that if x^ x^ . . ., x^, y^ y^ . . ., y^
are such that |̂ , - z/;| ^ e(g + q ' ) and 1/1, 1/3, . . . , y^
belong to disjoint B(y, Z), then a;i, 0:2, . . ., x^ are w(^)-inde-
pendent. In this way we ensure that if x^ x^ . . ., x^e. E

and îf \x(t)—x[s}\ > . , then ,̂ ,̂ . . . , (̂g) are

m(g)-independent. (Cf. (2.8) and our discussion of descendant
points). At stage q + q ' + i we repeat case 2 and put
^(9 + 9' + 1) = rn{q + q ' ) + 1. Repeating this process infi-
nitely often (but not necessarily succesively), we obtain in the
usual manner (Lemma 6.3) E independent.

Introduction of New Measures. — The induction here has the
rather pleasing property of being self-starting. (Strictly speak-
ing we must define A(l), CT(I, 0), 8(0) etc., but there we need
only take cr(l, 0) as a « dummy » measure. For example, let
m(l) = 1, A(l) = 0, 8(0) - ̂ (0) = i,/c(0) == 25,B(1,1) = A(l),
A(l) a collection of 25 points of 2nQ^ lying in [d, d + I], P(l)
such that P(l)a is an integral multiple of 2n for all a e= A(l)
and P(l) ^ 2, e(l) = 1/4 min (1/6, l/P(n)). The conditions
(2.1)-(2.10) are then trivially satisfied for n = 1 for any
cr(l, 0) with support A(l). But this is simply a technical
trick and has nothing to do with the construction proper.)

Suppose we have at the beginning of the n^ stage cr(n, 1),
cr(n, 2), . . . , o(n, h{n)) and S{h{n) + 1) defined. Repeat
case 2 at stages n, n + I? n + 2, . . . setting

m(n) == m(n + 1) == m(n + 2) == • • •

Each of the B(n + ^, Z) [1 ^ Z ^ A*(n + ^)] contains an
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arithmetic progression of at least 27^+v+4 terms. But it is
well known ([9] Chapter xi, § 6) that

LEMMA 8.4. — There exists a sequence Q^) -> 0 such that
rf ^i? ^2? • • • ? ^n distinct form an arithmetic progression^ we can
find a real measure T with |T|[ == 1 and sup |T(m)| ^ Q(n).
It is now clear how we proceed. There exists a ^ > 1 such
that for all ^ ^ ^ there exists a measure ^n+vt) on
B{n+^ 1) with HTB(^O|[ = 1 and sup 1 ,̂̂ )1 < 7](^).
Now select points yi, y^ . . ., y,^ A.(n + ?o). (We may, for
the sake of simplicity, take {y^ y^ . . ., ^} = A(n + (.0),
but this is not necessary). There exists a ^ ^ ^ such that
writing C(<) = {B(^ + ^ + 1, 1): B{n + ^ + 1, Z) consists
of descendants of yj we have for s ^ & > 1,

c,rde(,),>4^)([^^J+l)+8.

At the n + ^h stage set h{n + ^i + 1) == A(n) + 1 (note
that (1.2) remains satisfied) and let

c{n + Pi + 1, h(n) + 1) = A, y 1 y
' 1 ' ? V / I Y Zj -j .o/.\ 2^ . ^B(n+y, 4-1,0.s ^^cara u^j B^+^.+.i, oe(°(o • ' /

A quick check shows that we have satisfied conditions f5 4V
(5.5)7 and (5.10)'.

Provided that we increase h(n) only under these circum-
stances this completes the full description of the induction
promised in the remarks following the statement of (5.10)'.
We repeat this process infinitely often. In this manner we
obtain (since 8(r) decreases as r -^ oo)

5=inf((l+^)8(/))=lim8^•j^i \\ — ] / ra^QO

Proof of Theorem 9. — Allowing 8{n) -> 0 as n -> oo we
obtain 8 == 0 and E a perfect independent Dirichlet non
Helson set.

Note. — Together with Lemma 5.2 this gives an alternative
proof of Lemma 7.8.

We conclude by adapting the methods above to prove
extensions of Theorems 7 and 8.
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LEMMA 8.5. — There exist Li, Lg, . . . 5 L^ disjoint Kronecker
sets such that E == Li u Lg u • - • u Lg 15 independent and
Dirichlet, but at most (and so, by Varopoulos^s result, exactly)
Hi/^.

Proof. — For later use we construct E in [a, b] by taking
A(l) c [a + e, b — e] and e(l) = e. We ensure that A(l)

q
has at least q points so that we can put A(l) == [ J L(l, ()

(=1
where the L(l, t) are disjoint and not empty. We can further
ensure (by taking <r(l, 0) as a dummy with 8(0) = 1 if
necessary) that |cr(l, 0)|(L(1, ()) = Ifq [1 ^ t ^ q].

Let L(n, () be composed of those points of A(?z) which
are descendants of points in L(l, () [1 ^ t ^ g]. Then

q

K(n) = i J L{n, t) and the L(n, t) are disjoint and not empty.
1=1

Let L( be the (topological) limit of L(n, () as n -> oo.
Then by the arguments used when discussing descendants,
we see that Li, La, . . ., Lg are disjoint perfect sets with E
as union. Moreover, by the remarks concerning the choice
°f {yi9 2/2) • • • ? Vs} when we introduced new measures, it is
clear that we can ensure \^{n^ /)|(L(7Z, ()) == Ifq for all
h{n) ^ j ^ 0. Taking 8(r) == i/g [r ^ I], we obtain E as
an at most H^, independent Dirichlet set.

We still have to show how to construct Li, Lg, . . ., L^ as
Kronecker sets. This we do as follows. Since

Hn,/)|(L(n, ())=!/<?

and L(n, t) is the union of B(n, 1) (for large enough n), we can
take C(n) == L(n, t) and proceed as in case 1. We choose C^n)
as suggested in the remark following (3.7). By Lemma 6.9 (u)

inf sup ix^)—A^l ^ 27r/m(n) for all /*e S. Now
o<r^P(n-+-l) aeGW
if a;e L(, then \x — a\ ^ e(n 4" 1) t0!* some ae C'(n) where
e(n + l)P(n + 1) ^ 2-71. Thus

inf sup |/r(^) ~ A^)! ^ 27c/m(yi)
o<r^P(n-+-l) aceL,

+2-n+ sup |A2/)-/^)1.
jy-^l^a-n

If we repeat this process infinitely often (though, of course,
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not in successive steps), we see that, since

2nlm(n), 2--», sup \f{y) — f{z)\ -> 0 as n -> oo
(y-2.«2-»

we obtain L( Kronecker.
(We could, of course, obtain the same result more elegantly

by using Lemma 6.9 (i)).

Note, — We remark that in Theorem 8 we found (speaking
roughly) a o with limsup |o(r)| -==- l/^, here a sequence

|r| •> oo

(jj with lim lim sup \6j{r)\ = 1/g.
./•> ao |r| -^oo

LEMMA 8.6. — There exists a countable collection Lo, Li, La, . . .
00

of disjoint Kronecker sets such that E = ̂ J L^ is a perfect
independent Dirichlet non Helson set. ^=°

Proof. — This is related to that of Lemma 8.5 in the same
way that the proof of Theorem 8 is related to that of Theorem 7.
(But note that — as in the alternative proof of Theorem 4
given in Section 6 — it is more convenient to take a sequence
of rationals ^{n) tending to some point y than to start
with Y fixed.) We ensure that E is Dirichlet by using the
technique suggested in the last part of the note following (4.4).

It is possible, using these techniques, to prove an extension
of Lemma 7.12.

LEMMA 8.7. — Given 1 ̂  5, t > 0, we can find L a perfect
H^ set and M a perfect H( set such that L, M are disjoint
but P = L u M is an independent Dirichlet H^^) se^-

However, since the proof simply involves combining the
rather complicated proofs of Lemma 7.12 and Lemma 8.5
and needs no new ideas, we leave it as an exercise for the reader.

I should like to thank my supervisor Dr. N.-Th. Varopoulos
both for suggesting the topic of this paper and for his help
and encouragement. I should also like to thank the S.R.C.
for a grant.
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APENDIX

We give in diagramatic form the main relations (known to me) between the
sets discussed above. [I] refers to this paper, [II] to a long paper « Some
Results on Kronecker, Diriehlet and Helson sets II » which will form part of
my Cambridge thesis. Additionally the result (5) of Bjork will apear in seminar
notes of the Mit ag Leffler Institute. Drury and Varopoulos have now proved
that the union of 2 Helson sets is Helson (see [17]).
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