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SOME RESULTS
ON KRONECKER, DIRICHLET
AND HELSON SETS

by Thomas William KORNER

1. Introduction.

We start with a short general discussion. The reader seeking
more information should read [8], [9] and ([13] Chap. 5). More-
over anyone acquainted with the field should simply skim
through this section which contains only definitions and well
known consequences. We work on the circle T = R/2xZ
(where R 1is the additive group of real numbers, Z the sub-
group of integers). As usual we define the characters y,
by xn(z) = €™ for xze T. C(T) is the set of continuous func-
tions f: T — G (where G 1is the set of complex numbers).
What we shall be concerned with is the possibility of approxi-
mating members of the set S = {feC(T): |f(z)] =1 for all
ze T} by characters. Clearly this is only possible on « thin »
subsets of T and it i1s these subsets we shall study.

A closed set EcT is called Kronecker if for every geS,
e >0 we can find an n such that |g(z) — x.(z)] < ¢ for
all zeE. A closed set EcT is called Dirichlet if we can
find an increasing sequence n(j) such that

sup |1 — yp(@) > 0
z€E

as J—> . A set EcT (respectively EcR) is called

.
independent if given m;, ..., x,eE distinct, Y myz,=0

g=1
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with my, my, ..., m,eZ implies my = my = .- = m, = 0.
The relations between these 3 concepts are very close and we
shall use the following well known facts without comment.

Lemma 1.1. — () Kronecker’s Theorem: If =z, ..., z,eT
are independent, then given any Xy, ..., AeC with
A = - =7] =1, NeZ, ¢ >0 we can find an n > N
such that sup |x.(z,) — ] < e. In particular every finite

T

independent set vs Kronecker.
(12) Dirichlet’s Theorem: Any finite set ts Dirichlet.

Proof. — These results are classical ([3] Chap. 3, § 2 and
Chap. 1, § 5).

Lemma 1.2. — (v) Every Kronecker set is independent.
(1) Every Kronecker set is Dirichlet.

(ziz) If E is a Kronecker set, feS, ¢ > 0, nyeZ we can
find an n > n, such that sup |y,(z) — f(z) < e.
z€EE

Proof. — (i) Suppose Y mz, =0 and
g=1

sup | xup(®,) — f(z,)] - 0

1L9L<r

as j— . Then

r r

= 100) = o 3, mety) = 1 Dol > T [y

and so 1 =[] [f(z,)]™.

g=1
(tv) Take ¢, = %, (27¢*x). If E 1is Kronecker, then for
each r > 1 we can find an n(r) such that

sup |Xn(r)($) - crl < 1/2'0,. - C,._]_I.
z€E
Clearly x.ay, Xuss ... are distinct and sup |x,m(z) — 1] =0
z€E
as r—> . We have thus [n(r) - o and
sup |xju(() — 1| = sup |xup(z) — 1| >0
z€E z€E

as r —> 0.
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(t2t) This follows from (it).
We shall use the following trivial Lemma repeatedly.

Lemma 1.3. — If R = {z,: meZ} is independent, EcT
(respectively E cR) uncountable, then there exists a ye ENR
such that {y}u R s independent.

Proof. — We prove the result for EcT. The proof for
EcR is similar. Let T = % D GnTn: qn # 0 only finitely

often, ¢,e2nQ} (where Q 1is the set of rationals). Then
T 1is countable. In particular E\T # @ and we may choose
for y any zeE\T.

In stating our results we shall be mainly concerned with
countable and perfect sets. The reader may therefore find
it useful to recall that,

Lemma 1.4. — The following conditions on EcT are
equivalent :

(1) E s perfect and totally disconnected;
(t) E with the subspace topology tis homeomorphic to

D, =] D; (where D, is the group of 2 elements with the

1
discrete topology);

(1it) There exist %,, %,, ... finite collections of disjoint
(closed) intervals such that setting P, =vu {I: 1e%,} we have
P,2P, for m > 1, max{diam I: [e%,} -0 as m — oo,
card{le®,: IcJ} > © as m—> o for all JeZ, and

E=|_JP.

Proof. — Standard. ([7] § 9.15 prove a more general result).
Any set E satisfying the conditions of Lemma 1.4 is called
a Cantor set. It seems worth remarking that

Lemma 1.5. — If E 1is a closed independent set, then E
is the union of a countable set and a Cantor set.

Proof. — En2nrQ = @ so E is totally disconnected. Since
by the Theorem of Cantor-Bendixson ([6] § 27) every closed
set 1s the union of a perfect and a countable set, the result
follows.
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Corresponding to the strong notions of Kronecker and Diri-
chlet sets there exist weak ones. Let M(T) be the set of
measures on T and M*(T) the subset of positive measures.
We say that a closed set Ec T is weak Kronecker (respectively
weak Dirichlet) if for all pwe M*(T), e > 0,7 > 0 given feS
we can find an n such that p{zeE: |y, (z) — f(z)] > ¢} <y
(respectively given n, we can find an n > n, such that
p{zeE: |y (z) — 1] > €} < n). It should be stressed at this
point that Wik [15] uses entirely different definitions. We have,
however, followed Kahane [8] and Varopoulos [17].

At the risk of stating the obvious, we remark

Lemma 1.6. — (2) If w ts a measure supported on a closed
countable set E then for any ¢ > 0 we can find F a finite

subset of E such that WcE\F implies |u(W) < e.

(tv) If E us closed independent and countable, then E 1is
weak Kronecker.

(tit) If E s weak Kronecker, then E s independent.
(tv) Every weak Kronecker set vs weak Durichlet.

(¢v) If E s a Kronecker set weM*(T), feS,e > 0,7 > 0,
ngoeZ we can find an n > n, such that

w{ze E:supy,(z) —f(2)] > e} <=

Proof. — (i) We have 2 lu(e )] [u] < oo. Selecting
e, ..., e,€ E distinct such that Z [w(ey) = |w] —e and

setting F = {e;, ..., ¢,} we have the required result.
(1) now follows from Lemma 1.1.
(1it) Suppose ey, ..., e, distinct points of E with associated

3-measures §;, ..., 3. (so fgdS = g(e,) for ge C(T),
1<qg<r). Let F={e, ...,e,} and p = 2 3, We have

that p e M*(T) and p 1s supported by FCE Thus given
e >0, feS we can find an n such that

p{ze B: [x.(2) — f(a)] > ¢} < 12,
1.e. sup |xa(z) — f(x)] < e. Thus F is Kronecker and so

independent.
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(tv) The proof proceeds as in Lemma 1.2 (it).

(v) We can find a closed E;cE, n,eZ such that
w(ENE;) < n/2 and sup|x,(z) — f(2) < ¢/2. We can find

aclosed E;cE, n, > ny — n; such that p(E\E;) < 9/2 and
sup |xn(2) — 1 < ¢/2. Now u(E\(E;nE,)) < and for
Z€EE,

xEElnEz, n=n/1+n2’

[Xa(@) — (@) < [2a(®) — a0 (@) + |20, (2) — f(2)]
= xm(®) — 4| 4 |xa,(x) — f(2)]

< €

whilst n > n,. This is the required result.

The concepts of Dirichlet and weak Dirichlet sets are in a
certain sense modifications of the older concepts of an N
set and of an R set. A closed set E is calledan N set if we

can find a, > 0 such that Y a, diverges, yet Y a,sin nz
n=1 n=1

converges absolutely on E. Salem (B. 6 [14]) defines

a type of set which has similar properties. A closed set E

is called an R set if we can find a, > 0, £,e R such that

lim sup a, > 0 but Y a, cos (nx — £,) converges pointwise
n=1

on E. (N sets are so named in honour of Nemytzkii, R sets

in honour of Rajchman.) We shall also use the concept of an

N, set. A closed set E is called an N, set if there exists

an infinite subset Y of Z with ) |sin nz| pointwise
n€Y

convergent on E. Clearly an N, set is both an N and an
R set. The reader will observe in e.g. Theorem 3 that R and
N, sets appear much more amenable to our methods than N
sets. A full discussion of N, N, and R sets may be found
in ([2] Chapters x1r and x111). Usually the condition E closed
is dropped, but it will be found that our results are valid in
this case also.

We require the following results of which the most important
are due to Salem.

Lemma 1.7. — (1) Every Dirichlet set is an N, set and so
an N and an R set;

(1z) Every R set is weak Dirichlet (and so every N, set is);



224 T. W. KORNER

(1it) Every N set is weak Dirichlet;

(tv) Every closed countable set E 1is N, (and so weak
Durichlet).

Proof. — (v) Suppose E 1is a Dirichlet set. Then we can find
0 < n(l) < n2) < ... such that sup |xmz) — 1 < 2.
z€E

Setting Y = {n(r): r > 1} we have the result.

(1z) Let E bean R set. Then we can find a, > 0,&, such
that Za_ cos (nz + &, converges on E but we can find
0<m1)<m?2) < ... and a >0 such that a,) > a.
Automatically cos (m(r)z 4+ &,,) - 0 pointwise on E.
Choose any 2, E andset y =2z — z,, ¢, =&, + nz,. Then
we have cos (m(r)y + ) -0 as r— o for all zeE.
In particular taking z =z, we have cos {,,, — 0 and so
sin m(r)y sin {,q=cos m(r)y cos Luu— cos (m(r)y + {um) >0
whilst sin m(r)y cos {,, - 0 as r — o. Since

[sin Cpeml + |cos Cpnl = 1

it follows that sin m(r)y -~ 0 and so sin® m(r)ly - 0 as
r— oo for all ze E. Now |[sin?m(r)y] < 1 for all r and
all z so by Lebesgue’s theorem on dominated conver-

gence £ ., Sin® m(r)y dv(z) - 0 for all veM™(T) whence
J. sin® m(r)z du(z) > 0 as r—> oo for all peM¥T). Thus
taking ¢ >0, » >0 we can find an m such that
w{zeE:sin® mz > 28} <
and so
u{zeE:|xa(z) — 1] > e} < n.

E 1is thus weak Dirichlet.
(tit) The proof is quite similar to (it). Suppose E is an N

o

set. Then we can find a, > 0 with ) a, divergent, whilst
n=1

@ o0

Y, a, |sin nz| and thus Y, a, sin? nz are convergent on E.

n=1 4 n=1 /P
Setting f,(z) =( X a, sin? n:v> / (2 a,,> for p>1 we

have 0 < f,(2) < 1 and fox) >0 as p— o for all z<E.

Hence by Lebesgue’s theorem /};fp(x) du(z) >0 as p - oo.
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But lim infffpac du(z) > lim inffsin2 mz du(z) > 0 so
m>w E

lim 1nffs1n2 mz du(z) = 0 for all pweM*(T) and as in (i)

m>x

we see that E 1is weak Dirichlet.

(tv) Let E = {2y, 5, ...}. By Dirichlet’s theorem we can
find an n(1) > 0 such that |[y)(z) — 1 <27, an
n(2) > n(l) such that sup. |%np(x:) — 1] <272 and in

1K<

general an n(r) > n(r — 1) such that sup |Xney (@) — 1] < 27

[r 2 2]. Clearly |[sinn(r)z] < 277 for all - =2s>1 so

Y |sin n(r)z| converges for all s > 1, i.e. E is an N, set.

r=1

Finally we require the following definitions. If p e M(T)

we write f(.(n fx_ du. Suppose EcT 1is a closed set.

We  write M( ) = {#eM(T): supp ucE}. Suppose
0 < u< 1 Wesaythat E is at most an H, set (a Helson
u set) if for every ¢ > u we can find a peM(E) with
el =1 and li?llfup |6(m)] < v. We say that E 1is at

least an H, set if, for all pweM(E), lim sup |g(m)| > u. E
|mpoo

is said to be an H, set if both conditions are satisfied. E

1s said to be Helson (or Carleson-Helson) if 1t 1s not H,, 1.e.

if there exists a 8§ > 0 such that lim sup fx,,, dp.‘ > Sf]dp.l
Im| >0

for all measures p with support contained in E. The reader

who has not already done so, 1s strongly advised to look at

([9] Chapter x1) where the concept of a Helson set is putin

its natural setting, but this definition is all we shall require.
We note the following well known results.

Lemma 1.8: (i) Every weak Kronecker set i1s H,.

(tv) In particular every closed countable independent set is

1.

Proof. — (i) It 1s a standard result (e.g. following directly
from § 14.12 [7]) that if e M(T) there exists h.eS with

f h. dp. — |u||. The lemma is thus a consequence of Lemma
1.6 (¢).
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(1) By Lemma 1.6 (it) every closed countable independent
set is weak Kronecker.

I have attempted in the introduction and elsewhere to
make this paper self contained. But clearly it can only be so
in the narrowest sense. In particular, well known results are
not traced back to their sources which must be sought in the
references (especially [2], [9] and [13]).

2. Results.

2 questions arise at once. The first asks what the relations
are between the concepts defined above. It would, for example,
be very interesting to know whether every weak Dirichlet set is
necessarily an N set. (Yves, Bjork) Often, to prevent triviality
(since e.g. a Kronecker set must be independent, yet {=/4} is
Dirichlet), only independent sets are considered. In Theorem 4
we answer a question of Kahane [8] by constructing an inde-
pendent Dirichlet set which is not Kronecker. Kahane has
asked further in conversation whether there exist independent
Dirichlet sets which are not even Helson. We conclude the
paper by constructing such a set (Theorem 9). In Lemma 3.1
we construct a set which is N, but not Dirichlet.

In Theorem 3 we construct a weak Kronecker (and so weak
Dirichlet) perfect set which is not an R (and so not an Nj)
set. According to Bary ([2] Chapter 12, § 10) it was an open
question whether a set could be weak Dirichlet and yet not
an R set. But she also reports in detail work of Arbault [1]
in which he shows that there exist N sets (which by Lemma
1.7 (1) are automatically weak Dirichlet) which are not R
sets. I donotknow whether the fact that Arbault’s construc-
tion also answers the question stated above has been generally
overlooked or not. In any case we tackle the proof by entirely
different methods, obtaining a stronger result (since our set
is weak Kronecker and so independent). We then vary our
construction to obtain, in Lemma 4.8, a weak Kronecker (so
independent) N set which is not an R set. That the addition
of independence to the conditions of the Theorem and Lemma
is not entirely a trivial generalisation is best seen by noting
that Arbault’s proof of his result depends on the lack of
independence in the set constructed.
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Wik has shown, effectively, that there exist weak Kronecker
sets which are not Dirichlet ([15] Theorem 2). In Theorem 2
we construct a perfect non Dirichlet set every proper closed
subset of which 1s Kronecker. Wik’s result appears as a
consequence (Corollary 2.2). In Theorem 5 we construct a
perfect Dirichlet non Kronecker set every proper closed subset
of which is Kronecker. In Corollary 5.2 we see that there exist
weak Kronecker sets which are Dirichlet but not Kronecker.
Although the 2 proofs of Wik’s result spring from different
ideas (his being a modification of a theorem on the Hausdorff
measures of Kronecker sets, ours of a theorem on the union
of 2 Kronecker sets) the constructions used turn out to be
fairly similar. On the other hand our method also gives the
result of Corollary 5.2 which does not seem as accessible by
his methods. At the beginning of Section 6 we give an alterna-
tive proof of Wik’s result, obtaining it as a consequence of the
existence of countable independent closed sets which are not
Kronecker.

The second question concerns the union problem. What
can we say about the finite union or the countable union of
particular types of set? In particular, is it a set of the same
type? Again, to prevent triviality, we often add the condition
that the sets be disjoint and their union independent. (As
an example of the difference this may make, recall that a
closed countable independent set is necessarily Helson (Lemma
1.8 (12)) but that a closed countable set need not be (direct
consequence of Theorem virr of [9] Chapter xi1)). The most
important unanswered question in this direction asks whether
the union of 2 Helson sets 1s necessarily Helson (Yes, Drury
and Varopoulos).

The 2 most powerful techniques for solving these problems
turn out to be probabilistic ([9] Chapter viir and elsewhere)
and functional analytic (this technique owes a great deal to
an idea of Kaufman [11]). Typically the results obtained tell
us that « with probability 1 or « quasi-always » certain sets
have a required property. In contrast to these non constructive
proofs we shall obtain our results by the direct construction
of suitable examples.

Bernard and Varopoulos [16] have shown by functional
analytic methods that the independent union of 2 disjoint



228 T. W. KORNER

Kronecker sets is « quasi-always » not Dirichlet and « quasi-
always » not H,;. (Strictly speaking this statement is mea-
ningless, since I have not indicated the space, let alone the
metric with respect to which « quasi-always » 1s defined. Since
a full discussion would take us too far afield, I have included
the word « quasi-always » simply to give the flavour of the
results.) In Theorem 1 we construct 2 countable disjoint
Kronecker sets whose union is independent but not Dirichlet.
A modification of this construction gives Theorem 2 which
in turn implies that the independent union of 2 disjoint
perfect Kronecker sets may be independent but not Dirichlet
(Corollary 2.1). As another example of what can occur if
independence conditions are dropped we give in Lemma 3.4
a constructive proof of a result obtained by functional analytic
methods by Varopoulos [17], which shows that the sum of
2 disjoint Kronecker sets may be the whole of T. In Theorem 6
we construct 2- disjoint perfect Kronecker sets whose union
1s independent but not even weak Dirichlet. Examination of
the proof and consideration of the methods of Bernard and
Varopoulos indicate that the novelty here lies in the exhibi-
tion of an independent set which is not weak Dirichlet. Since
(as we saw 1n Section 1) all Kronecker sets are Dirichlet, weak
Kronecker, weak Dirichlet and N sets and all Kronecker,
Dirichlet, weak Kronecker and N sets are weak Dirichlet,
Theorem 6 provides a complete negative answer to the union
problem for these types of set. For example it improves on
the standard result (due to Marcinkiewicz) that the union of
two N sets need not be an N set ([9] Chapter vi1, § 5) by
exhibiting an independent union of two N sets which is
not an N set (the standard result again depends crucially
on the lack of independence of the given union).

In Theorem 7 we show that the independent union of ¢
disjoint Kronecker sets may be such that it i1s at most H,,.
We very briefly discuss a result of Varopoulos [17] which
states that the independent union of ¢ disjoint Kronecker
sets is at least H;, and so shows our result to be best possible.
A simple modification of the proof of Theorem 7 gives Theorem
8: the closed independent union of a countable collection of
disjoint Kronecker sets need not be Helson. Rudin has shown
by probabilistic means that independent non Helson sets
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(Rudin sets) exist ([9] Chapter vii). As a by-product of Theo-
rems 7 and 8 we obtain in Lemma 7.4 and Lemma 7.8 by direct
construction examples of independent perfect non Helson
sets which both do and do not carry non zero measures o
with lim é(n) = 0. We conclude Section 7 by using our

|nj> o0

techniques together with the result of Varopoulos just men-
tioned to prove some minor results of which the most interes-
ting is that the independent union of an H;, and an H, set
can be an H,,, set [0 < s, £ < 1].

The paper proceeds at a leisurely pace. My excuse is that
whilst the impatient reader may in any case omit those results
and proofs which he finds uninteresting, I wish to help those
who want to construct such sets themselves by exhibiting
as varied as selection of constructions as possible. For example
there 1s a considerably longer discussion of independence in
Section 6 than the paper needs. In Section 7 we discuss discrete
Kronecker sets in R because the techniques used seem to be
simpler. Finally several results on H, sets are included only
because it seems to me that any results in this field are worth
having.

Essentially the proofs merely consist of repeated applica-
tions of Kronecker’s theorem and the trivial observation that
for any interval I we can find an m, such that for m > m,
the wavelength of yx, is very much smaller than the length of
I. We apply this to situations of gradually increasing com-
plexity. Thus although the proofs of our theorems (except in the
case of Theorems 2 and 5 and Theorems 7 and 8) are indepen-
dent, it may be helpful to absorb the ideas of the earlier theorems
before proceeding to the later ones. However, anyone well
versed in the subject will find that reading the heuristic
preceding Theorem 1 and the proof of Theorem 7 gives a good
idea both of the methods used and the ideas behind them.
Others may wish to omit the proof of Theorem 5 as adding
nothing to the ideas of Theorems 2 and 4, and may feel that
they do not need Theorem 6 as a stepping stone to Theorem 7
but having read the latter may feel the former easily obtainable.

Unfortunately our constructions are necessarily inductive
and the proofs thus obscure the simplicity (or triviality) of
the ideas. Thus once the reader has grasped the idea, he may
prefer to construct his own proof. Except in the case of
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Theorems 4 and 9 where some verification is required, once
the idea is recognised the result is obvious. To encourage
this process we have included a certain amount of heuristic.
The reader may also find it helpful to follow the induction
through a couple of cycles drawing a diagram of the state
of the system at each step (the results were obtained in this
manner). When doing this it becomes natural to think of the
construction as proceeding in time : at time m we examine the
system with respect to yx, and make suitable modifications.
We use this metaphor in our heuristics.

Finally we establish some notation. Since C(T) 1is separable,
so is S and there exist g,eS such that {g, g, ...} 1s
dense (under the uniform norm) in S (for convenience we
take g =1). Write fiier...4r40m1 = g for 1 < s < r. Then
trivially E 1s Kronecker if and only if infsup |f.(z) — ()] =0

821 z€E

as r— o and weak Kronecker if and only if we can find
e, > 0 such that for every peM*(T)

infp{zeE:|f(z) — x(2)| > ¢} >0 as r—> oo.
21

The reader unfamiliar with the convention should note that
we write N(y, ¢) = {zeT: |z —y| < e} [yeT,n > ¢ > 0].

3. First Results.

Suppose we construct successively =;, z,, ... and set
E = {2;, %, ...}. Then E independent does not imply E
independent. Thus in what follows we first select a limit point
®, and then construct oy,«,,...,®, = «, such that, for each s,
{ay, ..., #;, 2o} 1is independent. Then E = {«q, oy, a5, ...}
is closed. Suppose yy,¥s, - ..,y, € E distinct. Then, for some s,
{yr, - s Yays{og, ..., %y %} SO Yy, Ya, ..., Y, are indepen-
dent. Thus E 1s independent.

We use this idea in the proof that follows. Here the reader
will note that at time m we introduce a new point «, to
prevent the set E from being well behaved with respect to
o

Lemma 3.1. — There exists a closed set E which is not
Dirichlet yet independent and countable (and so weak Kronecker

and No).
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Proof. — We construct such an E. Select o, €T inde-
pendent (i.e. o, ¢ 2rnQ). The central inductive step in the
construction runs as follows. Suppose we have constructed

%oy O, ..., &, independent. By Lemma 1.3 we can find o,
SllCh that lxm+1(am+1)—1l > 1,iam+1 -_ aol S 275/(m + 1), and
%y, %3, ..., Omyyy are independent. The induction now pro-
ceeds.

We set E = {a, o3, a3, ...}. By the remarks above E
1s independent and closed. On the other hand |y.(x,) — 1] > 1
for all » > 1 so E is not Dirichlet.

The reader will notice that the early stages of the cons-
truction do not really affect the final result. This is true for
all the constructions in this paper. In fact the first few steps
are often atypical. Because of this and also because we may
wish to impose conditions that complicate the early parts
of the construction but not the later ones (e.g. that the set
lie in an interval I), we shall be deliberately vague as to
how the inductions are started. Inserting these details is a
genuinely trivial matter but would still further obscure the
1deas of the proof.

We now prove Theorem 1. The idea here is crudely as
follows. Consider the construction proceeding at times
r=1,2,.... Attime r = M we have a great deal of latitude
in constructing one set A, we use this latitude at times
r=M, M+ 1, ... to ensure that A 1is badly behaved
with respect to xm, Xm+1, --.. By Kronecker’s theorem there
will come a time P when what we have constructed of B
is well behaved with respect to yxp. By the continuity of
X1, --., xp there is a certain small latitude allowed us in
adding to our construction of B while retaining its desirable
characteristics in relation to them. As r continues to increase,
the wave length associated with y, decreases and there will
come a time M’ when the latitude allowed in constructing
B is large compared with the wave length of xm. We now
reverse the roles of A and B and start again. This construc-
tion ensures that A and B are each well behaved infinitely
often but A uB neveris.

Taeorem 1. — There exist A, B disjoint countable Kro-
necker sets such that A uB is independent but not Dirichlet.
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Proof. — We construct such an A and B. Select o, B,
independent with |x, — Bo| > 2/5 say. We give the central
inductive step in the construction of A and B. Suppose we

have &5, %3, ..., %mu By Bos B1s - - -5 Pmm» Independent and
1/10 > ¢(n, A) > ¢(n,B) > 0 such that M(n, B)e(n, A) > 2nx.
Since aj, ®;, ..., &mw are independent, there exists a

P(n+-1, A)>M(n, B) such that |xeeu,a(%s) — fara(o)] < 270
for 0 < s < M(n, B). Since f,,, and xpu+1,4) are continuous
there exists an 0 < e(n 4 1, A) < 1/2 <(n, B) such that
| Xpr1, 1)) — farr(z)] < 27D for all ze N(a, e(n 4 1, A)).
There exists an M(n+ 1, A) > P(n+ 1, A) such that
M(n + 1, Ae(n + 1, B) > 2r. Select (using Lemma 1.3)
UM By+1s -+ > OM@n+1,4) € N(%, e(n 41, A)) such that
%oy +-.y OMz+1,A) Pos --.» Bue w are independent. Because
M(n, B)e(n, A) > 2= we can find (by Lemma 1.3)
BMan, By+15 --s Pugar1, ) € N(Bo, €(n, A)) such that [x(B,) — 1] > 1
for M(n+ 1, A) > s> M(n, B)+1 and «p, ..., amgpe, 4y

Bos - -5 Bmu+1, 4y are independent.
Repeating the work mutatis mutandis we obtain «,, ...,
OM(n+1, By Boy --+s Pwmw+r, s 1ndependent points and

e(n+1, B,P(n+ 1, B), M(n+ 1, B) with the following
properties :
e(n +1,A) >
M(n + 1, B)e(n +
M(n+ 1,B) > P(n+ 1
and sup |XP(n+1,B)(ﬁs) - fn+1 (B.\-

0<s<M(n+1, B) )
)

sup lXP(u+1,B)(x) — f n+1(T
zeN(f,, (n+1, B))

whilst |3 («,) — 1] > 1 for
M(n+1,B) > s> M(r + 1, A) 4 1.

The induction proceeds.

Let A= {«.:r >0}, B={B,: r>0}. Since «,—> «,,
B, > B, as r > o, A and B are closed. Trivially A and B
are countable and, provided the induction is started suitably,
disjoint. Suppose Y3, Ys, ..., Yo AuB distinct. Then, for
some s, {yh R yn} S {“Oa vy Ky BO’ c -7@3} SO Y15Y2s -+ -5 Yn
are independent. Thus, as before A uB 1is independent. By
construction sup |Xpen, ay(%s) — fal2s)] < 2™ so A and simi-

$20
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larly B are Kronecker. But max (|x(«,) — 1|, [x:(Bs) — 1|) = 1
for s large enough (depending on how the induction 1s started),
so AuB cannot be Dirichlet.

The reader will note that (in heuristic terms) there 1s a
great deal of «slack » in our constructions, both here and later.
Having ensured the good behaviour of part of our set at
time r (i.e. for the character y,) we are content not to
tamper with that part so as to try to ensure good behaviour
untill much later. This 1s, I think, unavoidable to some
degree, since a Kronecker (or similar) set has a deep structure
which does not appear explicitly in our construction. For
example, on the face of it, our methods should enable us to
construct a Kronecker set K such that 2K = {22: z<e K}
1s not Kronecker (i.e. K 1is Kronecker but not all members
of S can be approximated by characters of the form y,,).
The following easy Lemma shows that this is not possible.
The reader may derive some benefit by considering where a
proposed construction for a counter example breaks down.

Lemma 3.2. — If K is a Kronecker set and qe Q\{0} then
gK = {gz: x e« K} s Kronecker.

Proof. — Clearly ¢K 1s closed. If m, neZ\{0} then
Yra(mz[n) = Ym(x). The result is thus equivalent to showing
that if neZ™\{0} every feS can be uniformly approxi-
mated arbitrarily well by characters of the form y,,. Since K
is closed and K # T there is an open interval IcT such
that InK = @. Thus if feS there is a geS such that
gl K =f|K and [arg g(t)]2* is a multiple of 2nn. In parti-
cular there exists an heS such that A" =g Suppose
e >0 is given. Then we can find an r such that
|x-(z) — h(z)] < ¢/[n for zeE and so

[ %ra(@) — F(@)] = [2ra(2) — P(2)]
|xr(2) — h*(@)]

= Ile) — W)l |, #ee)1~(a)

< ula) = ho)] 3 [xlalhri=(o)
= |x.(z) — h(z)|n < ¢ forall zeE.

I

This 1s the required result.
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We note that if ye K then 2nyK is not independent
and so not Kronecker.

In what follows we shall use repeatedly the following
simple fact :

Lemma 3.3. — (i) Suppose 1, , I, are disjoint closed
intervals in T and feS, r(1), r(2), ..., r(s) 2 1, ny > 1,
e >0 and 8 > 0 given. Then we can find an n > ng, disjoint

closed intervals l,cint I, [1 < g <r(p), 1 <p <s] with
s rp

diam 1,,<8 suchthat |f(z) — x.(2) <c forall ze U U L
pP=1 gq=1

(12) Under the hypotheses of (i) we can find an n; > n, such
that for any n > n, we can find disjoint closed intervals

Iycint I, 1 < ¢g<r(p), 1 <p <s] with diam I, <
s r(p)

such that |f(z) — xa2) < ¢ forall ze| J|J I

p:l q=1

Proof. — Although (i) implies (i) we choose to prove the
2 results separately. We do this because our proof of (it)
leans much more heavily on the special properties of T, and
because we need this stronger and « less natural » version only
once for the non essential Lemma 6.1.

(t) By Lemma 1.3 we can find distinct independent
ageint I, [1 <qg<r(p), 1<p<s]. By Kronecker’s
theorem we can find an n>n, suchthat |f(x,) — xa(%p)] <€/2
and since f and y, are continuous, we can find disjoint
intervals I, with diam I, < 3§, «,eint Ipqs I,cint I,
such that |[f(z) — x.(z)| < ¢ for zel, [1 < q<r(p),
1 < p < s] as required.

(12) Since f is continuous and T compact, there exists a
0 <7 < min diam I, such that _sup |f(z) — f(y) < </2.

1L<P<Ks
Select (closed) intervals J, and pomts y, such that

yyeint J,cJ,cint I, and diam J, < 7 [1 < p < s]. Choose

an n; > ny such that n;, min J, > 4n. Then if n > n,
1<P<s

we have that yx,(t) has period 2=/n (in t) and so there
exists z,eint J, with y,(z,) = f(y,) and so

sup If(z) — xa(zp)l < €[2.
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By the continuity of %, we can find closed intervals
I,,sint J, with diam I, < 8 such that |y,(y) — x.(z,)| < ¢/2
for all yeJ, [1 < ¢<r(p), 1 <p<s]. Clearly the J,
have the required properties.

Using this, we can push the method of Theorem 1 a little
further to obtain Theorem 2. The idea here is that the bad
behaviour of E with respect to x, can be ensured by bad
behaviour in a small region (within a small closed interval
Ff say) outside of which we can make E well behaved. As r
increases with m we allow F; to move round and round
the circle growing ever smaller. In this way we ensure that
although E 1is badly behaved, the removal of that (non
empty) part of E lying within a small interval renders E
well behaved infinitely often.

Tueorem 2. — There exists a perfect non Dirichlet set E
such that every proper closed subset of E is Kronecker.

Proof. — We construct inductively J;, J;, ... where J,
is a finite collection of (closed) intervals and setting

E,= uv{F: FeJ.} we have 0¢F, and F,2F,,. We
then set E = r—] F,. (cf. Lemma 1.4). The central inductive

r=1

step runs as follows. Suppose we have J, Frel,
1/10 > (r) = 3(r) > 0, M(r) > N(r) > 1 defined in such a
way that M(r) e(r) > 2=, diam F > 38(r) for all FeJ, and
diam F} > ¢(r). Let the sets of J, be numbered in the direc-
tion 0 fromOto 2n as Ey, E,, ..., E, say (here as elsewhere
in the proof the notation i1s obviously temporary to be main-
tained only in this step of the induction; if we needed to be
more specific, we would talk of Ey(r), Ei(r), ..., Eyy(r))
with E; = F};. Select «,eint E, [0 < k < ¢, k # s] inde-
pendent. By Lemma 3.3 there exists a P(r) > M(r) and an
0 < e(r+1) < 1/4 3(r) such that setting

G, = N(ay, 1/2 ¢(r + 1))

we have G,cF, and |xep(2) — fxn(z) < 277O  for all
xeG,[0 < k < g, k #s]. Choose an M(r+ 1) > P(r) such
that M(r + 1)e(r + 1) > 2=. Since M(r) diam E; > 2r we

can, trivially, find distinet Bumgyi1, Bmeysas - - -5 Buesny € 10t E,
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such that |x,(8,) — 1| > 3/2 for M(r) +1 < n < M(r 4+ 1).
By the continuity of Xmgyi1, Xmey+2s -« -5 XMp+1y We can find a
0 <3r+41) <e(r+ 1) such that setting

H, = N(@, 1/23(r + 1))

(or more specifically H,(r) = N(B,(r), 1/2 8(r + 1))) we have
H,<E, |x.(z) — 1] > 1 for all

zeH, [Mr) +1 < n< Mr+1)]
and HM(r)+1a Hugyras -« os HM(r+1)

disjoint. Setting

b= JGv U H,FLi=0Gu

0<k<Y M(r)+1<n<M(r+1)
k#s

(where G,.; = Gy) and N(r +1) = N(r) +1 if s= M(r),
N(r 4+ 1) = N(r) otherwise.

The induction now proceeds.

Since the argument now depends crucially on the behaviour
of FT as r increases the reader is again advised to draw
a diagram and observe the behaviour of F; through several
inductive steps. We see that indeed N(r) > oo (in more
colourful language F; describes complete rotations), and
e(r), 8(r) > 0, card J, > 0 as r— . Hence E is perfect
(Lemma 1.4). Moreover if Fed, [r > 1] then FnE # 3.
It follows that if n is large enough (depending on how the
induction is started), then we have for some r that
M(r+4+1) > n > M(r) +1 and therefore, selecting a

peEnH,(r) we have BeE and |[x(8)—1] > 1.

Thus E is not Dirichlet. Now suppose that A 1is a proper
closed subset of E. Then there exists an zeE anda 8 > 0
such that N(z, 8) n A = @. But we can find a ¢, such that
for all ¢ > ¢, there exists an r with N(r) =¢ and
F?< N(z, 8) (more colourfully: eventually F; lies entirely
within N(z, 3) at some time during each revolution). Thus

[xee(t) — fo(O] = lxee(t) — fro(t) < 270 = 2~

for all teA. Hence A 1s Kronecker. This completes the
proof.
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We note that every finite subset of E 1is closed, so Kro-
necker and thus independent. Hence E is independent. Since
E is perfect it is the union of 2 non void disjoint closed sets.
From considering any such 2 sets A, B we obtain

CororLLArY 2.1. — There exist 2 disjoint perfect Kronecker

sets A and B with AuB independent but not Dirichlet.

Moreover if we are given pe M*(T), e > 0,7 > 0 we can

find an open non void subset K of E such that p(K) < 7.

Let L = E\K. Then L is Kronecker and given feS we

can find an rn such that sup |f(z) — x.(z) < 1/2 ¢ and so
ZEL

p{zeE: |x.2) — f(z) 2 ¢} <. We thus obtain Wik’s

result.

CoroLrary 2.2. — There exists a perfect weak Kronecker
set which is not Durichlet.

We conclude this section with a lemma (due, as we said in
Section 2, to Varopoulos [17]) which shows that, in a certain
sense, Kronecker sets are quite thick. The proof follows that
of Theorem 1 in that we balance the construction of K and
L against each other so as to ensure thateachof K and L is
well behaved infinitely often, but K -+ L is not well behaved.

Lemma 3.4. — We can find K, L disjoint perfect Kronecker
sets such that K+ L = T.

Proof. — We construct inductively X,, H,, ... and
4, 4, ... finite collections of disjoint (closed) intervals such
that setting K,=u{F: FeX}, L i=u{F: Fe%} we
have K,2K,,,, L, 2L, KinL.=9@. We then set

K= ﬂK,, L= mL (cf. Lemma 1.4) and show that K

r=1
and L (which are certamly disjoint) have the required pro-
perties. The central inductive step runs as follows. Suppose
we have P(r, K) > 10 and K, L, defined in such a way

that int K.+ int L,= T. Then l l (x + 1t K,)=T.
zeintL,
Since T is compact, we can find distinet z;,, Zy,, . . ., Ty, € Int L,
n(r)

such that U (4, + int K,) = T and further every FeX,

k=1
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contains at least 2 members of z;,, ), ..., Zu.-
Since int K, 1s the union of a finite collection of open inter-
vals, we see that there exist disjoint closed intervals I,,,
L., ..., I such that z,eint I,,cI, cint L. [1 < k < n]
and for all z el,, ..., z,ye L) we have

n(r)
U (2, + 1t K,) = T.

k=1

Select y,.eint I, such that w;,, ¥, ..., Y are inde-
pendent. By Lemma 3.3 there exists a P(r + 1, L) > P(r, K)
and intervals J,, with y,eint J,cJ,cI, and
diam J,, < 1/2 diam I,,, such that zeJ, implies

treen, 5(2) — fra(@) < 271 [1 < | < nfr)].

Setting 4. = {Jr: 1 <k <n(r)} we have L,,cL,
Sup |xeg+1, () — fra(®)| < 2

-1 and int L.,; +int K, = T.
€Ly | . . .
Mutatis mutandis we can find RK.;1 a fimte collection of
disjoint intervals and P(r 4+ 1, K) > P(r 4+ 1, L) such that
Krn €Ky SUP [ipgar, 0(@) — fra(@)] < 27 and

r+1

int Lr+1 + int Kr+1 - T.

The induction now proceeds.

As usual there 1s a great deal of liberty allowed in starting
the induction, but it may be as well to point out that setting
Ko = {[— = /40, =[40], [19%[40, 21=[40], [29% /40, 31=[40]},

and
4o = {[2= /40, 18=[40], [22=[40, 28=[40], [32r[40, — 2= [40]}

we do indeed have int K, + int L, = T. We now show that
K and L have the required properties. By construction K
and L are perfect. Further, since Lg¢L.,,, we have
sup |xee+1, (%) — fraa(@)] < 27 so that L and similarly
ZEL

K are Kronecker. Now suppose £ e T. We can find x, e K,
A-e L, such that ». + A, =&. By compactness we can find
m(1) < m(2) < .-+ such that x,;—>xeT, 2, >2reT
and so x + A =&. But by construction xe K, Ae L. Thus
K+ L =T as we set out to prove.
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4. R Sets and Weak Kronecker Sets.

The method we have used is clearly a very easy way to
construct weak Kronecker and weak Dirichletsets. However,
there are limits to its power as we shall now see. The results
which show this, though not very deep, in turn form the heu-
ristic for Theorem 3. We make the following temporary defi-
nitions for use in what follows. We will call a closed set E
almost Kronecker (respectively almost Dirichlet) if every proper
closed subset of E 1is Kronecker (respectively Dirichlet).

We first remark that, not surprisingly, not every weak
Kronecker set E 1is almost Dirichlet. If we do not demand E
perfect the result is trivial.

Lemma 4.1. — There exists a countable independent (and so
weak Kronecker) set E which is not almost Durichlet.

Proof. — Take E as in Lemma 3.1, E\{«;} i1s not Din-
chlet.

For E perfect we obtain the result by a simple modification
of the construction in Theorem 2. The idea here i1s to ensure
that F; does not make a complete revolution. We give the
proof in full, but for most of its length it follows that in
Theorem 2 word for word, and the reader need only pay atten-
tion to the divergences.

Lemma 4.2. — There exists a weak Kronecker set which is
perfect but not almost Durichlet.

Proof. — Suppose we have J, a finite collection of closed
intervals, Fred, 1/10 > <(r) > 8(r) > 0, M(r)eZ with
M(r)e(r) > 2n, diam F > 8(r) for all FeJ, and
diam F} > ¢(r). Let the sets of J, be numbered in the direction 6
increasing as E,, E;, ..., E, say with E, = F;. Select
Aoy %oy €10t EL[0 < k < ¢, k # s] independent. By Lemma
3.3 there existsa P(r) > M(r) andan 0 < ¢(r + 1) < 1/43(r)
such that setting G, = N(«;,, ¢(r + 1)) we have Gy, Gopsa
disjoint subsets of F,[0 < k < ¢, k # s] and

|XP(r)(x) - fr(x)l <27
forall zeG, [0 <1< 29+1, 1 +# 2s, 25+ 1]. Choose an
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M(r + 1) > P(r) such that M(r+ 1)e(r + 1) > 2x. Since
M(r) diam E; > 2= ‘we can, as in Theorem 2, find disjoint
subintervals Hyya, ..., Huery of E; with diameter
3(r+1) where e(r+ 1) > 38r+1) >0 such that
|%a(z) — 1] > 1 for all zeH, [M(r)+1 < n < M(r+1)].
Wenowset J,,; = U {G} v U {H,}, Fr1=G

0<iL2g+1 M(r)+1<n<M(r+1)
15£2s, 25+1

and restart the induction.

Now e(r+1) < 1/2 ¢(r) so e(r)—>0 as r— oo, for
any leJd,card {I'eJ,: I'cI} >2"1—> 0 as r— o and
setting F. =vu{F: FeJ} we have F,2F.,;. Thus

E= m F, is perfect. The reader is invited to draw a diagram
r=1
and consider the behaviour of F;. We note at once that
Frc Ey1(r) forall n > r and thus by well known topological
results there exists an z,e E such that if z.e€F; then
x, = z,. Further we see that z,¢F; for any r. With the
aid of these observations we can show E weak Kronecker
but not almost Kronecker. Suppose peM*(T), e > 0,7 > 0
given. Then we can find a & > 0 such that setting
L = {z,} v (EXN(z, 3)) we have p(L) > u(E) — . For r
large enough L nF; = @ and so sup lxem(@) — filz)] < 277,
re

1.e. L 1s Kronecker. Thus if feS we can find an n such
that sup |f(z) — x.(z)] < 1/2 ¢ and so
TEL

w{ze E:|x.(z) — f(z)] > e} < n.

Thus E is weak Kronecker. However, for any 8 > 0 setting

K(8) = En N(z, 3) we have that for r large enough

KnF; # @ and so for n large enough sup |x,(z) — 1] > 1.
z€K

Hence K is not Dirichlet. In particular taking 8 = 1/4 diam E
so K # E, we see that E 1s not almost Dirichlet. This
completes the proof.

More disappointingly we have

Lemma 4.3 — (i) Every almost Dirichlet Cantor set E s
an N, set (and so an N set and an R set).

Proof. — Choose L,;, K; non void disjoint closed subsets
of E whose union is E. Choose L,, K, non void disjoint
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closed subsets of K; whose union is K;; L;, K; non void
disjoint closed subsets of K, whose union is K,, and so on.
Setting E.= E\L. we have E, a proper closed subset
of E. Thus we can find 0 < m(1) < m(2) < --- < m(r) < ---
such that |y,»®) —1 <27 for all zeE, and so
|sin m(r)z|] < 27" for all zeE, Since L, L,, ... are
disjoint, we thus have that for any z e E, sup |sin m(r)z] > 2

for at most 1 value of r > 1. Thus Y |sin m(r)z| converges

<indeed Y |sin m(r)z| < 2> for all zeE. This proves the

r=1
lemma.
This result does, however, have the immediate corollary

(using Theorem 2)

Lemma 4.3 — (i) There exist weak Kronecker (and so inde-
pendent) sets which are N, sets but not Dirichlet.

In Section 6 we shall prove this in a different way, directly
from Lemma 3.1.

A certain amount of thought shows that similar results
to that of Lemma 4.3 (i) (proved in a similar way) hold for
the set E of Lemma 4.2. Moreover by Lemma 1.7 (iv) every
closed countable set E is an N, set. In seeking for a proof
of Theorem 3 we therefore try to construct sets which imitate
the « natural disorder » of a typical perfect weak Kronecker
set. I was also guided in attempting to obtain such results
as Lemma 4.3 and Theorem 3 by the following idea which the
reader may or may not find helpful. (In describing it I have
tried to follow the notation of [12] especially § 4.1, but I
hope that recourse to the reference will not be necessary.)

Consider the following game. Player A draws an infinite
rooted tree (a circuit free connected unidirectional graph
with a selected point a,, i.e. something that looks like a tree
springing from a,). This tree corresponds to the construction
of a Cantor set in Lemma 1.4 (i11) and elsewhere. &, corres-
ponds to the collection of vertices at the n™ level (i.e. to the
collection of points a, such that we can find a path
(@oay)(ayaz)(agag) ... (ap-1a,)). %,41 corresponds to that at
the n+ 1" level. If I,e%,, I,.,e%,,, then the statement
I,21,,; corresponds to the statement that the vertices
Qny @nyy representing I, I, are joined by an edge. Player
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A then assigns a value 0 or 1 to each vertex (the vertices
labelled O correspond to those intervals for which we cannot
ensure misbehaviour, the others to those for which we can).
Certain restrictions may be placed on the freedom of player
A both in drawing and labelling the tree, and these determine
the character of the game. They correspond to restrictions
on the manner of our construction of E (for example: since
P is to be perfect, there must, for each a,, exist ar,, # a,4
SUCh that (an ar+1)(ar+17 ar+2> s (ar+s—1) ar+x) and
(@ry Gry1)(@ri1s Gria) - .. (@risy, Grys) are paths; again, if E
is to be almost Kronecker, then without loss of generality
we may assume that at an infinite number of levels at most
1 point can be labelled 1.). Player B then chooses integers
m(1) < m(2) < .-+ corresponding to the m(1)", m(2)" ...
levels. (In the example given he can ensure that if Ay at
the m(r)® level is labelled 1 then for every path
(am(r)9 am(r)+1)(am(r)+1, am(r)-!-2) s (am(r+.r)—17 am(r+s)> we have
that a,..+, 1s labelled 0.) Player A now chooses a path
(a0a1) (a102) (a205) (agas) .... I anpy 1s labelled 1 then A
scores 1 point. A wins if his path gains him an infinite number
of points (i.e. if he has found P,e %, with P,2P,2..- and
P, badly behaved infinitely often) and loses otherwise.
(In the example given he loses and we have the germ of the
idea behind Lemma 4.3 (iit)).

- Examining this game more closely, we see for example
that A can win if he can ensure that given a, he can find a ¢
such that for all r > ¢t thereis a path

(as8s41) (As418542) (Bss2srs) .. (@1a))

with a,. labelled 1. We shall achieve this in Theorem 3. The
construction there is planned with this and the following
trivial lemma in mind.

Lemma 4.4. — Suppose E,, E,, ..., E,c T are disjoint
closed sets, n>m >0 and peM*(T). Then for some
m-+1<r<n wehave pE) < 1/(n — m)|u|.

Proof. — Suppose, if possible, p.(Er) > 1/(n — m)|u| for
allm + 1 < r < n. Then |u| > —p,<UE> Il

which is absurd. "1



SOME RESULTS ON KRONECKER, DIRICHLET AND HELSON SETS 243

Thus if at different times E,, ..., E._;, E,,;, ..., E, are
well behaved, but E, is not [m+ 1 < s < n] then at
some time a set of measure |u[(n — m 4+ 1)/(n — m) 1s well
behaved. By increasing the number of sets E;, ..., E, we
shall obtain good behaviour at some time, except on a set
of arbitrarily small measure.

Tueorem 3. — There exists a perfect weak Kronecker set E
such that for any &, and any n(r) - o we can find a zeE
with sin (m(r)z 4+ &,y) == 0. In particular E is not an R
set (and so not an N, set).

Proof. — We construct inductively J;, J,, ... finite collec-
tions of (closed) intervals such that setting E. =uv {F:FeJ}

we have E,2E,;. Wethenput E = )E, (cf. Lemma 1.4)
r=1
and show that E has the required properties. The induction
runs in cycles covering steps K(t) to K(t 4+ 1) — 1, K(t 4+ 1)
to K(t+ 2) — 1 and so on, where K(t + 1) = K(t) + ¢. As
usual, we ignore the initial stages of the construction and give
only the central inductive step with ¢ > 2, and K(¢) > 10.
Suppose K(t) < r < K(t + 1) — 1. We write
s=r— K@) +1
and, to bring the notation into line with that of Theorem 2,
N(r) = ¢ At the r" step we have
Jr= ‘Rgrou‘ﬂorlu‘}loﬂu e U‘RQrN(r)

where the Jog, L, ..., b are disjoint and non empty
and Fel, 1implies M(r) diam F > 2r. We also have
By Bray -« oy Bnpy+1 disjoint non empty with

ByuBau s UB N1 = PogU oy U -ei o s—1-

By Lemma 3.3 we can find a P(r) > M(r) and for each
Fed, [0 <k < N(r)k #s] a/(closed) interval H(F, r)cF
with diam H(F, r) < 1/2 diam F such that

sup |xew(®) — fyp(2)] < 27O,
zeH(F, r)

There exists an M(r 4+ 1) > P(r) such that
M(r 4+ 1) diam H(F, r) > 2=
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for all Fedl,[0 <k < N(r), k # s]. Two cases now arise
according as s < N(r) or s = N(r). First suppose s < N(r).
Since M(r) diam F > 2= for any Fed,, we can find
2(N(r) +1) (M(r 4+ 1) — M(r)) distinct points

«(F,l,n,r,s,v)eint F (where ¢=0 or ¢=1)
such that [sin na(F, [, n, r, s, 0)] > 19/20,
[sin na(F, I, n, r, s,1)] < 1/20 [Fed,, 1 <1 < N(r) + 1,

M(r)+1<n<Mr+1)]

Thus by continuity we can find 2(N(r) + 1)(M(r + 1) — M(r))

disjoint (closed) intervals J(F, [, n, r, s, ¢) with

«(F,l,n,r,s v)eint J(F, l,n,r,s,0)cJ(F,l,n,r,s ¢)cF

such that

[sin nz| > 9/10 forall ze J(F, [, n,r,s,0) and |sin nz| < 1/10

for all

zeJF,Lnrs,1) [Fed,, 1 <1< N +1,
Mr)+1 < n<Mr+1), ¢=01]

and

Bory = {H(F,r): FeB,}u{J(F,l,nrsvo):Fel,
Mir)+1<n<Mr+1), =01

1 <1< N(r)+1].

Now suppose s = N(r) (so that r=K(t+ 1) —1 and
we are at the end of a cycle). Since M(r) diam F > 2r for
any F el 1t follows by a similar argument to the one
just given that we can find 2(N(r) 4+ 2)(M(r + 1) — M(r))
disjoint intervals J(F, [, n,r, s,¢) ¢ F such that |sin nz| > 9/10
for all zeJ(F, |, n, r, s, 0) and |sin nz| < 1/10 for all

zeJF, lnrs 1) [Feb,1l <1< NF+2,
M(r) +1 < n< Mr+1), o= 01].
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We now set

Lo ={JF, Lnrs o) Feh, 1 <1< N(r) + 2,
Mry+1<n<Mr+1), =01
Borsye = {H(F, ): Fe &, [1 < k < N() + 1]
and
By = {JF, Lnr,s,¢v): Fel,, M(r) + 1 < n < M(r 4+ 1),
v = 0,1

[1 <1 < N(r) + 2]. Wenote that N(r 4+ 1) = N(r) + 1 and
restart the induction.

Let us pause at this stage of the proof to examine in general
terms what we are doing. During the " cycle we split the
collection of intervals under consideration into ¢ 4 1 blocks
fog, Joy, ..., Jo, say. At the s" step of the cycle we alter
the contents of Joy, Joy, ..., b, so that J, is badly behaved
but Jfg, by, ..., Jo,_y, fogiq, ..., Jo, are well behaved. Thus
each in turn of f, ..., &, is badly behaved while the remain-
der of the blocks are well behaved. However, we do not attempt
to ensure bad behaviour for JA,. At the end of the cycle we
re-partition the new collection of intervals into ¢ -4 2 blocks
(and so into a larger number of blocks) Jog, Joy, ..., o4y
say in such a manner that intervals ensuring the bad behaviour
of M, (during the last part of ¢— 1™ cycle) and
oy, Jog, ..., Jo4; (during the parts of the t™ cycle just
discussed) are assigned to each of Jo;, s, ..., Jopq.
Unfortunately the inductive hypothesis which demands
that the intervals of JM; must be large (more exactly
M(K(t 4+ 1)) diam F > 2= for all F e Jog(.1)) means that we
cannot assign typical members of J, to J;. We therefore put
the members of A, into a separate block Jf, whose members
will, when at the end of the ¢ 4 1™ cycle we form new blocks
og, oy, . .., Moiye, say, be distributed among oy, Jog, .. ., Soiip
as described below. The reader may find it useful to draw
a tree representing the behaviour of E, during 3 or 4 cycles
of the induction.

Returning to the proof, we first show that E (which,

since max diam F < 2-¥"Hlz (0 as r — oo, is perfect)
FeJ,

1s indeed weak Kronecker. Suppose u©eM*(T). Set
Fio=Enu{F: Fel,} [0 <k < N(r)], and observe that
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F,. depends only on N(r) so that we may write E, =F,
for t— N(r) [0 < k < ¢t]. Now E,, E,, ..., E,; are disjoint

and U Ex=E soby Lemma 4.4 wecan findan 1 < s <t

such that w(Ey) < lelft. But [xeq+xp+o(®) — fil@) < 27
for allz e U E,. Thus

k# s, 1<k <t
u{ze E: [xpa+xpro(@) — filz)] > 274} < Ju|/t =0

as t—> o and E is weak Kronecker.

We now show that E satisfies the remaining condition
of our claim. First observe that sup inflsin (n:v—}-i | > 1/10
fOI' all E 0<v<1 z€J(F,,n,r,s,v

[Fed,,1<I<Nr) +2,Mr)+1<n<Mr+ 1), r>10].

We are now in a position to proceed with the argument pre-
figured in our discussion of trees. Suppose &, £, given.
Observe that if Fed, where K() <r< KEt+1)—1,
0 <! <t, then provided ¢ > K(t 4+ 2) we can find for any
0 <u<N(g a GeA, such that GcF. In particular if
F eJ. then for p large enough (in fact for p > P(K (t + 2)))
there exists a ¢ > r (in fact such a ¢ is given by
M@ +1<p<Mg+1)) and a GeJ, such that
|sin (pz + &,) |> 1/10 for ze G and F2G. Now suppose
m(l) < m(2) < --- given. Set X = {m(r): r > 1}. We can
finda p(1)eX, an r(1)eZ and an F; eJy, with

Isin (p(1)z + &xw)| > 1/10

for all zeF,. But by the result just given we can find a
p(2)e X with p(2) > p(1) (simply take a large enough
member of X), a ¢(2) > ¢(1) and an Fyedy with
|sin (p(2)z + Ex2) = 1/10 for all zeF,. Continuing in this
manner we obtain p(l) < p2) < p(3) < --- with p(r)e X,
q(1) < q(2) < ¢(3) < --- and F;2F,2F;2--- with F,.eJg,
and |sin (p(r)z + Exn)| = 1/10 for all zeF,[r > 1]. Since

F, 1s closed and diam F. -0 as r— oo we have by the

Second Intersection Theorem ([6] § 26) that mFrZ {z}
r=1
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for some zeE. We have however shown that
sin (m(r)z + &) == 0

and this completes the proof.

(Incidentally Theorem 3 and Lemma 4.3 (1) give an alternative
proof of Lemma 4.2 whilst both Theorem 3 and Lemma 4.2
have Wik’s result as a corollary.)

It is natural to ask whether that part of the result which
concerns N, sets can be improved to deal with more complex
situations involving absolute convergence. We now give a
simple modification of Theorem 3 which shows that we can
obtain similar results for cases in which Za, does not diverge
too slowly (and thus shows extremely clearly that the chief
difficulties involved in dealing with N sets, at least by the
methods of this paper, concern sums which diverge arbitrarly
slowly). :

We need the following simple fact:

LemMma 45. — Given t > 1, m > n>1 and 1 a closed
interval of T such that n diam I > 2x we can finda w > 1
and tw disjoint closed subintervals J,[1 < p <t 1 < g < w]

such that for any a,, @piyy - .., @ = 0 thereexistsa 1 < v < w
m m t

for which 3 a, |sin rz| > 1/10 X a, whenever ace' ’Jp,,.
r=n r=n p=1

Proof. — Since we can always take subintervals, it is suffi-

cient to prove the result for ¢=1. We note first that
|sin rz| > sin? rz for all r and z so that

m m

S a |sinrz| > Y a, sin?® ra.
By the uniform continuity of sin? ny, sin® (n + 1)y, ..., sin® my
(or directly from the theorem of Heine Borel) we can find a
w > 1 and disjoint points ¥y, ¥s, ..., y,<int I such that

given any xel there exists a 1 < ¢ < w such that
sup |sin? rz — sin® ry,| < 1/40. Also by the continuity of
nr<m

sin? ny, sin? (n 4+ 1)y, ..., sin?> my we can find disjoint inter-
vals J, with y,eint J,cJ,cint I such that yeJ, implies
sup [sin? ry, —sin® ry| < 1/40 [1 < ¢ < w]. But by the

nr<m
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definition of y,, ..., y, we see that if a,, @449, ..., @, = 0
m m
max Y a, sin® ry, > sup Y a, (sin® ry — 1/40)
1<9<w 7=n y€L r=n
m m
> sup ), a,sin® ry — 1/40 Y a,
y€L r=n r=n
whence

max inf Y, a, sin? rz > sup Y, a, sin2 ry — 1/20 Y, a,.

1<4<w z€ly 1=n vel ren r—n

Now
= diaim I é‘,. a, b/; sin? rt dt
— diaim 1,%,, a. [ 1/2(1 — cos 2rf) di
> di:m Ié a (1/2 diam 1T — 1/(2 r))

S a, (12 — 1)(2 n diam 1))

r=n

A\

> X a (1/2 — 1/(4w)).
Thus -
max inf Y a/sinrz] > (1/2—1/(47)—1/20) X a, > 1/10 3 a,
1<9<w :cEJq r=n r=n r=n

as required.

It is now clear what modifications to the proof of Theorem 3
are necessary to obtain the following result, whose statement
should be read carefully, as it is not as powerful or, I hope,
quite as weak as it may appear at first sight.

Lemma 4.6. — Given m(1) < m(2) < m(3) < --- we can

construct a perfect weak Kronecker set E such that if a. > 0
m(u+1) )
we have that lim sup ¥ @, > 0 implies that 3 a|sin pz
) u>w h=m(a)+1 p=1
diverges for some zeE.

Proof. — The proof proceeds in parallel to that of Theorem 3.
We use the same notation as was established in the first two
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paragraphs of the proof of that result and give the central
inductive step in the same form. The reader need only pay
attention to the divergences. We let X = {m(u): u > 1}.

By Lemma 3.3 we can find a P(r) > M(r) and for each
Fed, [0 <k < N(r), k # s] a(closed) interval H(F, r)cF
with diam H(F, r) < 1/2 diam F such that

sup |XP(r)(~’”) — fxo(@) < 2770,
z€H(F, r

There exists an M(r 4+ 1) € X such that M(r + 1) > P(r)
and M(r + 1) diam H(F, r) > 2= for all

Febl, [0 < k< N(),k #s].

Two cases now arise according as s < N(r) or s = N(r).
First suppose s < N(r). By Lemma 4.5 since M(r) diam F > 2=
we can find, for any Fel,, a w(F,r) and w(F, r)(N(r) 4+ 1)
disjoint intervals

JF, I, n, r, s)sFI<I<N(r)+1, 1<n<wlF r]
with the property that for any 1 <! < N(r) +1 and any

AME+15 OM(@)+25 -« +r AM(r+1) = >0 we have
M(r+1) M(r+1)
max inf Y alsinhz > 1/10 Y .
1<nL<uw(F, r) 2€J(F, I, 1, 1, §) p=M(r)+1 h=M(r)+1
We set Jo,q, = {H(F, 7): Feﬂo,k} [0 < k < N(r), k #s],
Qoprrs = {J(F, L,n, 7, s): 1 <1 ()—|—1,1\n<w(F,r),

F € u‘l{)m} and

By ={HF, r):FeB 3o {JF,Ln rs):1<n<wbF,r),
F € 'Rgrs}
1 <1< N(r)+ 1]
Now suppose s = N(r). By Lemma 4.5 since

M(r) diam F > 2=
we can find for any F e,y a w(F) and w(F, r)(N(r) 4 2)

disjoint intervals
JF,l,n,r,s)esF[1 <1 < Nr)+ 2,1 < n < wF,r)]

with the property that for any 1 <! < N(r) -2 and any
12
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uy+1s OM()+2) - - -5 Gue+ny = 0 we have
M(r+1) M(r+1)
max inf Y alsinhz > 1/10 Y  a.
1<na<w(F,r) 2€J(F, |, », 7 ) p=M(r)+1 h=M(r)+1
We set

S0 ={IJF, l,n r,s): 1 <1< N@r +2,
1 <n<wlF, r, Feh,}
Horsre = {HF, r): FeB,} [1 < k < Nr) + 1]
and
g‘))r+11 = {J(F7 l7 n, r, S): 1<n< W(F7 r)’ Feﬂom}
1 <1< N(r)+ 2]

We now restart the induction.
As before E is weak Kronecker. Suppose now

Ay, Aoy gy - . .y Oy

given with @, > 0. If FeJ, then for u large enough there
exists a ¢ and a GeJ, such that

M(u+1) . M(u+1)
Y alsinhz >1/10 ¥ a,
P=M(u)+1 h=M(u)+1

for all 2e G and F2G. Now suppose

m(u+1)
limsup Y a, =3 >0.
a> | p=m@-+1
Then
] M(u+1) M(u+1)
limsup Y a, =8 LetY=3u: Y a > 32
a>® h=M(u)+1 h=M(u)+1
so that Y 1is infinite. Then as in the proof of Theorem 3 we
can obtain  u(l) < u(2) < u(3) < .-+  with u(r)eY,
q(1) < q(2) < ¢(3) < --- and F;2F,2F;2 ... with F.eJdy,

M(u(r)+1) M(u(r)+1)

and inf Y asin hz| > 1/10 ¥  a, > 8/20. Let

z€Fr p=M(u(r))+1 h=M(u(r)+1
{z} =| IF,. Then Y, a|sin hz| diverges as was to be shown.
r=1 h=1
Arbault (Chapter 1, § 1 [1]) has shown that there exist N
sets which are not R sets and so not N, sets. (In fact he
simply proves the existence of R sets which are not Ny,
but, as Bary points out, the stronger result easily follows on
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examination of his construction (Chapter xm, § 7 [2])). His
ingenious proof effectively depends on showing that a perfect

subset E of the points of convergence of Y 1/n |sin 2"nz|
exists such that for any n(1) < n(2) < ... =

lim sup |sin n(k)y| > O for some y € E.
k> oo

Since E is automatically an R set this gives the result.

We conclude this section by giving an alternative proof
obtained by modifying the construction in Theorem 3. The set
E we obtain is independent (since weak Kronecker) and this,
as we said in Section 2, constitutes the novelty of the result.
The nature of Arbault’s proof does not seem to yield such an
additional condition very easily. Lemma 4.7 (it) forms an
expected complement to Lemma 4.6. Before commencing the
proof, we briefly state the idea behind it. This is to remark

that ) 1/n a, may converge if a, is usually small but at
n=1

increasingly rare intervals takes values near 1 (e.g. to take an

extreme example: if a,=1 when ne{m*; meZ}, a,=0

otherwise we have X 1/n a,= 3 n* < oo). We obtain
this kind of situation in which for any particular zeE,
sin m(r)z 1s large very infrequently by allowing the number
of blocks Jo, ..., o, which we have been considering to
increase rapidly.

Lemma 4.7: (i) There exists a perfect weak Kronecker set E
which ts an N set and yet such that for any &. and
any m(r) - wecan finda ze E with sin (m(r)z + £,,) - 0.
In particular E s not an R set (and so not an N, set).

(1t) Given m(l) < m(2) < m(3) < --- we can construct
a perfect weak Kronecker set E such that, if a, > 0,

m(u+1)

limsup Y a, >0

u> o h=m(u)+1
o0

implies Y, a, |sin hz| divergent for some z< E, but E isan
R set. "=

Proof. — We adopt the notation established in the
first paragraph of the proof of Theorem 3 but with
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K+ 1) = K(¢) + t, and attempt, as far as possible, the
mimic the remainder of that proof. As usual the reader should
simply note the divergences.

Suppose K(¢) < r < K(t+ 1) — 1. We write
s=r—K(@{) +1,L(r,q) = (t+ ¢* and N(r) =

At the r" step we have J. = ,udUudopu - Udoue
where the o, b, ..., b,y are disjoint and non empty
and Fel, implies M(r) diam F > 2r. We also have
Br1s Bray -« .y Brgry disjoint non empty with

g‘%rl v %rz ue--u gsrl(r,l) = J‘é‘ro v "Rgrl u-.--u Jlgr,s—l'

By Lemma 3.3 applied twice we can find a P(r) > Q(r) > M(r)
and for each Fe [0 < k < L(r,0), k # s] a closed interval
H(F, r)¢F with diam H(F, r) < 1/2 diam F such that
sup |sin Q(r)z| < sup |xom(®) — 1 < 1/r and
z€H(F, r) z€H(F, )
sup |xepy(2) — frxo(2) < 2770,
xeH(F, r)

There exists an M(r + 1) > P(r) such that
M(r + 1) diam H(F, r) > 2=

for al Fed,[0 < k < N(r), k # s]. Two cases now arise
according as s < N(r) or s = N(r). First suppose s < N(r).
As in Theorem 3 we can find 2 L(r, 1)(M(r+ 1) — M(r)) dis-
joint (closed) intervals J(F, I, n, r, s, ¢)cF such that
|sin nz| > 9/10 for all =zeJ(F, [, n, r, s, 0) and
[sin nz| < 1/10 for all zeJ(F, [, n, r, s, 1)

[Fed,,1<l<L(r,1), Mr)+1<n< Mr+1),¢=0,1].
We set Joq = {H(F, r): &,} [0 <k < L(r, 0), k # s]

Jor 415 = {J(Fy l, n,r,s, V) : F e oy, 1<lx< L(ry 1)7
Mr)y+m<n<Mr+1),0<v¢<1}

and

Brpy = {H(F,r): Fe®,} v {J(F, |, n,r,s, v) : Fe,}lo,s,

M)+1<n<Mrt+1), 0< o<1}
<1< L 1)

Now suppose s = N(r). As before, we can find

b
2N(r, 2)(M(r 4- 1) — M(r))
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disjoint intervals J(F, I, n,r, s, ¢)c F such that
|sin nz| > 9/10

for all zeJ(F, [, n, r, s, 0) and |sin nz| < 1/10 for all
zeJF, I, n, r, s, 1)

[Fed,1<l<Lr2),1+Mr <n<Mr+1),e=01]

We now set

ors10 = {J(F: l,n, 1, s, V): Fed, 1 <1l< L(r’ 2),
Mr)+1<n<Mr+1), 0<v <1},
o = {H(F, r): Fed,} [1 k < L(r, 1)] an

<
By ={JF, Ln,rys,0): Fed
1+ M(r) <

1 <1< L(r, 2)]. We note that L(r + 1, q) =
and restart the induction.

As before we see that E is weak Kronecker and that
for any &, and any m(r) > o there exists a ze E with

sin (m(r)z + £,y) == 0. We now show that
S 4/nlsin Q(n)a]

converges for all ze E. Since Q(n) — o this will show that
E isan N set and complete the proof. Suppose y e E. Then,
for each r,yeF(y, r) e fo, forsome s(y) and some F(y,r).
We observe that s(y) is a function of ¢ = N(r) only and so
we may write s(y) = u(t). Now 1/r |sin ry| < 1/r* for
r # u(t) and 1/r|sin ry| <1lfr< (t—1)"* for r=u(l) [t = 3].

Since 2 1/r? and 2 (¢t — 1)~ converge absolutely, both the

r=1

convergence of 2 1/n |sin Q(r)z| and the lemma follow.
n=1

Proof of (11). — This is obtained by modifying the proof
of Lemma 4.7 in the same way as we have just modified the
proof of Theorem 3 to get a proof of (i). We leave this as a,
very mildly, instructive exercise. It need hardly be remarked
that we can construct an E satisfying the conditions of ()
and (i) (and therefore of Lemma 4.7 and Theorem 3) simul-
taneously. This too is left as an exercise.
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5. Kronecker and Dirichlet Sets.

The main result of this section is Theorem 4 that there
exists a countable independent Dirichlet set which is not
Kronecker. As usual we give a long heuristic preamble which
may be skipped or not as the reader feels more useful.

We revert to the methods of the first part of Section 3
selecting a y independent (i.e. ye¢2xQ) and choosing
distinct points o, «,, ag, ... successively such that «, — v
as r— o and {y, @, ..., «.} 1s independent. It should be
noted that (by choice rather than absolute necessity) y is
not treated on par with the «, in this construction, but is
given a less prominent role. We set E = {y, «;, 3, ...} and
have E closed and independent. If we can ensure that for
every 1 < w we can find an r > 1 such that yx,(«,) 1s far
from — 1 we shall have obtained E non Kronecker (since
— 1 cannot be approximated by characters on E). Suppose
we have so far succeeded that we have found oy, a5, ..., a,
independent such that for every 1 < w < N we can find
an h >r > 1 for which y,(«,) is far from — 1. By Kro-
necker’s theorem we can now find a P > 4N, say, such that
xe(y) 1is close to 1 and xp(«,) is very close indeed to 1 for
1 < r < h. Let us closely examine what this means. It means
that, for 1 < r < h, y.(x,) is « practically periodic» in w
with « period » P, 1.e. that the values of y,(«,), Y%psp(2)),
Xo+2p(%), .., Xosp(x,) are very close for t quite large (but
not too large). In particular we have that for every |w| < N
there existsan 1 < r < h such that y,(«,) and thus x,.m»(«.)

1s far from — 1 for ¢ not too large (since
(@) + 1] = Ix-u(@)|1 + x-u(@)] = lx-ula) + 1],
Xw(®,) far from — 1 implies yx_,(«,) far from — 1). However,

we have no control over the constructed points in the « gaps »
N<w<P—-—NP+N<w<2P— N,

and so on.

Clearly we must add more points to ensure that
sup |%.(2) + 1| 1s large in these gaps. But here we recall that
zE



SOME RESULTS ON KRONECKER, DIRICHLET AND HELSON SETS 2b)

we wish E to be Dirichlet. It would therefore be appropriate,
in view of our definition of P, to have sup |xp(z) — 1| small.
z€E

Ignoring for the moment the independence condition this
suggests adding points k, of the form 2¢x/P for which
certainly yp(k,) = 1. This is however not the only compli-
cation, since we wish E to have a single limit point y. We
therefore confine our scrutiny to those k, near y. If among
these, given any N < w < P — N, we can find a k, such
that y,(k,) is far from — 1 (and so since yx,(k,) is periodic

in w with period P we have y,.p(k,), Xuwr2r(Ky)s - - oy Xurm(ky)
far from — 1) then perturbing the k, slightly to obtain
Hpi1y - -5 % WIth 7y, o, @5, ..., o, independent, we may

hope to have for some large N’ that sup |y,(«,) 4+ 1] islarge
1<r<h’

forall 1 <r < N yet sup |xe(x,) — 1] 1s small. We then
restart the induction. <<

On the face of it this does not look a very promising program,
since even if the %, can be chosen to satisfy our conditions,
1t 1s by no means clear that the induction will not break down.
Yet, surprisingly, this naive approach works. As we remarked
in Section 2 this proof stands out from the others in this paper
in that once their i1dea is grasped it is obvious that they work,
whereas here the idea does not seem sufliciently powerful
and only the full proof can provide the necessary verification.

First we have a, perhaps overcomplicated, proof of the
following easy result:

Lemma 5.1. — Suppose a, b, N, PeZ and

(b —a)N > P > 4N > 0.
Let

a
a

v be a constant with |t| =1 and set k, = 2qr[P for
q < b Then for any N <r <P—N we can find a
p < b such that |y.(k,) — | > 1/2.

Proof. - |Xr(km) - X.r(kn)l S 'Xr(km) - Ti + |Xr(kn) —— Tl S0
that sup lx-(kg) — | = 1/2 JSUP |%r(km) — xo(ka)]. Now
IXr(km) - Xr(kn)l = er(km - kn) - 1‘ = |exp(27tiur/P) N 1[
where u = m — n. We therefore consider exp(2niur/P) as
u increases from 0 to b — a. Either n/2 < 2nr/P < 3x/2 in
which case |exp(2riu/P) — 1] > 1 for u= 1 or the unit

NI\
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vector representing exp(2miu/P) in the complex plane
rotates through an angle less than (in modulus) =/2 as u
increases by 1. But (b — a)N > P so the unit vector repre-
senting exp(2miu/P) must rotate through over 2z (in
modulus) as u increases from 0 to b — a, and in the second
case 1t is clear that the unit vector must lie in the left hand
half {ze G: Rez < 0} of the complex plane for some

O<u<b—a 1ie |exp (2miu/P) —1 > 1 for some
0O<sn<b—oa
Thus

sup la-(k,)) — =] 2 1/2 sup |exp (2miur/P) — 1] > 1/2

agq<sh 0ugb—~—a
as required.

Using this we now prove

Traeorem 4. — There exists a countable independent Dirichlet
set E which is not Kronecker.

Proof. — We construct such a set E. Select y independent.
We give the central inductive step in the construction of E.
Suppose we have at the n™ stage v, a5, a5, ..., ty, inde-
pendent, N(n) = 2**"P(n), P(n) > 10 such that

sup |x(«,) +1]=1/8 (1 427 for all 1 < r < N(n).

1gw<h(n)
Now by Kronecker’s theorem there exists a
P(n + 1) > 4N(n)
such that |ypp+n(x) — 1] < 27@*12 for all 1 < w < h(n)
and  |xeginy(y) — 1] < 270, Trivially

,XtP(n+1)(°‘w) - 1] Z IXSP(HH)( ) - X(s—l)P(n+1)(°‘W)I

iXP<n+1)( w) — 1]
< 27 for 1 < w < h(n), 1 <t < 28,
Set N(n + 1) = 2*P(n

1). Since

+
o Pt ONR)
9—(n-+4) Pln) > P(n+1)
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we can find a(n + 1), b(n + 1)eZ such that

[b(n + 1) — a(n 4+ 1)]N(n) > P(n + 1)
bin+1) —a(n+1) 270
)

(+) P(n + 1 S P(n)
and
2a(n + 1) 2b(n + 1)=
YE[ Pn+ 1) P(n4 1) ]
_2¢qm

Set ka1 = for a(n+ 1) < ¢ < b(n+ 1). Then

P(n + 1)
trivially  ypgiay(bgnen) = 1. Also af

(t—1)P(n 4+ 1) + N(n) < r < tP(n + 1) — N(n)
then by Lemma 5.1
sup lxr(kq,n+1) + 1l = 1/2 > 1/4(1 + 2—(n+1))’

a(n+1) <g<b(n+1)

whilst if 0 < ¢ < N(n), 0 <t < 2*® then

sup IXtP(n+1)+v(aw) + 1[
1<w<h(n)
= Ssup IXtP(n+1)( )+ X—v(aw)l

1<w<h(n)

= sup HX—»( w) l - IXIP(n+1)(°‘w> + 1"
1<w<h(n)

= sup |1+ x,(e)| — [Xeeny(2w) + 1
1<w<h(

and similarly

sup ‘Xll’(n+1)+v( w) + 1 > 1/8(1 + 2—(n+1)).

1<w<h(n)
Now writing

Y(n + 1) = {tP(n + 1) + N(n) <
< (t+1)Pn+1) — N(): 0<t<2¢—1}

we know that the characters y, with re Y(n 4 1) are conti-
nuous so by Lemma 1.3 we can find

. _[2a(n 4 = 2b(n + )]
h(n)+r+1 P( _+_ 1) + )

P(n
« near t0  kupyirar » [0 <7 < b(n+1)—
that writing A(n + 1) = h(n) + 1 4+ b(n + 1) — a(n + 1) we




258 T. W. KORNER

have v, a;, ..., @,y Independent,

SUp | Xe@men(®w) — 1] < 2700
h(m)<w <p(r+1)

and sup I (e,) + 1 > 1/8(1 + 2-¢+D).  This toge-
h(n) +-1<w<h(n+1) .
ther with what we already know about ay, a,, ..., ay, gives

sup [xe(o) + 1] = 1/8 (1 4 27¢+D)  for

1<w <h(n+1)
1<r<Nn4+1), and |yemenla.) — 1] < 270

<

for 1 <w < h(n+1). M < 2
or 1 <w < h(n+1). Moreover |y — 2| < m
|XP@.+1)(Y) - 1| + IXP(n+1)<w) — XP(n+1)(Y)l

<
= |xeay(v) — 1] +lexp (i(y — 2)P(n + 1)) — 1
< 9—(n+2) + 2—@+2) — Q—(n+1)

27 1mplies

IXP(rH—l)(x) - 11

and looking at (*) we see that all the points we construct
in the later stages will indeed satisfy this condition. We now
recommence the induction.

Taking E = {y}u{«,: w > 1} we have at once E
closed. Also E is independent, since if v,

) . ! %jay - ey Xjom)
are given, then j(1), j(2), ..., j(m) < h(n) for some n, and
SO Y, %ja)y %@y ---; %jm are independent. By construction

P(n) - o and sup |xpw(®) —1 <2 >0 as n—> © so
c€RE
E is Dirichlet. But sup |x.(z) + 1] = 1/8 for all r > 0
z€E

so E 1s not Kronecker.
Varopoulos [18] has shown that the independent union
of a Kronecker set and a single point is still Kronecker. Thus

E(s) = {y} v {«.: r > s} also satisfies the conditions of our
theorem. However by inspection inf sup |x(x)+ 1] -0 as
r2s x€E(s

s = . Moreover a little thought shows that the convergence
can be very rapid. (On the other hand, writing

F(s) ={y}u{a,:r#sr>1}
we have inf sup |x-(x) + 1| - inf sup |[x.(z) + 1| and indeed
r>1 z€E

r>1 ze€F(s)
the removal of points constructed in the later stages need
have very little effect.)
The following easy Lemma also shows how closely the beha-
viour of y, on a Dirichlet set E for large n is bound up
with its behaviour for small n.
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Lemma 5.2. — If E is weak Dirichlet and p. e M(E) then
lim sup |g(n)| =sup |f(n)]. In particular, if w # O then

|n|> o

Proof. — Suppose ¢ > 0, m, peZ given. Then by defi-
nition we can find a ¢ > m — p such that

lwl{z: |x (x) — 1] > ¢/20} < ef4.

Setting n=g¢ -+ p, we have n > m and

la(— n)l_\fxndu}
o)~ )

> 16(p) W= [ 1ta— x| dit

=[a() — [ Ixg—1 du
> |0(p)| — (27 /20 + 2 </4)
> |@(p)| — e

Thus lim sup |§(n)] > sup|p(p)] and similarly
lim sup |@(n)| > sup |a(p)].

Combining the ideas of Theorems 2 and 4 we have Theorem 5.
This is included chiefly for the sake of completeness, since the
main result, that there exist perfect independent Dirichlet
non Kronecker sets, can be obtained directly from Theorem 4
using Lemma 6.1 below, whilst in Theorem 9 we obtain a much
stronger result.

Tueorem 5. — There exists a perfect Dirichlet non Kronecker
set E such that every proper closed subset of E s Kronecker.

Proof. — We obtain E as the closure of aset F constructed
by an induction of which the following is the n™ step. We
have A(n), B(n) 2 finite sets of points (A(n) consists of
points constructed in this cycle, B(n) of points constructed
earlier) such that C(n) = A(n)uB(n) 1s independent, and
b,eB(n) (b, 1s a marker point just as F; was a marker set
in Theorem 2). We also have N(n) = 2"+ P(n), P(n) > 10
(playing the roles assigned to them in Theorem 4) and M(n)
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(a counter, telling us that we are on the M(n)" cycle of the

induction, i.e. playing the role of N(r) in Theorem 2), such

that sup |x.(z) + 1 = 1/8(1 + 2™) for all 1 < r < N(n).
zeG(n)

Now there exists a Q(r + 1) > 2N(r) such that
sup |fum(®) — Xowny(®)| < 27D
z€C(n)

and a P(n+4+ 1) > 2Q(n + 1) such that
[Xpiny(®) — 1| < 2712 for all z e C(n).

As 1n Theorem 4 we can find a finite set of points

9—(n+4)

D(n + 1)< N<bn, T—" 2n>
such that setting C(n + 1) = D(n + 1) uA(r)uB(n) we
have C(n + 1) independent,

sup |1,(2) + 1 > 1/8 (1 + 2-e)

TEC(n-+1)
for

1 <r< Nn+1) =27P(n + 1)

and |Xp("+1)( z) — 1 <27 for all zeC(n-+1). Two
cases NOwW arise (accordlng as we have or have not completed
a cycle, i.e. a complete rotation of the marker point). Let the
2 points in B(n)u {0} nearest to b, in the direction 6
increasing from 0 to 2= be ¢, d, in that order. If ¢, # 0
set b,y = ¢ B(n+ 1) =B(n), A(n +1) =An)uD(n + 1)
and M(n + 1) =M(n). If ¢,=0 set

byo =dy, Bn+1)=Cn+1),Aln+1) =g
and M(n + 1) = M(n) + 1. We now restart the induction.
Let F = U C(n) and set E = F. By the arguments of

Theorem 4 SUP IXP(n)( z) — 1] = sup lxem(®) — 1] <27+ 0.
z€

Clearly E 1s perfect Suppose K 1is a proper closed subset
of E. To show K Kronecker we argue much as in Theorem 2
and note that there existsa yeE/K anda & > 0 suchthat
N(y, 3) n K= @, and that there exists a g, > 20 such that
for all ¢>¢q, we can find an n with ¢= M(n) and
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9—(n+4) )
N <b,,, () 2n>CN(y, 3). The remainder of the argument

(which, however, the reader may be prepared to take on trust)

18 slightly obscured by notational difficulties. Recall the defi-

nitions of g, f; glven at the end of Section 2. The result

will be proved if given any g and ¢ > 0 we can find an

I such that sup|g(z) — x(z)] < . To do this we first note
zE€F

that g is continuous and so there exists a = > 0 such
that sup |&(z) — &(y)] < €/3. By the definition of
|

z, YET, |2—Y|<N
fis fe> fas ... we can find arbitrarily large ¢ with f,=g. In
particular we can find n, ¢ with a=M(n), f,=g,

N<bn 2;; ) 27t> N(y, 8) and 27" < %, 27® < ¢/3. Then

, ~(n+4)
setting & = 27D 2r so 3 < 7, we have

P(n + 1)

ngP [Xom+1)(®) — fuew(@)|

< sup  [Xom+1)(2) — fuw(2)l
zec(n)\lb }

-+ sup mf Txemn(z) — Xawn(®)l

YEE :z€((

+ sup zlel(l;f,.)lf"’(")( z) — xmw(Y)l
< 270D + sup inf [exp (Q(n + 1)(z — y)) — 1]

yeE zeCn)

+ sygg zénf Ifq( ) fq(y)l
Q4+ 1)
exp <2—( +4) ﬁ(—n_—{———l) 27‘~'>— 1 ‘
+ sup |fo(z) — fo()

2, YET|2—Y|<d

<ef3+¢3+¢/3=c

This completes the proof.

We obtain the following corollaries analogous to those of
Theorem 2, again included mainly for completeness.

< 2+ |

CororrarY 5.1. — There exist K, L disjoint perfect Kro-

necker sets such that K u L is independent Dirichlet but not
Kronecker.

CororrLary D5.2. — There exists a perfect independent weak
Kronecker set E which s Dirichlet but not Kronecker.
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In passing it should be noted that Theorem 2 renders any
attempt to obtain an independent Dirichlet non Kronecker
set directly by taking a Dirichlet subset of an independent
non Kronecker set considerably more complicated than it
appears at first sight.

Because of the interest attached to the classification of
subgroups of S (and not because of any intrinsic interest)
we remark that a trivial modification of Theorem 4 gives

Lemma 5.3. — If feS and fe&{y,: neZ} then there

exists a countable independent Dirichlet set E for which
inf sup |x,(z) — {(@)] # 0.
n€zZ z€E

Proof. — Choose vy independent. By the continuity of f
(and the compactness of T) we can find a o > 0 such that
xze N(y, 1) implies |f(z) — f(y)] < 1/4. Then with the nota-
tion of Lemma 5.1 if [k, ky] < N(z, n) we have

sup lxo (k) — f(ky)| = 1/4. Now {x,:neZ}

is a closed subset of S so that inf sup [x.,(z) — f(z) > 8
n€Z €T
for some 1/16 > & > 0. Using Lemma 1.3 (i) we can thus

27 — 98
choose P(1) such that p() < (1) = 2%P(1), and find

®y, Ogy ..., Ouay WIth v, o, ..., @,q) 1ndependent and

sup |x(2,) + 1] = 1/8 8 (1 4+ 271). An easy rewriting of the
1<w h(D)
inductive argument of Theorem 4 (e.g. we might take P(n + 1)

such that sup |y.(«,) + 1 > 1/8 3 (14 27)) now gives
the result. '<’*"®

Méla has raised in conversation the question of how far
the results of Theorem 1 and Theorem 4 carry over from T
to R. The rest of this section will be devoted to this topic.
We prove no deep results and will not use what we do prove
later so that the reader may, if he wishes, simply skip this
part of the paper.

First we establish some appropriate definitions. A closed
set EcR 1s called Dirichlet if (setting x,(t) = expirt for
teR,xeR) we can find A(r) - oo such that

sup [ (@) — 1| >0 as r—> w.
z€E
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It is more difficult to find a notion of a Kronecker set for R

parallel to that for T and 2 alternative definitions have been

proposed. We call a discrete set EcR (i.e. a set E for which
inf |z —y| > 0) discrete Kronecker if given ane > 0

&, YEE,Z#Y

and any f: E—>C with |f(E)] =1 we can find a AeR

with sup |xa(z) — f(z)] < . Varopoulos [19] has proposed

z€EE

that a closed set EcR be called uniform Kronecker if given
an ¢ >0 and any uniformly continuous feC(R) with
f0O)=1 and |f(E)) =1 we can find a 2eR with
sup |xa(z) — f(x)] < . We shall deal with discrete Kronecker
z€E

sets. But if the reader bears in mind the obvious fact that
for E discrete such that 0« E, E 1is discrete Kronecker
if and only if E 1is uniform Kronecker, he will be able to
extract similar results for unbounded uniform Kronecker sets
as we obtain for discrete Kronecker sets.

It 1s at once obvious (using similar proofs to those of Section
1) that discrete Kronecker sets (and uniform Kronecker sets)
are independent and Dirichlet. We show that there exist
discrete independent Dirichlet sets which are not Kronecker
and that the union of 2 discrete Kronecker sets may be inde-
pendent and discrete yet not even Dirichlet. Our proofs depend
essentially on the following 2 simple facts (the first is a very
simple and well known version of a theorem of Hartman and

Ryll-Nardzewsk: [5]).

Lemma b5.4: (i) — Suppose E={z;: 1> 1}, with
Ziy > 2; > 0 [t > 1] say, ts an independent discrete set with
Zip[x; > . Then E us discrete Kronecker.

(1t) Suppose E = {x;: v > 1} with xy > 2, > 0 [t > 1]

say. Then if E s discrete Kronecker Y, (z,, — x)™ con-

verges. =t
Proof (1). — Suppose 0 <y, <y, < --- <y, and
Y1, Y2, ---» Y, Independent. Suppose yify; = A > 1

for ¢t > n. Set F={y;: > 1} and suppose g: F > C

such that |g(F)|= 1. By Kronecker’s theorem there exists

a A >0 such that sup [xa(y;) —f(y:)] < e. Now since
1<i<n
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expit has period 2n thereexists a 3(1) with |3(1)| < y,u/n
such that x3.50)(Ys+1) = f(Yn+1). Similarly there exist §(2),
3(3), ..., 8(r), ... with [3(r)| € Yu4r/r and

X7\+8(1)+5(2)+-~-+5(r)<yn+r> = f(yn+r>'

Since Yy, = ATy, |3(r)] < y;'A™ and A+ Y 3(r) con-
verges to 7 say. Now 1

|X11(yn+r) - f(yn+r)| = |X~q(yn+r) - X)\+8(1)+---+8(r)<yn+r)|
exp i(yn+r E 8(8)) - 1l

s=r+1

Yn+r i 8(‘9)

S=r+1

Syl 3(s)

s=r+1
0

< Y AT =A1 — A1)

u=1

<

N

Similarly, if 1 <@ < n |, (y) — f(y) < ¢+ A1 — A7)
Since A7'[(1 — A7) >0 as A — o this proves the result.
(vt) Write E, = {x;: n > 1 > 1}. We define inductively
functions f,: E,—>C with |f,(E,)] =1 such that
fal@,) = fu(z.) forall r < m < n. Eventually we shall define
E—-C with |[f(E) =1 by f(z)=Ff(z). Setting

AMn) = My, Tgy - oy Ty o)
=inf (XA > 0: |(z,) — fulz,)] < 1/100 for 1 < r < n}

we see that 0 < A(1) < A(2) < ... < A(n).

The central inductive step runs as follows. Suppose f, and
so A(n) defined. Set f,(x,) = fi(2.) for 1 <r < n and
fos1(@ar1) = — Xaw(@r+1). Then if 2 > 0 and

(@) — fun(@)l < 1100 for 1 <r<n+1
wehave x > A(n) and |1(@) + 1@l < 1/100, whilst

IX)\(xn) - Xl(n)(xn)l < bﬂ(xn) - fn(xn)l
'Jf_ IX)\(n)(xn) - fn(xn)l < 2/100

Thus [x-aw(@ar1) + 1] < 1/100 whilst
IX;\_)\(,‘)(.Q:,,) —_ 1] < 2/100,
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so adding, |xa-xw(Tar1) + X0-2w(@a)| < 3/100 whence

lxa-x@(@nra — @) + 1] < 3/100.
Thus

I)‘ - )‘(n)”xtwl - wnl > 7:/2
and so A > A(n) + ©/(2(x,4y — z,)). Hence
Arn+1) = An) + 72z — ).

I Y (2,41 — @)t diverges, we have A(n) > o as
m=1

n — . There then exists no A > 0 such that
sup [xa(z.) — f(ar)] < 1/100

and so (either by repeating the argument this time for A < 1
or by using a result of the type established in Lemma 1.2 (it1))
E cannot be discrete Kronecker.

We also need

Lemma 5.5. — There exists an independent Dirichlet set

E={z:r>1} with |z, — 2rx| < 1/10r.

Proof. — We construct z;, @, ..., Z,, ... inductively. At
the n™ step we have =, 2,, ..., 2, independent, an N(n)eZ
and a 0 < 3(n) <1/(10(n + 1)). By Lemma 1.3 we can find
Zor1 € N2(n + 1)=, 3(n)) with xy, 2,, ..., Z,+; independent.
By Kronecker’s theorem there exists an N(n + 1) > N(n)
such that |ynu.en(®,) — 1] < 27 for 1 < r < n. By the conti-
nuity of xnay, Xn@) - - > Xx@+1y and the fact that

Y2l + ) = 1
there exists a 0 < 3(n + 1) < 1/(10(n + 2)) such that
Ixsey(®) — 4] < 277
forall zeN2(n+ 2)r, 3(n + 1)) and 1 < r<n+1. We

now restart the induction.
Setting E = {z.: r> 1} we have by construction
|z, — 2rr| < 1/(10r) and sup |xsw(@) — 1] < 2™  Since
z€E

N(n) - oo this shows E Dirichlet. Suppose 2., ..., @< E.
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Then setting max r(k) = n we have that
1<kLs

{mr(l)) Tr2)y + -y xr(:)} 1S {33'1, Toy « oy :E,,}

and so 1s independent. Thus E is independent.

Dirichlet sets need not have the simple form given here.
A little thought shows that the construction above can be
modified to give e.g. an unbounded independent perfect set
which is Dirichlet. Varopoulos [19] has also found uniform
Kronecker and thus Dirichlet sets of a similarly complex
type. However all we need here 1s the simple construction of
Lemma 5.5 and the results of Lemma 5.4 to obtain

Lemma 5.6. — (¢) There exists an independent discrete Diri-
chlet set which is not discrete Kronecker.

(1t) There exist 2 disjoint discrete Kronecker sets whose union
is discrete independent and Dirichlet but not a discrete Kro-
necker set.

Proof. — Take y, = Zpnpy, 2 = Tpeyer Where @z, 25, 25, ...
and E are as constructed in Lemma 5.5 and m(r) = 27"
Set K= {y.: r>1}, L= {z: 1} and M = KUL
Now y; <z < yy < 23 < --- and Z(y,——z)*l—Zr

r=1

diverges, so, by Lemma 5.4 (i1), M 1s not Kronecker. But
McE so M 1is discrete, independent and Dirichlet. This
proves (t). On the other hand ¥y, /[y, > ©, z.1/7. > © so,
by Lemma 5.4 (i) K and L are discrete Kronecker. This
proves (it).

It is worth noting though we did not explicitly demand
it in the statement of the Lemma that in these counter exam-
ples |z —y,| > oo.

We have also promised to give an example of a union which
is not even Dirichlet. This is obtained by a simple modification
of the proof of Lemma 5.4 (it) and the reader may well wish
to skip this.

Lemma 5.7. — There exist 2 disjoint Kronecker sets whose
union is discrete and independent but not Durichlet.

Proof. — We construct inductively a;, yi, Za, ¥,
Suppose %, Y1, %2y Ya, ---» Zn Y, have been constructed
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independent with 1 <2z <y, <2, < -+ <2z, <y, We
write

A(n) =1nf {» > 100: |x(z) — 1] < 1/100,
oy, — 1] < 1/100, 1 < r < n}.

By Lemma 1.3 we can find an z,, > (n+ 1)y, with
Zyy Y15 -« oy Tny Yuy Tora 1ndependent. Since x*(t) has period
2 [a*(n) < =[50 (as a function of ¢) we can find again by
Lemma 1.3 using the continuity of % a ¥y, Wwith

Tprr + 17— 110 < Y1 < @iy + 1+ 1/10,
lxxw(¥nsa) + 1] < 1/100

and 2y, Y1, ---5 Zny Yny Tos1, Yura 1ndependent. We write

A(n) = inf (X > 100 : |xx(z,) — 1] < 1/100,
iy, — 1] < 1/100,1 < r < n+1,1 < s<n}.

Now suppose A > 100 and
la(z) — 4 < 1/100, |xo(y,) — 1] < 1/100 for 1 < r < n+ 1.
Then as in Lemma 5.4 (i) we see that A > A(n) > A*(n) and

|X).—)\(n)(xu+1 - yn+1) —’_ 1I
= | X2 @as1) + X2 (Ynr1)l
< |ta@Yarr) + 4+ oow(@an) — 4
= IX)\(yn+1) + X)\(n)(yn+1>| + |X)\(xn+1) - X)\(n)(xn+1)l
< 0 (¥ne1) — U+ Dow(Yasa) + 1)
+ ho@as1) — U + 0@ @asr) — 1] < 4/100.

Thus |A — A()||Yns1 — Zaral = =/2 and so
A 3> M) + 7)(Qgr — B) > 2(0) + /20,

whence 2*(n + 1) > 3*(n) + =[2n.

Setting K= {z,:r > 1},)L={y,:r > 1} and M= KuL
we have, by the usual argument, M discrete and independent.
Since A*(n) - o there does not exist a A > 100 for which
sup |x(z) — 1] < 1/100 and so M is not Dirichlet. On the
rEM

other hand =z,.,/z, > ©, ¥,41/y. = © so that K and L
are discrete Kronecker by Lemma 5.4 (i). This completes
the proof.
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Our answers for R are thus considerably simpler than
those for T. This may be because in the case of R we have
not asked the right questions.

6. Independence and Measure.

In this section we lay the foundations for Section 7. In the
first part we prove a series of simple lemmas. Some of these,
like e.g. Lemma 6.1, clear up points from earlier sections,
some are included, like the necessity part of Lemma 6.3, for
interest and to convey the drift of our argument, but some
are basic to the understanding of what follows. Assuming
the reader already knows Lemma 6.2 and the sufficiency part
of Lemma 6.3, they are Lemma 6.4, Lemma 6.11 (i), and
Lemma 6.11 (it). Though easy, they must be fully understood
in order to follow the arguments of Section 7. In the second
part we use them to prove Theorem 6. In a certain sense this
provides a « dress rehearsal » for Section 7.

The first lemma provides an alternative method for exten-

ding some of our results on countable closed sets to cover
perfect sets.

Lemma 6.1. — Suppose E is a countable closed set

(1) We can find an Ny (and so weak Dirichlet) perfect set
P2E;

(vt) If E is independent we can find a weak Kronecker (and
so independent) N, perfect set P2E;

(1i2) If E s a Kronecker set we can find a perfect Kronecker

set P2E;

(tv) If E s a Durichlet set we can find a perfect Dirichlet
set P2E;

(¢) If E s an independent Dirichlet set we can find a weak
Kronecker (and so independent) perfect Dirichlet set P2E.

Proof. — It should be remarked that the proofs for E of a
simple form (with 1 or 2 limit points, say) are considerably
shorter. Since this is all we require in the discussion that
follows, the reader may wish to prove these results for himself
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in the simple form. The proofs of (i) and (iz) and of (iit) and
(1) are similar and the reader having read one may simply
note the dissimilarities in the proof of the other.

Take E = {x;, s, 73, ...} where the =z; are distinct.
We proceed in each case by constructing inductively %,
@, ... finite collections of disjoint closed sets with

max diam F -0 as n—-> . Weset P,= v {F: Fe%}
Fef,

and ensure that &£, satisfies the conditions of Lemma 1.4 (i)
whilst P,2E [n > 1]. Setting P = lm P, we have

P perfect and P2E. We give the central inductive step
and then examine P so constructed. Note that since
P,2E, €, 1s the union of 2 disjoint sets K,, 4, such that
setting K, =u{F: FeX,}, L, =uv{F: Fe4} we have
K,nE=E (so L,nE = @) and such that FeX, implies
FnE # @. (i) and (ii). The construction is similar for (i)
and (it). In (1) we set h, =1, in (it) h, = f,. Suppose we
have M(n) and £, = %,uv¥,. By Lemma 3.3 (it) (in (i) we
use the weak form with f= 1, in (ii) the strong form with f
not constant) we can find an R(n 4+ 1) > M(n) such that
given ¢ > R(n+ 1) we can find for each Fe4, disjoint
subintervals F', F” with diam F’, diam F” < 1/3 diam F
and  |x,(x) — hpa(2)] < 270D for all zeF uF’. Now
(by Dirichlet’s theorem in (i), by Kronecker’s theorem in (it))
we can find M(n 4 1) > R(n 4+ 1) such that

Sup 1 |XM(n+1)(xr> - hn+l(xr)l < 2—(n+2)'

1<r<n+

By the continuity of xwmu+:y and  h,.; there exists a

n+1

5(n+1) > 0 such that xe|_ JN(z, 8(n+1)) implies

r=1
[ XMy ®) — Ppsa(2)] < 27D, Thus we can find £,,, a

collection of disjoint closed intervals such that EcP,,, <P,

and max diam G < 1/3 max diam F with the following
GE@,‘.H FEQ,.

properties. If Fe4, we can find F', F" e%,,; disjoint with
F', F"cF, moreover |xmpuin)(®) — hpia(®)] < 27D for
all zeGe%,,; with GeF. No 2 of #, ..., 2,4, belong
to the same member G of £,.,. If

z,eGed, [ <r<n+1]
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then sup [ Xtnay(Z) — Ppya(2)] < 270D, If F e X, then there
z€

exists an F'e%,,; with F'cF and FnE=¢g (so there
exists an F’e4,,; with F'cF and F"nE # @). The
induction now restarts.

We now consider the P so constructed in the 2 cases.
First we take the construction for (i) with A, = 1. Consider
zeP. Suppose ze¢L, for all n. Then ze n K, and so there
exists a y,eE such thatif zeF,e%, then y,eF,[n > 1].
Since diam F,—-0 as n—> o, y,—>2z and since E is
closed zeE. If zeL. for some r then

|l (2) — ] < 276+

forall s>r+ 1. If xzeE then z =2 for some r and
lame(z) — 1] < 2—(‘“) for all s > r. In either case (and so

for all zeP) Z |sin M(n)z| converges. Thus P is an N,

n=1
set and (i) 1s proved.
Next we consider the case (it). As above we see that

Y, |sin Ml,,( Laes &| comverges for all zeP (recall that
2

= 1) andso P isan N, set. It only remains to

%n(n+l)+l
show that P is a weak Kronecker set. Suppose ue M+H(P),
n > 0 are given. For each r we can find a p. > 0 such
that u(N(z,, 2p N{z,}) <27+y. Now the family {N(z,, ¢,)}2,
form a covering by intervals of the compact set E so that
we can find a finite subcover {N(zyy, pxy) =1 say. Set

k
J =P |UN@g 20w), H=PUJ.
s=1

=
PU
M=
=
—~
Z
8
e
O
2
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Now let p =min gy If zeH then |z—yl >p >0
1<s<k
for all ye E. But max diam F -0 as n — o so for some
ref,

n, we have that n > n; implies diam F < 1/2 p for all
Fe&, In particular K,nH=g forall n > n; 4+ 1. Thus
sup | xmm(@) — falz)] < 27" forall n > n, + 2.

r€H

Now consider p|E (p restricted to E). Since E is coun-
table, we can find an m such that

f‘({xla Loy -« oy .’17,,,}) = P‘(E) /N
Set n, = max (m, n) + 4. Then setting
Hm = HU {171, Loy «« oy xm}

we have |quw(®) — fu(z) < 2 for all n>n, and
w(Hy) > w(P) — . Thus

p{z e P [xum(e) — fulz)] = 27} < 9

for all n > n, and P i1s weak Kronecker.

We note that using this method it is as easy in (i) to
construct P an N, set as it is to construct P a weak
Dirichlet set.

(vit) and (iv) Again the construction is similar for (iit) and
(v). In (i11) we set h, =f,, in (iv) h, = 1. Suppose we have
M(r) and 4, =X,ud, By Lemma 3.3 (it) (in (iv) we use
the weak form with f=1, in (iit) the strong form with f
non constant) we can find an R(n + 1) > M(n) such that
given ¢ > R(n + 1) we can find for each Feld, disjoint
subintervals F'; F” with diam F’, diam F” < 1/3 diam F
and |x,(2) — Apea(2) < 27D for all zeF uF’. Now by
the definition of E we can find a M(n + 1) > R(n 4 1)
such that sup laMes)(y) — hasa(y)) < 272 By the conti-

Ye

nuity of xwmg+1y and h,.; (and the compactness of T) there
existsa 3(n + 1) > 0 such that forall ye E, ze N(y,3(n 4 1))
implies  |Xween(z) — Fpa(3) < 270, Now the family
{int N(y, 8(n+1))},es form an open covering of the compact
set E. We can therefore find a subcovering

{int N(yn+1s’ 8("’ + 1))}.’:=l'
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Observing that
{int (N(¢p41ss 3(n +1))nF): FeX,, 1 < s < k}

is then itself a set of open intervals (together possibly with @)
covering E we see that we can find £,,; a collection of
disjoint closed intervals with the following properties. As
demanded in the introduction P,2P,.;2E and

max diam G < 1/3 max diam F.
G'E@n+1 Fefﬂ

If Fef, wecan find ', F"e%,,, disjoint with F’, F"cF,
moreover |Ymuin)(®) — Rpia(x)) < 270D for all 2zeGe4,,,
with GcF. We now restart the induction.

We now consider the P constructed in case (iit). Since
PcP, we have |xum(®) — hi(z)] < 2™ for all zeP and
P is Kronecker as required. A similar proof gives (iv).

(¢) It is clear that we need only alternate the inductive
steps of (it) and (iv) (i.e. first proceed as in (i), then as in
(tv), then as in (it), then as in (i¢), and so on) to obtain a
suitable P.

As promised Lemma 6.1 (¢) and Theorem 4 give at once
an alternative proof of

CororrLArY 5.2. — There exists a perfect weak Kronecker
(and so independent) Dirichlet non Kronecker set.

Proof. — Let E be as in Theorem 4, form P as in Lemma
6.1 (¢). P 1s perfect weak Kronecker and Dirichlet. But
EcP and E i1s not Kronecker so P can not be.

Similarly Wik’s result (our Corollary 2.2) that there exist
weak Kronecker non Dirichlet sets becomes a consequence
of the fact that there exist closed countable independent sets
E which are not Dirichlet (Lemma 3.1). This is perhaps the
neatest of the several proofs of Wik’s result in our paper.
Again Lemma 3.1 combined with Lemma 6.1 (it) gives the
existence of weak Kronecker (and so independent) perfect
N, sets which are not Dirichlet (Lemma 4.3 (it)). The results
of Lemma 6.1 also enable us to obtain Corollary 2.1 (the inde-
pendent union of 2 disjoint Kronecker perfect sets need not
be Dirichlet) directly from Theorem 1.
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Up to now we have proved sets independent by showing
them weak Kronecker. But in Section 7 we shall want to
construct independent closed sets which are not H, (and so
in particular not weak Kronecker). We therefore develop
methods for constructing independent sets in a series of lemmas
stated and proved on the lines of ([8] Chapter 1, § 11) (from
where in particular Lemma 6.2 and the sufficiency part of
Lemma 6.3 are taken directly). We start with a definition.
Suppose I, I, ..., I, are disjoint (closed) sets, we say that
I, I, ..., I, are M-independent if whenever

z;el; [1 <1< nl,

it follows that 0 < Y, |m;| < M implies 2 mz; # 0 [M > 1].
j=1
Similarly we call le, Ty, «.., T, M- mdependent if

0 < XY |my <M imples E mx; # 0.
j=1 Jj=1

For example we have

Lemma 6.2: () In R given 1, I, ..., I, disjoint closed
intervals and y, %, ..., , M-independent (so in particular
given xy, T, ..., x, independent) with z;eint I; [1 <t < n]

we can find Jy, Jg, ..., J, closed intervals such that
ziemmt J;cl; [1 <t <n] and J, Jds ..., J,

are M-independent.

Thus by Lemma 1.3 given I, I, ..., I, disjoint closed
intervals we can find J;, J,, ..., J, closed subintervals
which are M-independent.

(1) The result of (i) holds in T.

Proof. — In R™ the point x = (z;, 25, ..., 2,) does not
lie in any of the closed hyperplanes

j=1

My ooy = ]2 3 m,.z,=0§ [M> 3 Iml > 0]
Jj=1

and so there exists a closed hypercube

Jy X I X oo xJ e XL x --o X1,
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such that xeint (J; X J; X --- X J,) and

XX XTI ) Tnoom = 2.
M>3Im >0

This proves (i); (it) follows as a corollary or by a similar
method.

Suppose E is a Cantor set constructed after the manner
of Lemma 1.4 (iit). We show that there is one and (in a certain

very limited sense) only one method of obtaining E inde-
pendent.

Lemma 6.3. — With the notation of Lemma 1.4 (1ii) E 1is
independent if and only if given § > 0, my, my, ..., m, e Z\{0}
there exists an 1, such that z;, ,, ..., v, P, |z, — x| > 3§

for k # ] together imply Y max; # 0, for all 1 > 1,.
1

Proof. — Suffictency. Suppose 2y, 7, ..., x,€ E are distinct.

Then we can find a 8 > 0 such that |z, —z] >3 for
k#7j. Given my, my, ..., m, # 0 we can therefore find
an i, as above. But =, 2,, ..., z,eP, (since P,2E) and

n
so Y mu; # 0. Hence E is independent as required.
Jj=1

Necessity. Suppose the condition fails. Then there exist
3 > 0, my, my, ..., myeZ\{0} such that for infinitely many

i there exist @, %y, ..., Z,; <P, such that |z, — ;| > 3
for k#j [1 <k j<n] and ﬁ" m,z,; = 0. Without loss
of generality we may assume I&a;;ldiam A < 3/2. Since 4,
is finite there exist A}, A}, ..., Ale £, distinct such that for
infinitely many ¢ > 2 there exist
;€ An P, 25, Aln P, ..., 2,€An P,
with }n] m,x,, = 0. Since &£, is finite, there exist
r=1
A%, A3 ..., A2e®, with A2cAl[l < s < n]
such that for infinitely many ¢ > 3 there exist
2;€A3n P, 2, A3n Py, ..., 2, € A0 P; with é m,x,; = 0.

r=1
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We continue inductively. Let {y,} = m A [1<s<n] (that
- =1

ﬂA_i contains one and only one point results from the
t=1
Second Intersection Theorem ([6] § 26), cf. our proof of

Theorem 3). Select y,eA? [1 < s < n] such that
Smy.,=0u=1,2 3, ...] (f z,€A%nP; for some

r=1

i >u then z,eA?%). Now y, >y, as u-—> o so0

n

Y2my,=0. But y,eP [1 <s < n] and (since y,eAj)
r=1

Y1, Y2y - - -5 Y, are distinct so P 1s not independent.

One simple way to obtain the condition above is to demand
that for any M we can find arbitrarily large ¢ such that the
intervals making up <; are M-independent. Speaking very
roughly this 1s what occurs when we construct E Kronecker.
Again we might demand that all the intervals making up &;
except I, say together with {z,} are M-independent. Then
if I; > {x} as 1t —> o we have E independent. This
corresponds to the construction in Lemma 4.2 of a weak
Kronecker set. As a heuristic principle we may say that
wherever these kinds of method are used to construct inde-
pendent perfect sets with certain properties, we can construct
Kronecker or weak Kronecker sets with the same properties.

We need in fact a slightly more subtle approach to deal
with constructions in which we are « only allowed to tamper
with a small bit of the set at a time ». The result is one which
may be thought rather trivial to be announced with such a
fanfare, but must nevertheless be fully absorbed.

Lemma 6.4. — Suppose
%y, %5y ..., &y (where N = (%) [M < n]

are collections of disjoint (closed) intervals such that setting

P=u{F:Fe%}[1 <i < N] we have P,2P;2...2Py2E

where E s a closed set. Suppose %; = U o where Jo;
k=1

are disjoint and non empty [1 <j<n, 1<i<N] and
setting A;; = u{F:Fel;} wehave A; =7P;nA,;. (Thus
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we have divided our sets into n blocks.) Put
E_,=EnA11 [1 < ]‘ < n].

Let o be a bijective map o: {1, ..., N} - {6: 0 injective
map 0: {1, ..., M} > {1, ..., n}}. Then if the sets
Aiyp [1 < p < M] are M -independent (and so in particular

if the intervals of l ’ Aicioxy are M-independent

[1 <t < N] we have that El, E,, ..., E, are M-indepen-
dent.

Proof. — Suppose x;€eE; and 0 < Y |[mj] < M. Then
j=1

at most M of my, my, ..., m, can be non zero. In particular
we cantakean 1 < ¢ < N suchthat je& {(c(¢))r:M > r > 1}
implies mj = O NOW a:(q(l)X,)eA,(q(,)X,) [1 <r < M] and
Ai(c(i))(1)7 Ai(c(i))(z)7 .o+ Ajgipon are  M-independent. Thus

2 mx == 2 m(c(,)x,)x(c(l)xr) # O Hence El’ Ez, ey En are

M 1ndependent

A more colourful way of stating the theorem is that if
(in non rigorous terms) we can ensure that every combination
of M blocks from Jy, ..., &, 1s M-independent, then the
blocks f;, ..., b, will become M-independent.

In the next part of this section we diverge from the main-
stream of the paper to consider some easy technical results
on independence which might be found useful by those wishing
to develop the methods of this paper and some of which form
a background for Theorem 9. This constitutes easily the
dullest part of the paper and those readers uninterested in
Theorem 9 will probably prefer to resume reading at the end
of Lemma 6.10.

The first 3 lemmas discuss how badly sets must be changed
to ensure certain types of independence, and constitute an
improvement on Lemma 6.2. In particular they show that in
our standard construction some intervals may be left «large».

LemMma 65 — Suppose ny, ny, ..., N, My, My, ..., M
given with 2 |n| > 0. Suppose I, Ly, ..., I, Jy, Iy, o0y J¢

are disjoint closed intervals in R. Then we can find closed
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intervals  licl, JicJ; [1<i<t 1<j<s] such that
diam I; = 1/4 diam I;; yet x;e i, y;eJ; imply

mx + ngTy + oo + nx + myy + mey, + oo A+ my, # 0.
The result also holds with

{my, my, ..., m} =0, {J, Jp, ..., I} = &.
Proof. — Select y;eint Jj [1<j<s] and consider in R

the hyperplane II = g E ngz = y; where y = — 2 my;,

and the hypercuboid T = {z zel,1 <1<t It 1s clear
that we can find a hypercuboid T of SIde at least 1/2 that
of T' lying within I'” such that int T does not intersect
II. In other words we can find IcI; a closed interval with
diam I/ > 1/2 diam I, [1 < ¢ < ¢] such that setting
I'"={z:z3el,1 <i< ¢} wehave int['" nIl =@. Thus we
canfind ¢ > 0,I'cI! aclosedinterval withdiam I} > 1/4diam I,
[1 < i< t] such that if IV = {z: zel, 1 < ¢ < ¢},

t
NI"={z:y—e< X nz <y+e} we have II'nI"=g.

i=1 .
Select 8 such that 8 Z[ m;| < ¢ and N(yj, 8)cJ;. Setting

J; = N(yj, 3), the lemma follows at once.
We obtain as a corollary or, by repeating the proof,

Lemma 6.6. — There exists a » = A(my, my, ..., m;) > 0
dependent only on my, my, ..., m,,[E| |m;| > 0] for which
Jj=1
the following is true. Suppose ny, ny, ..., n, given with
t

3 |m| > 0. Suppose I, L, ..., 1,1, Js, ..., J; are disjoint
i=1
closed intervals in T such that z,el, [1 < i < t] mplies
t

> nzx; # 0. Then we can find closed intervals

- Iel, JeJ,[l<i<tl<j<s]

such that diam I > A(my, m,, ..., m,) diam I;; yet z;e 1,
y;eJ; yield

ma + @y + oo + n@ + mayy + meye + oo + my, # 0.
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This result holds also with
{my, mg, ..., m} =28, {J1, Js, ..., J;} = @.
As a trivial consequence we have by induction

Lemma 6.7. — Suppose I, L, ..., I, Ji, Joy ..., J; are
disjoint closed intervals in T such that 1, 1, ..., I, are
M-independent. Suppose J,cJ, [1 < q<r(p), 1 <p <s]
and J,, Jp2, ..., I are disjoint closed intervals. Then
there exitsa A =Ay(r(1), r(2), ..., r(s)) > 0, depending only on
M and r(1), r(2), ..., r(s), such that we can find closed inter-
vals Ticl, J,cJ, 1 <i<t 1<qgs<r(p), 1<p<s]

r(p)

with diam 1; > N diam 1; for wich z;el;, ypeU J
t s

imply 3, ni:v,-—l—pgl my, # 0  whenever

i=1

pq
g=1

t s
M> 3 |nf, 3 |m,| > 0.
i=1 p=1

On the face of it this is a stronger result than Lemma 6.2,
but 1t turns out that (at least in the work that follows) the
latter will suffice. We note that the values of A can easily
be calculated (though naturally they become rather compli-
cated) and might be used to obtain numerical bounds.

In a similar spirit we ask what happens to certain of our
basic tools (in particular Kronecker’s Theorem and Lemma 1.3)
if we relax the demand for independence merely asking for
M-independence.

Lemma 68. — (1) If R = {z,: meZ} s M-independent,

EcT (respectively EcR) wuncountable, then there exists a
ye ENR such that {y} v R s M-independent.

(t0) If 2y, 25, ..., x, are M-independent, EcT (respectively
EcR) infinite, then there exists a yeE\{x;, %, ..., Z,}
such that y, zy, ..., x, are M-independent.

Proof. — As for Lemma 1.3.
More interestingly (though not unexpectedly) we have the
following form of Kronecker’s Theorem.

Lemma 6.9. — (i) For fixed n there exists a
(M) =+(n,M) >0 as M —> o
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such that if z,, z,, ..., z, are M-independent and
] =g = --o =] =1
we have 1inf sup |y.(z) —A] < «(M). Moreover if
r€z 1<s<n
L1y Loy « ooy anZTCQ
then the n-tuple (xn(21), Xm(22), - - -5 Xn(%.) ts pertodic in m.

Proof. — This is a result of number theory known as the
Quantitative Kronecker Theorem ([3] Chapter V, § 8). Values
of ©(M) can be calculated.

For the purposes we shall suggest, however, the following
trivial result will suffice.

Lemma 6.9. — (it) If pi, pey - .., pn are distinct primes and

Fi, Tay .., Iy are such that 0 < r; < p; [1 <t < h] then
setting x; = 2nr;[p;,g = min p, and P = p,p,...p, we have
for any M| =|pg| = -+- = |7\| =1 that

inf sup |x.(z;) — M| < w/q.
1<m<LP 1<s<h

Moreover the h-tuple (xn(®1), Am(®2)s -- -5 Xm(2zw)) has period
P in m.
We note that given 8, > 0, y;, ¢5, ..., yp€T we can

find py, ps, ..., pn and ry, 1y, ..., 1, satisfying the conditions
of the lemma such that =/¢ < ¢ and sup |y, —z]| < 8.
“<s<h

These results provide a method of extending to the theorems
so far discussed the technique illustrated in the following
alternative proof of

Taeorem 4. — There exists a countable independent Diri-
chlet set E which is not Kronecker.

Proof. — We construct such a set E. Suppose we have
at the n"™ stage v, O %2n - -5 Xywe € 27Q n-independent,
N(n) = 2™"P(n), P(n) > 10 such that

sup o) + 1] > 18 (1 + 279
forall 1 < r < N(n) and 3(n) > 0. Now by Lemma 6.2 (1)
we can find a 1/4 3(n) > 8(n +1) >0 such that
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N(ya 3(n+ 1)), Nlays 3(n+41)), Nleg, 3(n+1)), ...,
N(apun 3(n + 1)) are n-independent. Now

(Xr(aln)’ Xr(“2n)a ceey Xr(ah(n)n))

has period Py(n). Let P(n 4 1) be a multiple of Py(n)
such that P(rn + 1) > 4N(n) and set

N(n + 1) = 2*P(n + 1).
Since XtP(n+1)+v(awn> = Xu(awn) we have

SUp | x@mento(®wn) + 1] = 1/8(1 4+ 27") for 0 < ¢ < N(n)

1<w<h(n)
or P(n+ 1) — N(n) < ¢ < P(n+41). Taking

aln 4+ 1), b(n 4+ 1)eZ
such that

b(n +1) —a(n 4+ 1) 2
P(n + 1) P(n)
and
_ [2a(n + 1)  2b(n+ 1) ]
" P(n+1) 7 P(n+1)

2rq
P(n + 1)
vially xeqiny(kgae1) = 1. Also
sup [Xpmeny+olFgnin) + 1] = 1/2 > 1/8(1 4 277)

a(n+1)<9<b(n+1)

for N(n) < ¢v < P(n 4+ 1) — N(n).

By the continuity of i, s ..., Xn@s1) We can, using
Lemma 6.8 (it), find vy,41, ®nr1, ®%onsrs
n + 1 — independent such that

weset k.=

for a(n+1) < g < b(n+1). Tri-

<oy Cp(r+1)n+1

|'Yn+1 - Ynl’ I°‘1n+1 - °‘1n|, |“2n+1 — “2n|, D)
|hmnsr — onn| < 8(n + 1) /4
whilst
er(Yn) - Xr(Yn+1)|7 sup IXr(awn) - Xr(aw,n+1)]’
1<w<h(n)
sup IXr(ka(n+1)+w—h(u)—1,n+1) - Xr(“w,n+1)| < 1/8 2—(n+1)

h(@)+1<w<h(n+1)
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for 1 <r < N(n-+1) where
hn + 1) = h(n) + 1+ b(n + 1) — a(n + 1).
Thus  sup [y(eynn) + 1] > 1/8 (1 4 270+D),

1<w<h(n+1)

sup | xpen)(®uner) — 1] < 1/8 204D
1<w<h(n+1)

and for 1 < u<n

sup |XP(u)(°‘w,n+1) - *1I < Sup )IXP(u)(“wn) - 1| + 1/8 2—(n+1)’

1<w<h(n) 1<w<h(n,
whilst | xew(Yar) — 1] < |2e@(¥s) — 1] + 1/8 2= and
Sup pr(u)(aw,n+1) - 1' < 2—1!.
h(n)+1<w<h(n+1),

Now y,—y say and a«,, > «, say. By construction
E = {y, a1, a3, ...} 1s closed with y as limit point. Further
sup |xew(z) — 1| < 27+ and  inf sup |x.(2) + 1| = 1/8.
zek r>0 z€E
Finally consider a finite subset {z;, z,, ..., ,} of E say.
We have {z, 3, ..., z,} < {Y, %4, ..., 2} for some m. But
given any n large enough (so that hA(n) > m + 1) we have
ly — val < 1/2 3(rn + 1) and |o,, — | < 1/2 3(n+1) for
1<w<m and so v, @, ..., «, are n-independent. Since
we can take n arbitrarily large, this shows vy, «, ..., a5,
and so {z;, ..., #,} independent. This gives E independent
and completes the proof.

Although the 2 versions of the proof of Theorem 4 are very
similar and require the same amount of work, I think that the
second just given is easier to extend (and I will take it as a
model in my proof of Theorem 9).

The method used above to construct for example y inde-
pendent as the limit of vy, n-independent rationals is strongly
reminiscent of Liouville’s construction of transcendental
numbers ([4] Chapter 11, § 7). Let us call aset EcT (respec-
tively EcR) algebraically independent if given =z, z,, ..., 2,

distinct, X lx, =0 with {, L, ..., [, algebraic implies
q=1 M
h=kL=--=1,=0. Set Wy=¢teR: Y mtr=0 1in

g=0
13
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M
R for some my, my, ..., myeZ with 0 < Y |[m,| < Mg
=0

Call a collection of disjoint (closed) sets I, q: I, algebrai-
cally M-independent if whenever z,el,l,e Wy [l < ¢ < n]

2 Ly =0
Jj=1
implies |y, =1, = ... =1, = 0. We then have the following

extensions of previous results (Lemma 6.2 and Lemma 6.8 (i7)) :

Lemma 6.10: (z) In R (respectively T) given I, 1,, ..., 1,

disjoint closed intervals and =z, x, ..., z, algebraically
M-independent with z;eint I, [1 <1 < n] we can find
Ji, Ja, ..., J. closed intervals such that

z;eint J,c L [1 <1 < n]

and Jy, Jp, ..., J, are algebraically M-independent.

(w) If x, @ ..., x, are algebraically M-independent
EcT (respectively EcR) infinite, then there exists a
ye Ex{2, %a, ..., 2,} suchthat y, z,, ..., z, are algebraically
M-independent.

(ziz) Transcendental numbers exist.

Proof. — (i) As for Lemma 6.2.
(it) As for Lemma 6.8 ().

(tit) Suppose we have constructed =z, algebraically n-inde-
pendent and 3, > 0. We can find a 3, with

1/4 8, > 8,,4 > 0 such that ye N(z,, 3,.,)

implies y algebraically n-independent. By (i7) we can find an
Znty € N(2,, 8,41/4) which is algebraically n 4 1-independent.
Now z,—>z say where ze N(z, 3,,;) for all n. Thus z/2=
is algebraically independent i.e. transcendental. (Strictly
speaking any yeR belonging to the equivalence class of
z[2r e T 1s transcendental.)

The concept of algebraic independence does not seem to
be very deep. For example {\/2r} is Kronecker in T but
not algebraically independent. However, if the reader wishes,
it is an easy if lengthy process, using mainly Lemma 6.10 (),
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to substitute algebraic M-independent for M-independent,
algebraically independent for independent, and algebraically
independent Kronecker for Kronecker in the results of this
paper.

We now return to the central argument of this section.
In Theorem 6 and Section 7 we shall want to construct not
merely an independent perfect set E but a measure p
supported on E which is badly behaved. The hint as to how
to do this is provided by the observation that, for example,

if w(T)=1 then f 1 du =1 whatever the finer structure

of w. Agamn if f(z) =—1 for ze[0, =), f(xr) =1 for
ze[r, 2r) then provided u([0, =) = 1/2, u([r, 2=)) = 1/2

we have f fdu = 0 whatever the finer structure. We develop

this idea in two lemmas, the first of which, Lemma 6.12 (v),
is used in our proof of Theorem 6, and the second, Lemma 6.12
(1), in Section 7. We make the following definitions. Given
I, I, ..., I, T disjoint closed intervals and o a measure

with supp o ¢ U I; we call ¢’ a descendant measure of o
i=1 n
(with respect to I, I, ..., I,) 1if suppo'c U I; and

i=1

s'(I)=c(I)[1<j<n]. If I L ..., ,€T and o are
as above and further o [I; = Aju|I; where A; is a constant
[1 <j < n] and p is Haar measure we call ¢ a distributed
measure on I, I, ..., I, To avoid complications in the
statement and proofs of results, we shall use both definitions
in the mildly abusive style of the following remarks, the last
2 of which justify the nomenclature « descendant ».

Lemma 6.11: (2) If o isameasureand 1;, I,, ..., I, disjoint

closed interyals with supp o< U I; then if Ijc1; are closed

1=1
intervals [1 < j < n], then there exists a unique descendant
distributed measure on 1, 15, ..., 1.

(et) If o is a distributed measure on 1;, I, ..., I, disjoint
intervals and 8, ¢ > 0 are given, we can find
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disjoint (closed) intervals and o' a descendant distributed mea-
sure such that diam I, < 3, o(I,) < «.

(tit) Suppose %, %,, ... collections of disjoint intervals such
that setting P,= u{F: Fe%} we have P,.,<cP, [r > 1].
Suppose ¢y, 63, ... measures with supp o.cP, such that

6,41 s a descendant measure of o,, with respect to %, [r > 1].
Then o, is a descendant measure of o, with respect to £. for
all 1 <r<s.

(t¢) Under the conditions of (iiv), if 6, = ¢ in the weak star
topology as n — o then o 1is a descendant measure of o,
with respect to £. for all r > 1.

We now come to 2 key lemmas. They are obvious, but must
be fully digested. If the reader considers them together with
Lemma 6.1 (i) and (iv) above, he will see how we hope
to proceed.

Lemma 6.12: (v) Suppose 1, I, ..., I, closed (but not

necessarily disjoint) intervals and o ts any absolutely continuous
n
(with respect to Haar measure) measure with supp o c l | L.
i=1
Then we can find closed disjoint intervals Jy, Js, ..., J, with
n

m
| 'Jjg l ’ I; and a measure o' distributed on Jy, Jy, ..., J,
Jj=1 i=1
such that if ¢” is any descendant measure of o' (with respect

to Jy, Jay ..., Jn) we have o"(I,) =o(l,) [1 < k < n].

Proof. — Consider the end points of I, I,, ..., I,. Letthem
be a;, a5, ..., a, where 0 < a; < a; < a3 < -+ < a, < 2m.
Define o' as follows. Let

[av —I_ (au+1 - av)/4, Ayi1 — (au+1 - av)/é] =K
and o'|K, = (26([a,,8,11])[(@+1 — @,))u| K, whilst

u—1
A(m\Ox)
v=1
be disjoint intervals making up the support of ¢’. Suppose

now ¢’ is a descendant measure of o' (with respect to

Ji, Jsy ..., Jn). Then for any 1 <k < n we can find

—=0. Let J,J,, ..., J,
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Xe{1,2,...,u} suchthat K,cI, if veX and I,nK,=9¢0
otherwise. We then have

o'(I) = X ¢"(K,) = 3 o'(K,) = o(I).

vE€EX v€X

Lemma 6.12: (it) Suppose 1 is a closed interval and o
is a distributed measure on 1. Suppose further hy, h,, ..., h,
are continuous functions and ¢ > 0 are given. Then we can
find disjoint closed subintervals Jy, Ja, ..., J, and a measure
o' distributed on Jy, Jy, ..., J, such thatif " is any descen-
dant measure of o' (with respect to Jy, Jy, ..., J,) we have

[ hide" — [ hids|< e[t <i<nl

Proof. — Without loss of generality take k;, and o real.
Let I = [a, b] where 0 < @ < b < 2r. Recall that for &
a real continuous function (so that the Lebesgue and
Riemann definition of integral coincide) there exists a 3
such that for all dissections D :

A=1Ty < Xy < Tp < ++» <z, =020
0 1 2 l

with 8 > max |z, — z,_;| we have setting k = o(I)/(b — a)
z2r>1

and writing

S(D, h) =k é (2, — z.—1)M,(R)
where -
M,(h) = sup {h(2): ze [z, z.]}
s(D,h) =k é (%, — Z—q)m,(h)
where ~

m,(h) = inf {h(z): z € [z, ]}
that

S(D, k) > fh do > s(D, h) and |S(D, k) — s(D, A)| < e.
In particular there exists a dissection Dy :

a=1Yy <Yy < - <Yp,=2=
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such that S(D,, k) > f h, do > s(Dy, k) and
|S(Dy, k) — s(Dy, h)| < ¢ for 1 <1< n.
Let J,= [y-1 + ¥ — ¥=1)/% ¥s — (¥e — ¥s-1)[4] and
o'|J, = 2ku|J, [1 < s < n] whilst G’I<H\U J,>= 0. Then

if ¢” 1s a descendant measure of o (with respect to
Ji, Joy ..., Jn) we have

S(Do, h) = 3 M{R)o"(3) > [ [da® > 3 m ko’ (J)
” = S(DO: hz)

and so lf h; do ——fh,- dc”‘ < ¢ for 1 < i < n as required.

These lemmas are, of course, very closely related and,
indeed, each can be deduced from the other. They are capable
of considerable generalisation but the restriction A&; conti-
nuous in Lemma 6.12 (12) cannot be removed without altering
the character of the result (consider ¢” the finite sum of point

masses). (We add the probably unnecessary caveat that
whatever the character of ¢ we have

|6l (E) inf |f(@)] < do < |o|(E) sup f(a)

for all f continuous, E closed.

We now employ the machinery set up in this section to
prove

TreoreM 6. — There exist 2 disjoint perfect Kronecker sets

L and M such that L uM 1is independent but not weak Dirt-
chlet.

Description of Proof. — We proceed as in Theorem 1 by
balancing the construction of one set against the other so
that at any time either L. or M is badly behaved. To sim-
plify matters we split the proof into steps.

The first 2 lemmas are purely manipulative and enable us
to « prepare » the sets. The first enables us to « switch » from
L to M, the second to « divide » the sets so far constructed
sufficiently finely to proceed.
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Lemma 6 A. — Suppose we are given 7,8 > 0, I, L, ..., I,
Ji, Jgy ..., I, disjoint closed intervals such that n diam J, > 2=
M <p<s], N>n and o a positive measure distributed
on I, I, ..., 1, 3y, Jay ooy J,. Then we can find an m > N,
Jusd, 1 <qg<r(p), 1 <p<s] disjoint closed intervals

!

and o' a descendant measure of o distributed on

‘]11’ ‘]12’ ey J11-(1)’ ) Jpr, ) Il’ AR Il

with the following properties. If o" 1is a descendant measure of
¢’ then for m > 1 > n we have

o"{: [ulz) — 1 > 1} > 1/40'<U J,,).

Further m diam I > 2r [1 < ¢ < t], diam J, < n and
¢'J,y, <8 [1 <qg<r(p),1<p<s]

Proof. — Select m > n such that
mdiam I; > 2= [1 <t < ]

and remark that since n diam J, > 2= [1 < p < s] we have

for m>1>n setting E,=3erJp: u(z) — 1] = 1
s p=1

that ¢"E, > 1/4 ¢ <U J,,). Now use Lemma 6.12 (i) (and
p=1

less crucially Lemmas 6.11 (1) and (uz)).

Lemma 6 B. — Under the hypotheses of Lemma 6A we can
find an m > N, J,cJ, 1 <qg<r(p), 1 <p<s], Iucsl
1 <l<ulk), 1 <k<t] disjoint closed intervals and o
a descendant measure of o distributed on the J,, I, with
the following properties. If o" is a descendant measure of o'
then for m > 1> n

" {x: |x(x) —1 > 1} > 1/4 min <0‘<L:J Ik>» ¢ <L:J Jp>>-

Further m diam J,, > 2= [1 < ¢ < r(p), 1 < p < s] whilst
diam J,, diam I, < n and

c'J

Py

w6 Ly <8 [ <l <uk),1<k<tl
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Proof. — Apply Lemma 6A twice, interchanging the role
of the « I intervals » and « J intervals » on the second
occasion.

Next we have a lemma which enables us to proceed along
the lines of the proof of Theorem 1.

Lemma 6 C. — Suppose we are given feS, 8 >0 and
L, L, ..., L, Ji, Js, ..., J, disjoint closed intervals such that
n diam J, > 2r together with o a positive measure distri-
buted on I, I, ... L, J;, J3, ..., J. Then we can find
m > N > n, disjoint closed intervals Licl, [1 <1 <],
Jusd, I <qg<r(p), L<p<s] and o a descendant
measure of o distributed on the 1;, J,, with the following

t
properties. If ze U I; then |yx(z) — 1 <8 and if ¢" isa

i=1
descendant measure of o' then
/

o' {z:|x(z) — 1 > 1} > 1/40'(U Jp> for m >1> n.
p=1
In addition m diam I; > 2=.

Proof. — By Lemma 3.3 (i) we can find an N > n and
IicI; closed intervals such that |y, (z) — f(z)] < 8§ for all

3
ze U I;, Let ¢” be the unique descendant distributed
i=1
measure of ¢ on L, L, ..., I}, J;, Ja, ..., J; and apply
Lemma6 Ato I, 1, ..., 1}, J, Jy, ..., J;, 6", n and N.
The next 2 lemmas cover the other part of the construction,
that ensuring independence. The reader should reread Lemma
6.4 to see what is going on.

Lemma 6 D. — Suppose we have 1,, L, ..., L, J1, Jgy ..., Jyy
Jos1s +ooy Jyus disjoint closed intervals. Suppose J,cJ,
1 <qg<rp), 1<p<v+s] disjoint closed intervals and
¢ a posttive distributed measure on the 1, J,,. Suppose ¢ > 0,
M and n given with n diam J, > 2r. Then we can find
closed intervals

GeL (1 <j<k], Jucdy L <gsr(p)ls<p

N

],

JowSdpg [1 < w < h(p, g1 <qg<rp,v+1<p<v+s]



SOME RESULTS ON KRONECKER, DIRICHLET AND HELSON SETS 289

an m > n and o' a descendant measure of o (with respect
to I, J,,) distributed on the

LI <sp<o,dpulo+1<p<vo+s]

such that the following is true. The 1}, J,, [1 < p 9] form
an M-independent set, m diam I; > 2= and if ¢" is a descen-
dant measure of o tken

o' {x: |x(@) —1 > 1} > 1/4 o <U J,,) for m>r>n.

P=v+1
Proof. — By Lemma 6.2 we can find Ijcl; [1 < < k],
JusJdy 1 <qg<r(p), 1 <p<y] closed 1ntervals Whlch

are M-mdependent Now we apply Lemma 6 A, taking the
I, Jp0 [1 < p < ¢] as «I intervals», the J, [¢ 4+ 1 < p < 5]
as « J intervals » and the unique descendant distributed
measure ¢” of o on the

I <p<vol,Jv+1<p<s]

as our starting measure.

In the heuristic terminology of Lemma 6.4 we have obtained
block-wise M-independence of I, I,, ..., L, Jy, Js, ..., J,.
(We shall call the J;, J3, ..., J, 1n the above construction
« free intervals »). Following the obvious line of attack we have

Lemma 6 E. — Suppose we have 13, 1, ..., L, Jy, Joy ..., J;
disjoint closed intervals and o a positive distributed measure
on them. Suppose

s \
o(J, 1/2MG<UJ>(SOIf G<UJ,”)>0
w=1 w=1 /
it follows automatically that s > 2M, we shall take s > 2M
in any case) and ndiam J, > 21: but diam J, < 8 [1 < p < 5]
and diam I; < 8 [1 <t < t]. Then we can find an m > n
and

ceLl<i<u@),1<i<t],Jycd,[I<qg<sr(p),l<p<s]

disjoint closed intervals together with o' a descendant measure
of o distributed on them having the following properties. If
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"

6" s a descendant measure of o' then m > r > n implies

" {x: |y (z) — 1| > 1} > 1/8 c<U Jp> whilst

mdiam I, > 2x [1 < j < u(i), 1 < i < £].

t u(i) s r(p)

If we set P=UUIU u UUJW then

i=1 Jj=1 p=1 g=1
Zyy By ...y mE€P, |z, —3|>8 for M>2k>12>1
M M
and M > Y |m| > 0 together imply Y mz, # 0.
k=1 k=1

Proof. — We apply Lemma 6 D followed by Lemma 6 A
repeatedly, taking every possible combination of M members
of {J,, Js, ..., J;} as free intervals. The result now follows
as in Lemma 6.4 (or indeed directly from it).

We can now combine these results to obtain the

Proof of Theorem 6. — We construct inductively £, Jb,
2 finite collections of disjoint closed intervals and o, a positive
distributed measure on ¥, u Jb, with the following properties.
Setting L, = v{F: Fe4}, M= uv{F: Fedb,} we have
L,2L,4y, M,2M,4, 6,(M,) =0,(L,) =1/2 and o, a des-
cendant measure of o, with respect to ¥, uJdb, Also there
exist m(1l) < m(2) < m(3) < --- (to be chosen consistent
with our demands in the next paragraph) such that for any
descendant measure ¢’ of &, we have

o' {z: |x(z) —1 =1} > 1/16 for m(n) < r < m(n+1).

Let p=1,2,3, ...,. Wecanfurtherarrange, using Lemmas
6 B and 6 C, that for some A(L, p) and some n = k(L, p) say
(and so for all n > k(L, p)) |xa n(®) — fo(z)] < 277 for all
zeL, and similarly for some h(M, p) and some n=Fk(M,
say (and so for all n > k(M, p)) |xnee, p(®) — fo(2)] < 277 for
all zeM,. By Lemma 6 B we can arrange that for some
n = ny(p) say (and so for all n > ny(p))

max diam {F: Fe% udb,}, max {c,I: Ief udb,} < 1/p.
Thus by Lemma 6 E we can ensure that for some n,(p) (and
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so for all n > ny(p))
Xy, Tyy ovvy Xy L,,Ul\:;[,,,
min |z, — | > 1/p,p > Ellmal >0
o

pZu>v2>1

together 1mply 2 mz, # 0.

u=1

We now set L = m L, M= mM and note that o,

tends (in the weak star topology) to a positive o with
supp ccLuM and o(LuM)=1. By the usual arguments
L and M are perfect Kronecker sets and LuM 1is inde-
pendent (Lemma 6.3). But o{z: |x.(z) — 1] > 1} > 1/16 for
r > m(l) (Lemma 6.11) so LuM is not weak Dirichlet.

The reader will no doubt have remarked that with a little
care Lemmas 6 A and 6 B can be dispensed with (after all,
eventually ¢,, Jdb, must split as finely as required), but I
feel that to do this (or indeed to employ Lemma 6.7 which
can be used to effect 2 parts of the construction at once),
only shortens, but does not simplify the proof. He will also
remark that we have not used the best constants (for example
in Lemma 6 C). In fact with a little work we could obtain

Lemma 6.13. — There exist 2 disjoint perfect Kronecker sets
L and M such that LuM s independent, but there exists a
posttive measure o on LuM with o(LuM)=1 and

r> o

lim info{z: |x.(z) —A = ¢} 2 1/2p {yeT:|exp iy — A > ¢}
—1/2;:. {yeT:|expiy — 1 > ¢}
for all |\l =1 and 1 > ¢ > — 1 (v Haar measure).

The reader who wishes to prove it would perhaps be well
advised to defer this until after reading Section 7, though it is
possible to do it with the tools at our disposal. The idea is
firstly to let the total mass carried by the free intervals of
Lemmas 6 D and 6 E become small in the later stages. Secondly
we modify all of Lemmas 6 B to 6 E in accordance with the
following modification of Lemma 6 A.

Lemma 6.14. — Suppose we are given

7,8>0,P,Q ReZ*={r>1:reZ}
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(tn particular we may have 2R > Q), I, I, ..., 1, Jy, Jo, ..., J,
disjoint closed intervals such that ndiam J, > 2Qr [1 < p < s,
N > n and o a positive measure distributed on 1y, I, ..., I,
Ji, Jay - .y Jo Then we can find an m > N,

Jusd, 1 <g<rp)l<pc<s]

disjoint closed intervals and o' a descendant measure of o
dL:S‘trlbuted on .J117 le, AT Jlr(l)) ng,.. .y Jp,l(p)’ I]_, Iz, Y It
with the following properties. If ¢" 1is a descendant measure
of ¢ then for m>1>n and 2° > k, q > 2% we have

o" {x: |x(x) — exp 2ink[2F| > q[2F}
< (2Q — 1)/4iQu {y=T: |expiy — 1] > ¢/27}.

Further m diam I, > 2zR [1 < ¢ < t], diam J,, < n and
6'Jyy, <8 [1<qg<r(p),l<p<s]

Proof. — Note that setting
Eu = Jze | J,: lula) — exp 2ink/2¥] > q/2°
p=1

we have oE;, > ((2Q — 1)/4Q)u {y e T :|expiy — 1| > ¢/2F}
and proceed as in Lemma 6 A.

We can now repeat the construction in the proof of Theorem 6
to obtain L, M disjoint Kronecker perfect sets with LuM
independent and a positive measure ¢ on LuM with

s(LuM)=1 and
liminfo{z:|y(x) — A > ¢} > 12u{yeT:|lexpiy—1] > ¢}

where ¢ and arg A/2 are dyadic fractions (i.e. have the form
k[2F), 1 > ¢ > — 1 and |A| = 1. The full result follows by
continuity.

For the sake of consistency we note that in Theorems 1
and 2 (and where appropriate, as e.g. in Lemma 2.1) we can
by a similar argument replace the statement E non Dirichlet
by

lim inf sup |x.(z) —A] > 0 forall |A| =1.
r> Z€E

In Section 7 we shall use slightly more delicate methods
than we used in Theorem 6. These can be adapted to prove the
results we have just obtained (and to give in Lemma 7.5 an
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interesting alternative construction to those used elsewhere
in Section 7). In order to emphasize the parallelism, we essen-
tially restate Lemma 6.14 as

Lemma 6.15. — (i) Suppose K s a closed interval, ~. a
positive distributed measure, of mass 1, on it and B.N, > 1,
e, >0 given. Then we can find an N,,; > N, such that
setting Q, = 2. we have

5 {23 |nle) — exp 2mik[Q > ¢/Q) |
> (1 —e[2){yeT: |expiy— 1] > q/Q.}
for |m| > N.y, Q. > [k], ¢ > 0.

(1t) Further if ¢, > 0, Ny, B,, K, 7, satisfy the conclusion
of (i) and M,y; > M,,; and ., > 0 are given, we can find
closed disjoint intervals lgy, Igs, ..., Ix,c K with

diam IKj < Mp1

and <,.; a descendant measure of =, distributed on the
Iy; [1 <7 <s] such that
Tarn {@: [Xn(7) — exp 27ik/Q| > ¢/Q.} .

> (1 —eJuf{yeT: [expiy — 1] > ¢q/Q}

for  M,;; <|m| <My, Q. =1k, ¢>20 and tq any
descendant measure of 7T,4.

7. Kronecker and Helson Sets.

We shall need

Lemma 7.1. — (i) Suppose K is a closed interval, =, a
positive distributed measure on it, and N, > 1, ¢, > 0 given.

Then we can find an N,,; > N, such that )f Am AT, < €,[2
for ]ml > Nr+1'

(1) Further, if ¢, > 0, N,,y, K, 7, satisfy the conclusion of
(t) and N,y; > Noyy and 7,4, > 0 are given, we can find
disjoint closed intervals gy, Ixs, ..., Ig,c K with

diam Ixj < Mps1

and <, a descendant measure of <, distributed on
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] < s] such that |f Xm @Tny1| < & for
N,.1 and 7., any descendant measure of 7,.;.

Proof. — (i) This 1s the Riemann-Lebesgue Lemma ([10]
§ 2.8)

(11) Follows as a direct consequence of (i) and Lemma 6.12
(uz).

The construction we are about to use is perhaps easier to
follow (especially in the light of our earlier work) than to
describe. The reader may thus be well advised to read the
construction first (as far as Lemma 7.2 say) and then read
the heuristic. But in this case I do not think that it should
be skipped altogether. Essentially we refine our earlier methods
(used e.g. in Theorem 6) by tampering only with very small
parts (by mass) of our construction at a time. In Theorem 6,
we tampered, roughly speaking, with 1/2 at a time. Let us
examine a little more closely what will happen to a single
interval K. Associated with K 1is an integer N,,; and an
e, > 0. There is also a measure o,Ju=r-+1, r4 2, ...]
such that ¢, K is a constant distributed measure. At some
time N, later than N,.,, we decide to act. In the manner
of Lemma 7.1 we find disjoint closed subintervals

IKI’ IKZ, RS IK:

and define o,,; so that o,,,|K 1s the distributed descendant
measure of o,/K and such that for any descendant measure

ohia of o, ] S tm doa| < & for Ny < |m| < N, We then
find an N,,,; such that (among other properties)

1/; Km dogiq
Xj

(where ¢,,; 1s choseninadvance). The N,,; isthenassociated
with each Ig;.

In naive terms the Igx; are « out of control » for the period
N, < m < N,;; (ignoring modulus signs). They return to
our control from N,,; onwards. But immediately we assert
this control in the manner of Lemma 7.1, at the same time
making further adjustments (to ensure block-wise indepen-
dence say) at N, say, the new subintervals pass from our

S €at1 for u = Nn+1
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control until N,;;. By only asserting our control (in order
to ensure independence say) on a small collection of intervals
(1.e. a collection carrying only a small mass) we ensure that
only a small portion is out of control in the period following
our intervention. In this way we can ensure that an increasing
part of the set is under increasingly strict control.

This may seem a rather simple minded way of looking at
the matter, but none the less the results were obtained in this
way. Moreover it emphasizes certain limitations of the method
which seem to put a natural barrier on certain improvements.
For example very heavy (and to a great extent unknown)
constraints are laid on the Ix; (they must be « well distri-
buted » over K). The reader should contrast this with the
construction in Theorem 3 where rigid control is exercised
throughout. The constructions of this section are built up
from the following

Central Inductive Step — At the n"™ stage we have a p051-
tive measure o, integers

0< N, <N, < <N, < N,y

81ns Bans - .., &, disjoint finite collections of disjoint (closed)
intervals and ¢, €, ...,e, > 0 with the following properties.
n

Setting &, = U &, and P,=u{Fe§,:1<i<n} wehave
on distributedlzoln &, (so supp o,cP,). Moreover if Feb,

then | [ 1ndo,| < = 0,(F) for |m|> Ny [1 <r<nl

Suppose we now select e,.4, M1 > 0 and K,c§,. (This
1s the first point x say at which we can exercise choice.)
Set L, =uv{F:Fe&,} and o,L, = A,. We now commence
our construction. For each Ke X, we have Ke§,, for some
n > r > 1. By our inductive hypothesis

{/me ditn

As in Lemma 7.1 we can find 7, > k1, dxay ..., Sxqxy > 0
and closed disjoint intervals

Ig;c K with diam Ig; < 9,40 [1 <7 < s(K)]

< —%’—o,,(K) for N, > m > N,,.
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$(K)

such that Y 8; =o0,K) and if ¢ is any measure with
Jj=1 s(K)

$(Ix;) = 8x; and supp ¢ QU Ix; then lfxx,,, d‘».]l} < £,6,(K) for
Jj=1
N,y < |m| < N,y;. Now select
Jrielg; [1 <7 < s(K), Kek,]

in any desired way (this is the second point % * say at
which we can exercise choice). Let

bri1 w1 = {Jg;: 1 <7 < s(K), KeX} and &, ,., =& XK.

Construct o,,; with supp o,.,cP,,; such that o,,, = o,
on E\L, and p,.,|Jx; 1s proportional to Lebesgue measure
on Jx; and p,,,(Jx;) = 8x;. Finally we note as in Lemma 7.1
(t) that by the Riemann-Lebesgue Lemma there exists an
Nois > N,.; such that ] [ tm donaa =&2+—1 6psa() for all
m| > N,;» and Ie&,,, ,.,. We cannow restart theinduction.

Starting the induction in any way we please, we consider

P =| |P,, and ¢ the weak star limit of o, as n — oo.

n=1
By construction P is closed and o a positive measure.
supported on it Further o is a descendant measure of ¢,
(with respect to &,,,) so thatif KeX,n&, we have

’ knp Xm d6‘ < g5o(KnP) for Ny <|m| < Ny

(If on the other hand Ke§, but Ke¢X, for any n > r
then | [ xndo| < = o(KaP) < ¢,0(K n P) forall m|> N,y
automatically.) Thus if |m| > N, sothat N,., > |m| > N,
for some n > 1 we have

‘/an Yom do-l

Sormdo] < | fr amao] + 3 3
<oPal)+ S 3 eoPnK)

r=1 KEEnr\J{n
r=1 KEE,".\J{,,

< o(PnL,) 4+ sup g,6(P\L,4,)
r>1
= A, + sup e(o(P) — A,).
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Taking A, = sup A, g = sup e, and (as we shall hence-
forth) o,(P;) = 1 (so that c(P) = 1) we have

‘fpxmdo" < Ay + s,

Note. — In fact we can allow even more freedom in the
construction of P by e.g. dropping the restriction o, positive
(but recall the caveat after Lemma 6.12) (it) or by taking, at
* *, instead of 1 subinterval of Ix; several disjoint ones.
(In this manner all the sets we shall construct in this section
can be obtained with arbitrary Hausdorff dimension.) We
shall not, however, need these refinements except in
Lemma 7.12.

We now begin to use the freedom allowed us in the choice
of %,, Ky, .... Suppose (as we shall from now on) that
1, = 0. As an inductive hypothesis suppose we know at the
n* stage that §&,,, 8,,, ..., &, = @. Let

8w ={L:1 < i<k} Set R, ={{L}[1<1i<k]

Then A,,; < m4; and &, 441 = 3. In this way we can
ensure that for any given r we have &,= @ for large enough
n. (For later reference let us call the set of integers w 4 i
used in ensuring this the set U. We can always take U such
that Z*\U 1is infinite, and in what follows we shall do this.
Note that A, -0 as u —> oo with weU.) If this is done,
we have P perfect and by the formula

ftmds| < Ag+e  for  [m| >N,

proved above we have

\fxmdcl < sup A, + sup e, for |m| > Ny
P s>n+1

where k(n) =inf {h: &, # ¢} —1 >0 as n—>o. In
particular

lim sup‘ﬁxmdcl <A+«

|m|> o

where A = lim sup A,, ¢ = lim sup ¢,. In what follows all

n>wo n>o
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our P will be assumed constructed in this manner. Moreover
we shall take ¢, — 0 so that

llllr?l.)sgp I./me dcl <A
and so P 1s at most an H, set. (In particular if A =0,
then P is not a Helson set.)

Independence. — Suppose 1 > B > 0, M > 1 and w, > 1
given. We can find an N > 2M such that 1/N < B. Since
Na = 0 and k(m) > o0 as m - o wecanfinda w > w, + 1
such that for any I8, we have diam I < 1/2 M and
o,] < 1/(4N2). Let &,= {I,: 1 <t < k} and note that

k > 4N? (since o(P,) =1). We set g = <1<€'I> and define

successively R,,q, Kuig, ..., Kuyy by
Ko ={Feb,i: Felyyulepu- vl

where p(1, 1) < p(2, i), < --- < p(M, i) range over all
possible values with 1 < p(u) < M as i increases from 1 to
g (cf. restatement of Lemma 6.4). We now use the fredom

we have at the point % by taking (as we may by
Lemma 6.2) the

Ji; [ <7 < 8(K), Ke&, ]
to be M-independent. By Lemma 6.4 we see that if

Tyy Zay « ooy Ty € Pw+q+1 and lxl - xt' Z 1/M
for

M
M>1>t>1 then M> Y |m|>1
=1

implies

M M
Y mx, # 0. Moreover A, = X o,(I ) < B.
=1 t=1

We can repeat this process for successively larger n, and N,
and successively smaller B and 3 (with values tending to
0 say). By Lemma 6.3. — P is then independent. Call the set
of integers w -+ ¢ used in the process V (so VcZ\U). We
note that A,—>0 as r—> o for ¢veV (since the values of
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B tend to zero). We can always take V such that Z™\(V u U)
is infinite.

But first we consider the case in which we only require that
A,—> 0 as n—> o (for example when we take

VuoU={reZ:r > 2}

as we always can). Then A =0 and we have shown by
construction

Lemma 7.4. — There exists a perfect independent non Helson
set P. (Moreover there exists a measure o supported on P
such that fpxm dos >0 as |m| - .)

We now digress very slightly to obtain the result by a
different method.

Comparing Lemma 7.1 with Lemma 6.15 we see that the

work of this section gives mutatis mutandis (and allowing
B,—> 0 as r— o):

Lemma 7.5. — There exists a perfect independent set P and
a positive measure o of mass 1 supported on P such that

liminfo {zeP:|y. (@) —A > ¢} > pn{yeT:|lexpiy —2 > ¢}

|m|>
forall |\ =1,1> ¢ > 0, ie.
c{zeP: |xa(x) —A > ¢} > u{yeT: |exp ty — A > ¢}

as |m| - o forall |\ =1,1> ¢ > 0 (u s Haar measure).
In particular if h is a piece-wise continuous function h: 11 — G
(where II = {zeC: |z] = 1}) we have

ﬁhoxm do — ﬁhoxl du as |m| - oo.

We see at once that ﬁidc»ﬁ_l dp. =1 as |m| - © so
that o(P) = 1. Again fpxm do - [ x1de=0 sothat P, o
satisfy the conditions of Lemma 7.4. But more 1s true. We have
for example fp sgn (sin mz) do(z) - /; sgn (sin z) do(z) =0
and fp sin? mx do(z) — A sin? z do(z) = 1/2.

That Lemmas 7.4 and 7.5 are equivalent may be seen by
approximating h by polynomials.
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As a particular case of Lemma 7.5 we have

Lemma 7.6. — There exists a perfect independent set P and
a positive measure o supported on P such that
lim info{zeP: cos mz < 0} > =.
|ml> oo
However, ® seems to be a natural constant resulting from
the method. It would, therefore, be interesting to know
whether this constant can be increased.
We now return to the main theme of this section by modi-
fying our inductive construction to give

TaeoreEm 7. — There exist L,, Ly, ..., L, disjoint perfect
Kronecker sets such that LyuLyu --- uL, is independent but
at most Hy,.

Proof. — Start the induction in such a way that for some k

q9
8, = U Mo, where setting M, = v {F: Fedb.} we have
M;, M,, ..., M, disjoint and oM =1/g [1 <r < g].
Suppose n and p are given. Set

Rowr = {I18,: IcM} 1 < r < q].

We now use the freedom we have at the point = * by
taking (as we may by Lemma 3.3 (¢)) the Jg; such that there
exists an  Q(p, r) with |xopn(@) — fp(2) < 277 for all
zelJg; [1 <7 < s(K), Ke&,,,].
We repeat this process for p=1, 2, 3, .... Let
L.,=M,nP. Then sup [%ew,n(@) — fo(z)] < 272 so L, is
re

Kronecker. L,, L,, .. .,qu are disjoint and perfect by cons-
truction. Call the set of integers w -+ r used in the process
D (so DgZ\(UuV) taken infinite). We note that
A;=1/g—~>1/q as d > © for deD. Itis possible to ensure
then (for example by taking DuUuV = {reZ: r > 2})
that A=1/¢g and so P=L,uL,u---ul, is at most
H,,. This gives the result.

The modifications discussed for Lemma 7.5 now give (taking
g =2) Lemma 6.13 and so Theorem 6. We can, of course,
obtain other results by taking ¢ # 2, but this and the same
task for Theorem 8 is left to the reader.
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Varopoulos [18] has greatly increased the value of this
result by showing that the independent union of ¢ Kronecker
sets is at least H;,. Our result is thus best possible. We will
conclude this section by obtaining some further (rather simple)
consequences of this theorem, but we first obtain a result
dependent only on the methods so far developed.

Tueorem 8. — There exist a countable collection
Ly, Ly, Ly ... 3
.of disjoint perfect Kronecker sets such that P =U L, is a
closed (indeed perfect) independent non Helson set. =0
Proof. — Choose vy 1independent and set L, = {y}.

Automatically L, is Kronecker (Lemma 1.1 (v)). Let
Fo= [y +1/3q), v + 1/(3¢ + 1)]

for ¢=1,2,3,.... Set & = {F,} andlet of be the distri-
buted measure on F, with of(F,) =1. For each & we
now commence the inductive construction established in this
section choosing 74, 2 > 0, A7 and finding &I, 2, NI, and
A? 1in the usual manner. (Note that N¢ need not have the
same value as NZ*1). It is clear that we can arrange to have
el, 17 —>0 as Al —>1/¢ as n—> o while ensuring at the
same time that the following conditions are fulfilled. Given
any M we have for large enough n that if =z, z,, ..., ox
M

LOUUP;{ and |z, —z|>1/M [M3>1>t3>1] then

M= Z |m| > implies Z ma, # 0. (This 1s done by

ensurmg block-wise 1ndependence as above.) The usual argu-

o

ment now shows P = L,u U P? independent.

g=1
Further we demand that P? is the (independent) union
of ¢ disjoint Kronecker sets Ljis . .44, say such that

tim sup | [/, xn o] < 1/q.

|m|> o

(This is done as in Theorem 7).

Summing up we see that P 1is the perfect (since y is a
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limit point of P) independent union of the disjoint perfect
Kronecker sets L, L, Ly, .... Moreover we can find positive

measures o', o2, o3, ... of mass 1 supported by P such

that lim suplfpx,,, doq’< 1/q as g¢— o. Thus P is non

[m|>»

Helson.

The interest of this result is twofold. Firstly any countable
independent set is H. Secondly (and more importantly)
well known results give

Lemma 7.7. — If P is given as in Theorem 8 and
o is a measure supported by P with |o|(P) > 0 then
lim sup |o(m)| > O.

Proof. — Since Y, |q|(L,) = || <l "Lq> > 0 there exists
g=0 =0
a ¢ > 0 such that |s|(L,) > 0. Vqu can also find a closed

set L, with int L;2L, and |o|(L,\L,) < 1/4|s|(L,). Choose
a continuous function o: T — [0, 1] with «(L,) =1 and
o(T\L;) = 0. Since L, is Kronecker and so by Lemma 1.7 (1)
H, we have

lim sup| 1o do|>Timsup | [ x_ndo|—1/4]o| (L) =3/4|s|(L.).
Now we can find a trigonometric polynomial T say with

sup |T(y) — o(y)| < 1/4]0|(L,) (e.g. by Féjer’s Theorem [10]
eT
y§ 3, 1). Then

lim sup| [ Ty_p do| > lim sup| [ ox_p do| — 1/4|o|(Ly)
e e > 1/2 |o|(Ly) > 0.

But if lim sup| [ x_ds|=0 then lim sup| Ty_, do| =0

m-> o m-> oo

which yields a contradiction. This proves the lemma.
Summing up we have proved by construction

Lemma 7.8. — There exists an independent perfect non
Helson set P which supports no non zero measure t such that
(m) >0 as |m|—> oo.

One weakness of our methods is that while we can construct
(e.g. 1n Theorem 7) sets which are at most H,, say, we cannot
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ensure that they are exactly H,. We conclude by giving
some (admittedly simple) examples of what can be achieved
with the help of « converse » results, in this case those of Varo-
poulos, which we give in a form adapted to our particular
purposes.

Lemma 7.9. — If A is a closed independent set with
A=A uAyu.--uA, where the A, A, ..., A, are disjoint
and the union of any m of them is Kronecker, then A 1is at
least H,,.

This lemma 1s the only major result used in the paper which
we shall not prove. The proof is based on totally different
principles to those used here [18].

Using it or a simpler estimation we obtain, for example, the
following 3 results. In each case we give a fairly detailed but
not complete sketch of the proof.

Lemma 7.10. — There exists a perfect set E such that
q
X2E=T yet E isatleast H,_,,

1

Proof. — We construct E=E, uE,u-.--uvE, where
E;, E,, ..., E, are disjoint perfect sets such that every union
of ¢ — 1 of them is Kronecker. The proof follows Lemma 3.4.
Suppose at the r=ng+ m"* step [L <m<qg—1] we
have %, 4., ..., 4, disjoint collections of disjoint closed
sets such that setting L, = v {F: Fed4,} we have

q

Y int L,, = T.
v=1
As in Lemma 3.4 we can find 4., %44, ..., 4,41 such that

g
Inr1S%ms X It L,y =T, if Ie4, then there exists

v=1

I, Le4,, disjoint with I}, I, cI [w # m],

1/2 max{diam I: Ie4,, w # m}
> max{diam J: Je ¥, ,,, w # m}

and further there exists an N such that

xxen(@) — f(@)] < 27 forall ze|_J Ly

w#EmM

Setting E, = n L, we have the required result.
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Lemma 7. 11. — There exists a perfect independent set E
which is at least H,_;,, but not weak Dirichlet.

Proof. — We adapt the proof of Theorem 6 in the same way.
At the n" step we have 4, %, ..., 4, disjoint collections
of disjoint closed sets such that

max {diam [: le¥%,q¢ >¢ > 1} - 0

as n—> o and a positive measure o, such that setting
L,= v{F: Fed4,} we have o,L,)=1/¢g [1 < ¢ < q].
We can ensure that, given any n large enough, there exists
a ¢(n) such that

on{@  Lign l:(2) — 1 > 1} > 1/(16)o,(Lun) = 1/(16g),

but none the less the following is true. Given 1 < w < ¢
and p > 1 we can find an A(p, w) such that

X0, (@) — fol@)] < 27 for ze|_J L.
vEWw
for all r large enough. (We do this as in Lemma 6 C.) Moreover,
we can ensure as in Lemma 6D that, given an M, we

q
have that if =z, 2, ..., axe |_JL. and [z, — 2| > 1/M
v=1 M
M >10>7>1 then M > Y |m| > 1 implies
M had =1
> ma, # 0. Setting E, = m L,, and o to be the weak
=1 n=1

q9

star limit of o, we have E::l ’E,, 1s independent and at
v=1

least H,_;, (since the union of any ¢ — 1 of the

E;, E,, ..., E; 1s Kronecker), but supp ccE, ¢(E) =1 and
c{z: |xm(zr) — 1| = 1} > 1/(16q) for m large enough, so E
1s not weak Dirichlet.

Finally we give the following (possibly deeper) result.

Lemma 7.12. — Gwwen 1 > s,t > 0 wecan find L a perfect
H, set and M a perfect H, set such that L, M are disjoint,
but P=LuM 1is an independent Hg. ., set.

Proof. — To get the idea of the proof suppose s = k/l,
t = k[m (where k,l, m are positive integers). Consider [ + m
blocks Joy, Jop, ..., Sy, forpy, ..., Joyyn. Suppose we ensure
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that any % of them (but no more) are well behaved. Then at
various times a proportion k/l=s of the fy,, ..., b, are well
behaved, a proportion k/m =1t of Moy, ..., S, are well
behaved and a proportion k/(l+ m)=st/(t+s) of
Qoy, ..., b, are well behaved.

Select

1=11) <2 <I3) <, 1 =ml) < m?2) <m@) < -

such that (¢ 4+ 1) is an integer multiple of [(¢), m(v 4 1) of
m(v) [¢ > 1] and Uw)/(l(w) + m(w)) > t/(s +t) as w — o©
(so that m(w)/(l(w) + m(w)) - s/(s + t)). Now choose k(1),
k(2), k(3), ... suchthat k(w)[l(w) - s (so that k(w)/m(w) — t).

We now construct P in the inductive manner established
in this section. Choose L,, M, disjoint intervals. We start
the induction in such a way that, for some n(1), 8,3y = 4;; u by,
where setting L; = v {l: Ie%;}, M; = v {l: Iedb,} we
have o) (Ly) =¢/(t +s), o,y(M;) =s/(t + s). Automati-
cally |xo(z) — fi(z)) =0 < 27 for all zeL, uM,. Suppose

{¢9] m(p)

that for some n(p) we have §,, = U Gepu U Jb,, where

u=1 b=1
setting L, = v {l: Ie4,}, My, = v {l: Iedb,,} we have
Lip Loy, ..., Ly, disjoint subsets of Ly; M;,, My, ..., My,
disjoint subsets of M, with

Sup)(Liap) = oup(Liep) = -+ = ouim(Lugp)
and

Sup)(Mip) = 0ui(Mzp) = -+ = o)(Mugpyp)-
Suppose we are given some N > n(p). By using the freedom

given us at * * (taking several subsets of the Ix; if neces-
sary) we can ensure that for some n(p + 1) > N,

(p+1) m(P+1)
Euprr) = l J Lo pr1 l , Aop p11
a=1 b=1

where, with the usual notation, each L,,.; 1s a subset of
some L, each M,,.; of some M, and

"n(p+1)(L1p+1) = "n(p+1)(L2p+1) = = "n(p+1)(L1(p+1),p+1),
°n(p+1)(M1p+1) = Gn(p+1>(M2p+1) == "n(p+1)(Mm(p+1),p+1)~

Next we choose Jypi1)515 Jupeiyras -« o> Inpri)+npery (Where
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hip + 1) = <m(p +k(1; —_t li(f) + 1)>> such that then the

Jup+1y+r consist of every possible union of k(p + 1) distinct
sets from the 52_1;:+1, Lapr1s + - Lgrnprry Morpiy, Mogppy, ..
Moppi1y, p+1-  Setting

*)

J{n(p+1)+r—1 = {Ke 8n(p+1)+r :Kele Jn(p+1)+r}

[1 <r<h(p+1)] we can ensure, as in Theorem 7, that for
some Q(p+1, r) we have that zeJef,,,;, where
JeKe J{,.(p+1)+,. lmplies IXQ(p+1, ,.)(.’17) - fp+1(x)l < 270, In
addition setting F,,., = v {l: leJyiy,} we have

An(p+1)+r = G(Fn(p+1)+r)
k(p) max (a(Ly,41), o (Ml +1))
k(p) max (¢/(l(p)(¢ + ), s/(m(p)(t + s)))

where B, = max (th(p)/Up), sk(p)/m(p)/(t + s) — ts](t + s)

as p - .
We repeat this process for p = 2, 3, 4, .... By the usual
method we can ensure P independent and still obtain

A =lm sup A, —hm sup B,=st/(t+s). Thus P 1is an

r>o

independent at most Hsmﬂ) set. Similar arguments show
that we can, in addition, have L =Ly;nP an at most H,
set where

e=(1/A) lim sup ( sup o(Fyp.rnL))

hP)yZr>1

= (s + 1)/t lim sup (tk(p)/(p)(s + 7))
— (s + O0)ts](s + 1) =

1.e. L 1s at most an H, set. Similarly M is at most an H,
set. By construction P is the union of [(p) + m(p) disjoint
sets L2 =L, ,nP, Ml =M,,nP [1 <a <p),1 <b< mp)]
such that the union F say of any k(p) of them satisfies
sup |xo(®) — fo(z)] < 277 for some Q. Further the Lz,
z€

Me+l form subsets of the LI, M} each L, having the same
number of subsets and each M) having the same number
of subsets. Since k(p)/l(p) - s, m(p)/l(p) -t (and so
(k(p) + m(p)/U(p) — st/(t + s)) given any e >0 we can find
a p(s) and k(s) < k(p(c)) such that every union of k(e)
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sets taken from the L&9, MX9 is Kronecker and

k(e)[(Up) + m(p)) > st[(t + s) —e.

By the result of Varopoulos P 1is at least an Hg ., . set.
Since ¢ 1s arbitrary, P is at least an H,., set. Similarly
L isan H; set, M an H, set. This concludes the proof.

Incidentally we have now constructed independent H, sets
forall 1 > ¢ > 0. For various reasons, most of which become
clear on reading the proof, there seems to be a natural barrier
at st/(t + s) when using our method. It would, therefore,
be extremely interesting to have an improvement on this,
1.e. to construct an H; and an H, set whose independent
union was not at least Hg.y. (A proof that this was
impossible would, of course, show that the independent union
of 2 Helson sets was Helson.)

8. Dirichlet and Helson Sets.

The object of this final section is to prove

Tueorem 9. — There exists a perfect independent Dirichlet
set which is not Helson (and so in particular not weak Kronecker).

The reader is advised to refresh his memory of Lemmas 5.1
and 5.2 together with the alternative proof of Theorem 4
given in Section 6.

In seeking a proof we naturally first try to obtain analogues
of the results used in the proof of Theorem 4. For example a
suitable analogue of Lemma 5.1 turns out to be

Lemma 8.1. — Suppose N, K, P, p are positive integers

with P > 4N and —NPE > 12800 p®. Then setting b, = 2—;3
K

we have for P — N > r > N that | X x.(b)| < K/(4p).

u=—K

Proof. — Take a particular P — K > r > K. By Lemma

5.1 there exists a > ¢ > 0 such that

K

6 400 p®
(b)) — 41 > 1[2.

Now consider b,, by, ..., b p- These 800 p points lie

on the circle T = {A: |A\| =1}<cC. Thus at least one pair

of them must be a distance apart of no more than =/(400 p)
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(and so less than 1/(100 p) apart, possibly even coincident).
We can therefore find 1 < s <t < 800 p such that

[Xr(be-sg) — 1| = [2:(beg) — %:(bsg)| < 1/(100P

and thus 1 < w < 800 p with |x.(a,) — 1 < 1/(100 p).
Taking any integers h, I we have

h+w—1 w—1
gh Xr(bqu+l) = p— (bqu)
11— Xr(bgw)
1 — x.(b,)
S ——————
50 p
Thus setting k = [Z_IS] — 1 we have
qw
k—1| quw—1
2 Xr( ) 2 2 Xr(a’hqw-H K) + Z er(au)I
a=—K Eo =0 u=K—2qw
< %p + 2qw
K K
< %p -+ 800 p.m
<X

We also wish to know how much we can tamper with what
we have already constructed.

Lemma 8.2. — Suppose 8 >0 and hy, hy, ..., hxe C(T)
given. Then there exists an &, = €¢(8, hy, hyy ..., hx) > O with
the following property. Suppose a,, as, ..., a, distinct points
of T and o a measure on a;, a5, ..., a, with [o| = 1.
Then if o; is a measure supported by N(a;, 8) with

oi(N(a; 3)) = o(a) [1 < i < n]

we have, settmg o = E ci, that 1fh de’ ——fhj dcl < 3 for
all 1 <7< N

Proof. — Since hy, hg, ..., by are uniformly continuous (or
directly from the Heine Borel theorem), we can ﬁnd an ¢ > 0
such that [hy(z) — ky(y)| < 8/2 forall [z —y| < <7< N

Setting e, = £/2 we have the result.
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Unfortunately the conditions of the 2 lemmas cannot be
satisfied simultaneously. On the one hand, in order to use
Lemma 8.1 to control the behaviour of our construction with
respect to x,, we must make alterations over a length large
with respect to the wave length of y,. On the other hand,
to preserve this good behaviour by the means suggested in
Lemma 8.2, later alterations must only involve lengths small
with respect to the wavelength of x.. Nor can we simply
ignore this gap as, to a limited extent, we could in the inductive
construction of Section 7. For examining Lemma 5.2 we see

A

that if we allow |é(n)| to be large for any n, then

lim sup |8(r)| = sup |8(r)|
[r]> o rez
will be large.

Let us examine more closely how we propose to use Lemma
8.1. Suppose we have a finite set A = Cu D of points (where
C and D are disjoint) and a measure ¢ on A with |o] = 1.
For each aeD we form k(a, u) =2—;—E +a for |u| < K
with K and P as in the statement of Lemma 8.1. Setting

D' = {k(a, u): ae D, |u] < K}

o (k(a, u)) = 2K1+ co(@) for  aeD,|ul<K
¢'(a) = o(a) for aeC
o' (E) = for En(CuD') =090
we have [o'| =1 and supp ¢'cCuD'".

Clearly if P— N >r > N

‘/1; xr dcl‘ +1el(C) < a§D fma,u):msxz %:ds’| +10](C)
S s(a)
< 3| 3 w52 +1el0)

1
< g +191(0).

Thus, if originally I/l;X’ dcl < 8_1}5 + |s|(C), we can tamper

with C as much as we like without making things worse
(at least in the interval P — N > r > N).
There remains the question of what happens when
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0 <r < N. We note first that if C = @ then although
ZKﬁi—!———i Y x-(b) = vy say need not be small, we do at least
u=—K

have |y| < 1 and therefore

|/Dx do'| = IYI‘fDx, dc. < lfDx do].

Of course, we wish to work with C # @ and o(C) > 0.
It can then be true that |[y/|, [y"] < 1 yet not true that

IY”fordG—I—Y’fDxr SIfordG"

However, if y', v” remain close to y then

“Y er do + ¥’ f Xr dG‘——.yfx, dc“ remains small. This

observatlon gives us the final piece of the jigsaw. Let us write

€ .
= % f_ X A where p 1s Haar measure

Y(r, &, Q) = 2L1+ 1u_2_L Xr (%) where L = [—(3—]
We then have

Lemma 8.3. — For fized r, y(r, e, Q) > y(r,€) as Q - oo.
In particular given & > 0 and N a positive integer, we can

find a Q(3, N) such that
IY(ry E) - Y(r> D) Q)I <39 for all 0<r<N

We are now in a position to give the central inductive step.
One of the main points to notice is how we avoid making
circular definitions.

Central inductive step. — In what follows h(n) and m(n)
will be positive integers which we shall choose so that

(1.1) m(n) < m(n + 1) < m(n) + 1
(1.2) h(n) < h(n + 1) < h(n) +1, h(n) < n-—1
and 3(r), n(n) real numbers such that

(1.3) 0 < n(n+1) <nn) <1,
(1.4) n(n) = min 3(r)

0 °r “h(n)
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(again we will choose 3&(r), n(n) as the induction proceeds).
Suppose that at the n® stage of our construction we have:

(2.1) A(n) a finite set of points

(2.2) B(n, 1), B(n, 2), ..., B(n, k(n)) disjoint sets with
A(n) = B(n, 1) uB(n, 2)u --- uB(n, k(n)).

(2.3) ¢(n,0),6(n,1),...,0(n,h(n)) real measures supported
by A(n) with [o(n, j)| =1 [0 <] < h(n)].
(2.4) P(n) > 2, k(n) > k(n — 1) > 0 integers
(2.5) 1/(4 m(n) + 2), 27*[P(n) > ¢(n) > 0
with the following properties
(2.6) If aeA then xpy(a) =1
1

(2.7) lo(m, 1)IB(n, I) < () 3(7)
[0 <j<hn), 1<!<kpn)
(2.8) diam B(n, ) = max {|z — y|: z, ye B(n, )}

< ;l%— en) [1<!<kn)]
(2.9) card B(n, 1) > 2 [1 <1 < k(n)]

. 1 1N ..
2.40) | [ % de(n, )| < <1 + o = 7) 5(j) for all

r [0 <j < h(n)]. (The « important » conditions are, of
course, (2.6) and (2.10)).

From here the inductive step may proceed in 2 ways which
we shall call case 1 and case 2. We set A(n) = C(n) u D(n)
where C(r)nD(n)=¢@ and C(r)nB(n, !) has the value
g or B(n,!l) (i.e. each of C(n), D(n) is the union of blocks
B(n, 1)) [1 <1 < k(n)].

In case 2 we take C(n) = @.

In case 1 we let C(n) be the union of selected B(n, [)
subject to the overriding condition

lo(n, )IG(n) < 3(;) [0 < < A(n)].

In particular we can and shall ensure that in case 1 C(n)
is the union of at least m(n) selected B(n, ) (cf. the methods
for achieving blockwise independence in Section 6).

The reader is advised to keep the more complex case 1 in
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mind while studying the induction and afterwards consider
case 2 as a simpler version.

We now define successively ¢'(n 4 1), N(n 4 1), Q(
€ "(

n+1),

Lin +1), Cr+1), <(j, n+1), ’”(n +1), Cn+1),
'(n+1), Pn+1), Kn+1), ¢(n+1), An+1) and
c(féi- L, 7).

(31) ¢(n + 1) = 1/8 min (¢(n), 1/(4m(n) + 8),
inf{lz —y| : z, y < A(n), = # y}).

Choose an N(rn + 1) > P(n) such that
(3.2) N(n+ 1)¢'(n 4+ 1) > 12 800 <2+5<[%n)] + 1>>3- By

Lemma 8.3 we can find a Q(n 4+ 1) such that

(3.3) Ix(r, s'( 1)) = x(r, e'(n+1), QI <27 5(n)
whenever Q > Q(n + 1) and O < r < N(n) whilst

1
> 2n+6.

Qrn + 1)
Lin+ 9 = [
Let C'(n) = é(a, u): aeC(n) |ul < L(n + 1)} where

la, u) =a + Q—(nL—IT—T) (we should more properly talk of
l(a, u, n + 1)). Set

w(n, | + 1)(Ua, u))
1

o(n, 1)(@) [aeC(n), [u] < L(n+1)]

TA(n+ 1) +1
tn, j+ DE=0 if EnC(n) =0
Then
[ de(nf + 1) — y(r,e'(n + 1)) [ . do(n, j)

=wmam+4»m-+m—wma nt D) [ x do(n, j)
< 2749 (n).

(If C(n) =@ then we adopt the usual conventions concerning
@.) By Lemma 8.2 we can findan 0 < ¢”(n+1) < 1/2¢'(n 4 1)
such that

"(a, u)—Ua, w)|<<"(n+1) [aeClr), [u] < Lin+ 1)]
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implies (in obvious notation)

tfx,.l”au))drn]—{— er (a, w)) dx (n, ] + 1)]
< 279y ()

[0 < < h(n)]. By Lemma 6.8 (ii) we can find l'(a, u) e 2rQ
such that [l'(a, u) — l(a, u)| < 1/2 "(n 4+ 1), and writing
C'(n) = {l'(a, u): aeC(n), |u] < L(n+ 1)} we have C'(n)
m(n)-independent. As a consequence of these conditions we
have

(3.4) C'(n)c2rQ

(85) | [ xds(n, j+ 1) —x(r, <'(n+ 1) [y do(n, f)
< 2-+a(m) [0 < j < h(n)]
(3.6) la — U(a, u)| < 2¢'(n + 1)
for all
aeC(n),|ul < L(n + 1).
Finally, by Lemma 6.2 we can find a

0 <e'(n+1) < 1/4 "(n + 1)

such that
(3.7 If
b, —c:] < e"(n+1) [1 <r < mn)]
where ¢y, ¢35, ..., Cnm € C'(n) are distinct, we have by, by, ...,

bnw m(n)-independent.

We note (though it is not necessary in the proof of Theorem 9)
that we could choose C’'(n) to satisfy (ignoring a certain
amount of notational confusion) the conditions of Lemma 6.9
() for C'(n) = {zy, 23, ..., x} with ¢ > m(n).

Our next task is to choose P(n 4 1), K(n + 1). This we
do so that

(4.1) P(n +1) > Q(n+ 1), 2"
(4.2) P(n+4 1)¢ 1s integral for all ¢ eC'(n)

. _ Pnt1)
(4.3) K(n + 1) = o)
(4.4) K(n + 1) > 24,

14
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(Note. Speaking in a mildly abusive manner, we see that
(4.1) and (4.4) are both satisfied for all P(n 4 1) large enough,
whilst (4.2) 1s satisfied by all P(rn + 1) with a certain divisor.
(If C(n) = @ then this divisor can, of course, be taken to
be 1). We can thus indeed satisfy (4.1), (4.2), (4.4) simultane-
ously. We further remark (though we shall not need this in
the proof of the main theorem), that if P(n + 1) satisfies
(4.1), (4.2) and (4.4), then so does sP(n+ 1) [s> 1, seZ].
As a particular instance, suppose we undertake ¢ such cons-
tructions simultaneously [t > 1, teZ] forming A¥(n), ¢i(n),
Pi(n) and so on [1 < i < ¢]. With an obvious notation,
suppose that Pi(n 4 1) satisfies (4.1)®, (4.2)® and (4.4)®.

t

Then so does P(n 4+ 1) = H Pi(n 4+ 1). We may, therefore,
Jj=1

always arrange our construction so as to have

Pi(n) = Pi(n) = -+ = P(n)
for all sufficiently large n.)
We take
1 . Q—(n+5)
(4.5) S(I’I, + 1) = z min <m) s”(n + 1>>

In the next part of the construction we define
A(n+ 1) and o(n+1,)).

For each a e D(n) form points b(a, u) (or, more accurately,
2ur

bla, u, n + 1)), with b(a, u) = 57— [luy] < K(n+ 1)].
L(:t ), W ( ) P(n + 1) ( )]

D'(n) = {b(a, u): ae D(n), |ul < K(n+ 1)}
1

and o(n + 1, j) be the measure on A(n + 1) = C'(n) u D'(n)
defined for 0 < j < h(n) by

ofn + 1, E (e, 1) = g
for aeC(n), |u| < L(n+1)

oln + 1, flkla, w) = g7
for aeD(n), |ul < K(n+1).
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For notational purposes set

B'(n, ) = {I'(a, u): aeB(n, I), |u| < L(rn + 1)}
if B(n, 1) C(n)

B'(n, 1) = {k(a, u): aeB(n, 1), [u] < K(n+ 1)}
if B(n, I) < D(n

F(n,a) = {l'(a, u): |u] < L(n+ 1)} if aeCn)
F(n, a) = {k(a, u): |u| < K(n 4+ 1)} if aeD(n).

We now examine some of the consequences of our definitions.
Recall that o(n, j) is real and so o(n + 1, j) 1s. Thus in
particular

lfm@m+LM=U}q®m+Lnr

This, of course, is simply a technical convenience for, as the
reader will easily see, the work of this section goes through
with o(n, j) complex. But the choice of o(n, j) real does
shorten the next piece of working.

(5.1) If
0<r<Nn+1 (andsof — Nrn-+1) <r<0)

we have

| % do(n + 1, j)
[ Aeds(n+1,)) + [ % do(n+1, j)|
zl/;'<;o Xr d(n, j + 1)
+ y(r,e'(n + 1), P(n + 1) f % do(n, J)|
<t e+ 10) § [ xrdoln, ) + [ % ds(n, )|
[t deln, j+1) —x(r, &' (n+1) ) o 1 do(n, h)
(v(r, /(4 1)) —¥(r, ¢'(n+1), P(n+1))) [ 3, do(n, )]
S e do(n, )| + 27+ (n)
(145 —gm)30) 10< < k)]
using (3.5), (4.1) and (3.3), the fact that |y(r, ¢'(n + 1)) < 1

and our original inductive hypothesis (2.10), together with
condition (1.4).

n + -+

N

14.
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We also see that
(5.2) If N(n+1)

lfxrdc +1,i)'

lo(n + 1, NC () + | [ 2 do(n +1 ]

|

a(n, 1] (C(0)) + [x(r, <0 + 1), Pl + D)llo(r, HI(D(m)
) + 20490 (n)

3
(145 —55)30) [0 < hn)

using the definition of C(n), (3.2) and Lemma 8.1, and condi-
tions (1.4) and (1.2).

Moreover by construction
(5.3) xe@in(a) =1 for all aeAn+1)
and so, combining (5.1) and (5.2) we have

56 |fwdatnt1,9)] < (14 57 — 325) 300
for all r 0<7< h(n)].

N

r< P(n+ 1) — N(n+ 1), then

N 1| N

N

Tidying up we note
(5.5) fo(n+1, NI =1 [0 <] < hn)]
(56.6) diam B'(n, l) < diam B(n, I) — ¢(n + 1)
+e(n) [1 <1 < k(n)]

(since ¢'(n + 1) < 1/8 ¢(n), ¢'(n + 1) + "(n 4+ 1) < 1/4<(n)
and ¢(n+ 1) < 1/4 <"(n + 1)).

(6.7) diam F(n, a) < 1/8 max diam B(n, 1) [aeA(n)]

1<I<k(n)
(since ¢'(n+ 1) < 1/8 max{|lz — y|: z, ye A(n) z # y} and
by (2.9) card B(n, I) > 16).
(5.8) [s(n+1, J)| F(n, a)
< 1/16 max |o(n, /)(B(r, 1)) [0 <j < h(n), acA(n)]

(since card B(n, I) > 16).

(5.9) card F(n, a) > 2" [aeA(n)].

In case 1 we set k(n+ 1) = k(n), B(n + 1, I) =B'(n, 1)
[l <l<k(n)] and m(n+ 1) = m(n). In case 2 we set
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k(n + 1) = card A(n) and, writing
An) ={aln, l): k(n + 1) > [ > 1},

we put

B(n + 1, I) = F(n, a(n, 1)).
We allow (but do not insist that) m(n 4 1) = m(n) + 1.

In both cases we have

(5.10) |o(n 41, j)| (B(n + 1, 1))

<
S m(n + 1)

(5.41) diam B(n + 1, 1)
4

m(n 4+ 1)

<

(recalling (3.1)).
(6.12) card B(n 4 1, 1) > 2",

Now suppose we can ensure that whenever
h(n + 1) = h(n) + 1

we have a real measure o(n+ 1, A(n + 1)) on A(n+ 1)
such that

(54) | [ % do(n+ 1, h(n + 1)

—e(n+1) [1<1<kn+1)]

for all r,

(6.5) flo(n + 1, j)l =1.
(540 |o(n+ 1, /)(B(n + 1

n
Then, comparing (2.3) with (5.10), (2.4) with (4.1), (2.5)
with (3.1) and (4.5), (2.6) with (5.3), (2.7) with (5.10), (2.8)
with (5.11), (2.9) with (5.12), and (2.10) with (5.4), we see that
we can restart the induction. (We shall leave the non central
question of how to define A(n 4+ 1) and, when

h(n + 1) = h(n) + 1,
o(n+ 1, h(n 4+ 1)) tll later.)
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This completes the more difficult and important part of
the construction. We now obtain some consequences.

Structure of the Limit Set. — In our construction there is a
natural definition of a descendant point. Formally we say
that f aeA(n) then the descendant points of a are the
members of F(n, a). We call a descendant of a descendant
a descendant and so on inductively. If be A(n) then by
construction, if ce A(n + m) say is a descendant of b, we

have, chiefly by (3.1),

lb—c < X e(n+r)+e"(ntr)

r=1
@

<2y en+r)

r=1
o0

2¢'(n 1) 3 (1/4)

r=o0

< 1/3 min (e(n), max{|z — y|: z, ye A(n), =z #y}).

N

Thus, if we let E be the topological limit of A(n), i.e. if we
set E={z: 3z(n)e A(n) with 2(n) >z as n—> o} we
easily see that E 1is perfect.

Moreover, if zeE, then |z —a| < 1/3 ¢(n) for some
aeA(n) and so

Ixew(®) — 1 < |xew() — xew(a)l < P(n)lz --a| < 27

Thus ypm — 1 uniforuly on E and by (2.4) P(n) >
as n— oo giving E Dirichlet.

Now consider o(m,j) for some fixed m suchthat j < h(m).
We can find a continuous function f with |f|, =1 and
f(z) = sgn o(m, j)(a) for all |z — a| < %x(n) where

x(n) = max {lz — y| : 3, y e Aln), @ # y}.
For n > m we have, by the considerations above,
[ fds(n, jy= 3 fla)s(n, )a) = 1.
a€A(n)

Thus o(n, j) has a weak star limit point o(j) with support
in E (indeed, it isobvious that o(j) 1is the weak star limit)

. . . 1 1 ;
with norm 1. Since lf x» do(n, ])l < (1 + o 7) 3(j) for



SOME RESULTS ON KRONECKER, DIRICHLET AND HELSON SETs 319

all rand all »n > m 1t follows that

}jﬂxrdcoﬂ < (1-+—%;)8g) for all r.

Setting & = nf((1+ ~1— 3(7)) we see that E 1is an at
iz1 2
most Hj set.
Independence. — By repeating case 1 with every possible

combination of m(q) selected B(q,l) at stages
9+t .9+

say, we can ensure that if @, @, ..., Tug, Y1, Yo, -+ Ymo)
are such that |z, —y| < <e(¢+¢) and u, v, ..., Yuy
belong to disjoint B(g,l), then z;, z,, ..., 2,, are m(g)-inde-
pendent. In this way we ensure that if z;, @, ..., z,,€E

) 4
d nf t) — > —— th s Tgy ey T
an }23 |2(t) — x(s)| m(q) en I, Z Zpq —Aare

m(q)-independent. (Cf. (2.8) and our discussion of descendant
points). At stage g+ ¢ + 1 we repeat case 2 and put
m(qg+ ¢ + 1) =m(q + q) + 1. Repeating this process infi-
nitely often (but not necessarily succesively), we obtain in the
usual manner (Lemma 6.3) E independent.

Introduction of New Measures. — The induction here has the
rather pleasing property of being self-starting. (Strictly speak-
ing we must define A(1), o(1, 0), 3(0) etc., but there we need
only take o(1, 0) as a « dummy » measure. For example, let
m(1) =1, k(1) = 0, 3(0) = (0) = 1, k&(0) = 2°,B(1,1) = A(1),
A(1) a collection of 2% points of 2xQ lyingin [d,d + 1], P(1)
such that P(1)a 1s an integral multiple of 2= for all ae A(1)
and P(1) > 2, ¢(1) = 1/4 min (1/6, 1/P(n)). The conditions
(2.1)-(2.10) are then trivially satisfied for n =1 for any
o(1, 0) with support A(1). But this is simply a technical
trick and has nothing to do with the construction proper.)

Suppose we have at the beginning of the n* stage o(n, 1),
o(n, 2), ..., o(n, h(n)) and 8&(h(n) 4+ 1) defined. Repeat
case 2 at stages n,n+ 1, n+ 2, ... setting

m(n) =m(n + 1) = m(n + 2) = ...
Each of the B(n + ¢, I) [1 <1< k(n + ¢)] contains an
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arithmetic progression of at least 2™+ terms. But it is
well known ([9] Chapter x1, § 6) that

Lemma 8.4. — There exists a sequence Q(n) - 0 such that
if %, %, ..., 2, distinct form an arithmetic progression, we can
find a real measure = with |t =1 and sup |3(m) < Q(n).
It 1s now clear how we proceed. There exists a ¢, > 1 such
that for all ¢ > ¢, there exists a measure 7py.,,) oOD
B(n + ¢, I) with |tpge, pl =1 and sup |Zpge,p(r)| < n(n).
Now select points yy, ¢s, ..., y,€ A(n + ¢,). (We may, for
the sake of simplicity, take {yi, ¥s, ..., ¥;} = A(n + »,),
but this i1s not necessary). There exists a ¢; > ¢, such that
writing C(t) = {B(n + ¢, + 1, I): B(n 4+ ¢, + 1, I) consists

of descendants of y,} we have for s > b > 1,

card €(t) > 4 m(n) <[m] + 1> + 8.

At the n 4 of* stage set A(n+ ¢o; + 1) = h(n) + 1 (note
that (1.2) remains satisfied) and let
13 1

G(n + V1 + 1, h(n) -+ 1) = ? tgl m‘*(’”‘”ﬁ‘% neCwy

TB(n+v,+1,1)

\Y

A quick check shows that we have satisfied conditions (5.4),
(5.5)" and (5.10)".

Provided that we increase h(n) only under these circum-
stances this completes the full description of the induction
promised in the remarks following the statement of (5.10)'.
We repeat this process infinitely often. In this manner we
obtain (since &(r) decreases as r — )

5 — inf <<1 4 %) 8(j)> = lim 3(n).

Proof of Theorem 9. — Allowing 3(n) -0 as n—> o we
obtain 8§ =0 and E a perfect independent Dirichlet non
Helson set.

Note. — Together with Lemma 5.2 this gives an alternative
proof of Lemma 7.8.

We conclude by adapting the methods above to prove
extensions of Theorems 7 and 8.
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Lemwma 8.5. — There exist Ly, Ly, ..., L, disjoint Kronecker
sets such that E =LjuL,u..-uL, s independent and
Dirichlet, but at most (and so, by Varopoulos’s result, exactly)

Hl/q'

Proof. — For later use we construct E in [a, b] by taking
Al)cs[a+ ¢, b— <] and ¢(1) =<. We ensure that A(1)
q

has at least oints so that we can put A(1) = L1, ¢t
q P P

=1
where the L(1, t) are disjoint and not empty. We can further
ensure (by taking (1, 0) as a dummy with 8§(0) =1 if
necessary) that |o(1, O)|(L(4, ¢))=1/¢ [L <t < q].
Let L(n, t) be composed of those points of A(n) which
are descendants of points in L(1, ¢) [1 <t < ¢q]. Then
q9

= U L(n, t) and the L(n,t) are disjoint and not empty.

=1
Let L, be the (topological) limit of L(n, t) as n — .
Then by the arguments used when discussing descendants,

we see that L, L,, ..., L, are disjoint perfect sets with E
as union. Moreover, by the remarks concerning the choice
of {y1, Y3, ..., Y.} when we introduced new measures, it is

clear that we can ensure |o(n, j)|(L(n, ¢)) =1/q for all
h(n) > j > 0. Taking 3(r) = 1/q [r = 1], we obtain E as
an at most H,,, independent Dirichlet set.

We still have to show how to construct L;, L,, ..., L, as
Kronecker sets. This we do as follows. Since

lo(n, DI(L(n, 8)) = 1/q

and L(n, t) 1s the union of B(n,!) (forlarge enough n), wecan
take C(n) = L(n, t) and proceed as in case 1. We choose C'(n)
as suggested in the remark following (3.7). By Lemma 6.9 (it)

inf sup |x-(@) — f(a)] < 2n/m(n) for all feS. Now

o<r<P(n+1) a€C'(n)
if zel,, then |z — a| < ¢(n 4+ 1) for some aeC'(n) where
e(n + 1)P(n + 1) < 2. Thus
inf  sup |x.(z) — f(z) < 2=n/m(n)
0<r<P(n+1) z€L,
+ 27"+ sup |f(y) — f(2)l-

|y—z|<e—"

If we repeat this process infinitely often (though, of course,



322 T. W. KORNER

not in successive steps), we see that, since

27 [m(n), 277, ,5up Ifly) — f(z)) -0 as n—> o
y—zicas
we obtain L, Kronecker.

(We could, of course, obtain the same result more elegantly
by using Lemma 6.9 (1)).

Note. — We remark that in Theorem 8 we found (speaking
roughly) a ¢ with hm supl 6(r)) = 1/q, here a sequence
r >

o; with }1m lim sup Iaj( )l = 1/q.
>o |r] »>x

LeMma 8.6. — There exists a countable collection Ly, L;, L, .

of disjoint Kronecker sets such that E = U L, s a perfect
independent Dirichlet non Helson set. g=0

Proof. — This is related to that of Lemma 8.5 in the same
way that the proof of Theorem 8 is related to that of Theorem 7.
(But note that — as in the alternative proof of Theorem 4
given in Section 6 — it 1s more convenient to take a sequence
of rationals y(n) tending to some point y than to start
with y fixed.) We ensure that E 1is Dirichlet by using the
technique suggested in the last part of the note following (4.4).

It is possible, using these techniques, to prove an extension
of Lemma 7.12.

Lemma 8.7. — Giwven 1 > s,t > 0, we can find L a perfect
H, set and M a perfect H, set such that L, M are disjoint
but P=LuM s an independent Dirichlet H,., set.

However, since the proof simply involves combining the
rather complicated proofs of Lemma 7.12 and Lemma 8.5
and needs no new ideas, we leave it as an exercise for the reader.

I should like to thank my supervisor Dr. N.-Th. Varopoulos
both for suggesting the topic of this paper and for his help
and encouragement. I should also like to thank the S.R.C.
for a grant.
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APENDIX

We give in diagramatic form the main relations (known to me) between the
sets discussed above. [I] refers to this paper, [II] to a long paper « Some
Results on Kronecker, Diriehlet and Helson sets II » which will form part of
my Cambridge thesis. Additionally the result (5) of Bjork will apear in seminar
notes of the Mit ag Leffler Institute. Drury and Varopoulos have now proved
that the union of 2 Helson sets is Helson (see [17]).
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