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ON CONTINUOUS COLLECTIONS
OF MEASURES

by R. M. BLUMENTHAL and H. H. CORSON

1. Introduction.

Let M be a compact space and X a complete metric
space. By a probability measure on X we mean a positive
regular Borel measure of total mass 1$ let P(X) denote the
collection of these. Let C(X) denote the set of bounded
continuous real valued functions on X, C(M, X) the set of
continuous functions from M to X. Let P(X) have the
weak topology as functionals on C(X) and give C(M, X)
the topology of uniform convergence.

There are many commonly used objects in mathematics
which can be viewed as continuous functions from M to
P(X). We will first give some examples of these.

Example 1. — Any continuous T from M to X may be
viewed in this way, considering x <= X as a point mass.

Example 2. — If T is a continuous function from M
into a finite dimensional simplex or simplicial complex, then
T may be viewed as a continuous map from M to P(X)
where X is the set of vertices under the discrete topology,
since there is an obvious choice for the measure corresponding
to T(().

Example 3. — Let X be compact, and let T be a positive
linear operator from C(X) to C(M) such that T(i) = 1.
Then the Riesz representation theorem implies that there is
a unique continuous map from M to P(X) corresponding
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to T; in fact it is just the adjoint of T. Conversely, any
continuous map from M to P(X) corresponds to such an
operator. Note that T is multiplicative if and only if T
corresponds to a function from M into X, as in Example 1.

Example 4. — Let X be a partition of unity of M and
give X the discrete topology. Define T from M to P(X)
by T(()g = g{t) for g in X. Then T is continuous. This is
similiar to the situation immediately following the proof of the
Lemma in Section 2.

Before giving the last, basic example we need more notation :
Let Y and X be complete metric, and let n be a continuous
function from Y into X. Then TT induces a mapping, also
denoted by TT, from P(Y) to P(X) and defined by
7T^.(E) = ̂ (^^(E)). Also, for teM denote simply by t
the mapping f -> f(€) from C(M, X) into X. Hence we see
that (i -> fy from P(C(M, X)) to P(X) is defined and
continuous for any X by taking Y to be C(M, X) and t
to be TT in the definition of (A —> n[i above.

Example 5. — For a fixed [L e P(C(M, X)), the mapping
t —> t\L is continuous from M to P(X).

In this paper we show that any continuous map from M
to P(X) is of the form given in Example 5, provided that M
is totally disconnected. As we see from Example 3, this esta-
blishes an integral representation theorem which generalizes
the theorem of F. Riesz for compact metric X: For any
such X and any positive linear operator T from C(X)
to C(M) with T(l) = 1 and M totally disconnected, there
is a regular Borel measure (JL on the space of multiplicative
operators under the strong operator topology such that
T/'(() = C Sf{t) d[L{S). Obviously the Riesz theorem is the
case where M is a space with just one element.

The most obvious shortcomings of this statement are first
that M is very special (although it is clear that the restriction
on M is essential for a conclusion in this generality) and
second that it is not clear which of the p. on C(M, X) are
to be preferred, since several of them can give rise to the same
mapping from M into P(X). As far as the connectivity
of M goes, see e.g. [3] for a discussion of its significance.



ON CONTINUOUS COLLECTIONS OF MEASURES 195

2.

THEOREM. — Let M be compact and totally disconnected
and let X be a complete metric space. Then for each continuous
function T from M into P(X) there is a (JL in P(C(M, X))
such that t[L == T(() for all t in M.

We will first prove a lemma which treats a special case
and provides some additional information for use in the general
case. Before stating it we need one more piece of notation.
Let X and Y be complete metric spaces and TT :Y ->• X a
continuous mapping. Then n induces a continuous mapping
from C(M, Y) to C(M, X) by {n^){t) = 7c(cp(()), ( eM,
9 e C(M, Y). We denote this mapping by TC also. If (JL is a
measure on C(M, Y) then it is simply an exercise in uns-
crambling the notation to check that the measures tn[L and
-^t\L on X are the same. In fact,

(T^(E) = ̂ {/•e C(M, X) : tf = f{t) e E}
^{/^(M^^eE},

and

TC^(E) - t^{y e Y : Try e E} =(!{/•€= C(M, Y) : ntf= nf{t) e E}.

LEMMA. — Let X and Y be discrete spaces and let n be a
continuous mapping from Y onto X. Let T be a continuous
mapping from M into P(Y) and let \L be a measure on
C(M, X) such that fy = TCT((). Then there is a measure v
in P(C(M, Y)) such that (1) tv = T(() for all t and (2)
7TV == (X.

Proof. — Consider a positive regular Borel measure 6 on
C(M, Y) having mass ^ 1 (but perhaps not a probability
measure) and such that (1) tQ ^ T(^) and (2) nQ ^ [L (an
inequality between positive measures means set-wise inequa-
lity). Let A denote the set of all such measures. Of course,
A is non-empty, for example the 0 measure is in A, and
we will now show that there is a non-zero measure in A.
Indeed C(M, X) is a discrete space and so there is an element
feC(M, X) such that (Ji( {/*})= s > 0. Suppose that f
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takes on values x^ . . ., x^ on sets Mi, . . ., M^ respectively
and let Y,: === Tc"1^), 1 ̂  i ^ M. For each y e Y the
function t -> T(()(t/) is continuous, and for each i
^ T{t){y) ^ s for all ^ e M ^ . Since M; is compact and

yeY;
totally disconnected, each point has arbitrarily small open
and closed neighborhoods [2, page 20]. Hence we may find a
finite cover ^ of M^ and a §i > 0 such that each element
of ll^ is open and closed and for U «= ̂  there is a yy e Y^
such that T(^)(?/u) > §1 for all te U. In fact we may clearly
choose ^ to be a partition of M,. For each i and each
U e ̂  define g{t) = y^ for t e U. If 8 is the minimum
of the 8, then 8 > 0 and T(t)(g{t)) ^ 8 for all t e M.
It we let 6 be the measure putting mass (8 A s) at the point
geC(M, Y) then 6 is non-zero and is an element of A.
Now we return to the proof of the lemma. The set A is
inductively ordered: indeed if K is a totally ordered subset
of A and we take (AI ^ [ig < • • * from K such that
lim ^n(C(M, Y)) == sup (JI(C(M, Y)) then a == lim ^ is an

n pieK n
element of A and a ^ p for every p e K. Let 6 be a
maximal element of A. If 6 has total mass 1 then (6 == T(^)
and 7r6 = [L. If 6 has mass T] < 1 then we may apply
the first part of the proof to the mapping

T{t) = (T(<) - (6)/1 - T]

and measure (i7 === (pi — 7i6)/l — Y). This will yield a strictly
positive measure Q' with W ^ T7^) and 7r6' ^ ^f and
then 6 + (1- — "^O^ w1!! he an element of A strictly excee-
ding 6. This completes the proof.

Now we return to the proof of the theorem. For each n > 0
let F^ be a partition of unity on X subordinate to a cover
of diameter less than 1/n. Give F^ the discrete topology.
We take Fo to be the trivial partition consisting of the func-
tion 1. Let X^ be the subspace of Fox • • • xFn consisting
of all (go? • • • ? gn) suc!1 ^at gogi . . . gn is not identically
0. Let TT^ : X^ -> X^_i be the mapping that sends
(go, ..., gn-l, gn) tO (g^ • • • ? gn-l)' Let

G ̂  {{go, gi, • • • ) e FoxFix • . . : {go, • • • ? gn^ X^) for all n},
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and let G = C(M, G). Then G is simply

{(A, A, . • . ) ^ C(M, Fo)X ... : (^o, .. ., A) e C(M, XJ for all n}.
G and G are closed subsets of nF; and IIC(M, F,) res-
pectively.

Let T be a continuous mapping from M into P(X). Then
for each n, T induces a continuous mapping T^ of M into
P(XJ by the rule T,(^[(go, . . ., gn)] = f gogi • . . gn dT(t).
Clearly, n^T^t) = T^-i((). When n = 0 we have of course
the trivial measure [LQ putting mass 1 on the one point of
C(M, Xo) so that t[Lo = To(^) for all t. Consequently by
repeatedly applying the lemma we obtain a sequence of
measures ^ e P(C(M, X^)) such that ^ == T^) for all t
and TC^ == (Jin_i for all n. By Kolomogorov's Consistency
Theorem [1, Th. 5, 11, page 120] there is a measure pi in
P(G) such that P^gl === ^n for all n. (Here P^ stands for
the natural projection of G onto X^ or for any of its other
interpretations as a mapping of continuous functions or of
measures.)

Since X is complete we can define a continuous function
<p : G —^ X by taking <p(go? gi? • • • ) to be the unique point
x e X such that x <= supp(gj for all n. As usual <p may be
regarded also as a continuous function from G to C(M, X).
Let [L = 9p so that [L e P(C(M, X)). We will complete the
proof by showing that t[L = T((^) for all t. Let K be a
closed subset of X. Write K^ for {{go, . . . , gn)e X^ such
that supp (gogi . . . g n ) n K ^ 0} and /^ for Sgo • • • gn?
the sum being over all (go, . . . , gn) s K^. Then ^-> IK
boundedly as n -> co and P^K^) decreases to y^K).
Since ^p p. == 9^ and ^n == P^pl we have

T(<)(K) =limJ'A^T^)

= lim 2 / (go . . . gn) ^T(()

= lim ^(KJ = lim ^(P^KJ)

= ^-^K)) - 9^(K) = ̂ p(K) = ^(K).

A measure on a metric space is determined by its values on
closed sets, so the proof is complete.
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3.

In this section we will give two corollaries. The first is
simply Prohorov's theorem on tightness of compact sets of
measures.

COROLLARY 1. — Let X be complete metric and K a compact
subset of P(X). Then for every s > 0 there is a compact
subset Kg of X such that v(Ke) ^ 1 — e for every v e K.

Proof. —- There is a totally disconnected compact space M
and a continuous mapping T: M -> P(X) such that
T(M) == K. Such an M may be constructed by letting M
be the Stone-Cech compactification of the set K under the
discrete topology. The identity map extends continuously
over M, and it is a simple, well known exercise to check
that M has the required properties. Let [L be a measure in
P(C(M, X)) such that ^ = T(() for all ^ e M . By the
regularity of (JL there is a compact subset Lg of C(M, X)
such that [ji(Lg) > 1 — s. Then Kg = {f(t}: fe Lg, teM}
satisfies the conclusion of the theorem.

As stated above, it is not possible to find many measures
on C(M, X) if M is not totally disconnected. The reason
for this is that there are not many functions from M to X
that are continuous. However, our theorem gives some infor-
mation in this situation, if we allow more functions.

In fact, let 3{ (M) be any collection of functions on M,
and let rM be the set M with the weakest topology such
that each /e^M) is continuous. Suppose that the Stone-
Cech compactification (3rM is totally disconnected. If T
is a continuous function from rM to PX such that T(rM)
is contained in a compact subset of PX, then T may be
extended over (BrM and our theorem gives a measure on
C((BrM, X). However, C((3rM, X) may be considered as a
collection of functions from M to X, and by a suitable
choice of S{{M) one gets results such as the next corollary.

COROLLARY 2. — Let I denote the unit interval, and let T
be a continuous function from I to P(X) or more generally
a right continuous function from I to PX such that T(I)
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is contained in a compact subset of P(X). Then there is a regular
Borel probability measure [L on the space of right continuous
functions from I to X under the uniform topology such that
t^ = T{t) for all t in I.

Proof. — Pick 91(1) to be the right continuous functions
on I, and proceed as above.
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