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Introduction,

The present part of the « Theory of Bessel Potentials ))
contains Chapter iv dealing with potentials on regular Rieman-
nian manifolds. The next (and last) part to be published,
Part IV, will contain Chapter v treating potentials on mani-
olds with singularities.

The classes of potentials P^ on a manifold 3)?, or rather
the classes H^ which are the classes P^ saturated relative
to the class of sets of measure zero, have been used extensively
in recent years (l). However, they were introduced essentially
for compact C00 manifolds or for compact bordered C00

manifolds. In these cases the Riemannian •metric on the mani-
fold is not so essential since for different Riemannian metrics
on such manifolds we obtain the same classes Ps^ with possibly
changed (but equivalent) norm. Not so anymore is the;case of
a non-compact manif old, when the class P^ as well as its
norm depend essentially on the metric. Therefore, the natural
setting for the theory of Bessel potentials on a general manif old
is the class of Riemannian manifolds, i.e., diffepentiable mani-
folds with fixed Riemannian metric. Our^aim hereis to develop
the theory of the classes P^ for regular (C00) ^Risemanman
manif olds (or bordered manifolds).

In Section 1 we consider for a manifold ISt the classes
PI^SR) which are easily defined and investigated by transfer
to local coordinate patches and use of the corresponding
classes in Euclidean domains as introduced in Chapter 11,
Part I.

{t] For .instancje, in -the questions. caniifictfid with' the.A.tiyah-Singer ind^x theo-
rem.
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In Section 2 we introduce the classes of potentials P^
on 93?. We take the natural and direct definition of P^ for
integral m and use quadratic interpolation to define Pj^
for m < OIL < m + 1. This kind of definition is not as direct
as would be desirable but from the theoretical point of view
it is the easiest to handle. Despite the fact that quadratic
interpolation was already introduced and used by several
authors (see for instance [2, 9]), in view of our specific needs
we found it necessary to describe this interpolation method
in Appendix I, especially as concerns interpolation between
functional spaces. We needed also in this section the notion of
equivalence of two different Riemannian metrics g and g
on the same manifold, which is a sufficient (and possibly
necessary) condition for equality of the two spaces P^q
and P^g- for all a ^ 0 when 3% is provided with the two
metrics. This notion of equivalent Riemannian metrics is
investigated in Appendix II. Among the several propositions
in this section we will mention Prop. 7 which allows us to
define more directly the classes P^ in cases when the manifold
can be covered by coordinate patches satisfying rather strong
restrictions. In Prop. 8, under much weaker assumptions
than in Prop. 7, we obtain the result that P "̂1"1 is dense
in P^ (in the norm of PSi). The problem is open if this
result holds for all manifolds (2).

Section 3 is concerned with /c-dimensional Riemannian
submanifolds % of the n-dimensional manifold 3% (3).
We consider restrictions u' to 9? of functions u e P^ and
also extensions of functions u' defined on 9?. If k = n
it is obvious that restriction from 3D? to 9t transforms P^
into P^ with bound ^ 1; we give sufficient conditions
on 91 that there exist a bounded linear extension mapping
from P^ into Pj^. For the case k < n, we give sufficient
conditions that the restriction map transform P^ boundedly
into P^""^2, a > ( n — A * ) / 2 , and sufficient conditions that
there exist a bounded linear extension map from P^-C"-^2

into P^, a > (n — ^)/2. Since we use in this section simul-

(2) The density of P§i?1 in P^ for m < a < m + 1 results from the definition
of quadratic interpolation.

(8) That is, C°° submanif olds regularly imbedded in 93^ with the metric induced
by the metric of SK.
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taneous extensions of functions in p^^-W^^ to functions
in P^R") for all a > (n — /c)/2, we describe these extension
mappings in Appendix III (4).

In Section 4 we investigate the classes of potentials on C°°
bordered manifolds. For a bordered manifold 9}? we define
the classes Pfoc(3D1?) and show that via the restriction map
Pfoc(93?) can be identified with a subspace of Pfoc^J?1) where
9311 is the inner part of 93?. For a Riemannian bordered
manifold 3D? we define the spaces Pj^ and show that the
restriction map establishes an isometric isomorphism of P^
onto P^f. Hence, in particular, each u <= P^i has « border
values » u e Pfo^2^^), where 093? is the border of 93?.
Also, in this section, for a C00 bordered Riemannian manifold
9%, we introduce the notion of the regular completion of
93? — in a sense the largest C°° bordered Riemannian manifold
containing 93? as a dense subset.

In Section 5 we give a few examples answering questions
connected with our considerations in the preceding sections.
The first two examples show that if a domain D in Euclidean
space is made into a Riemannian manifold by using the
Euclidean metric, then P£ is in general different as well from
P^D) as from P^D). Examples 3 and 4 show that, for a
general /c-dimensional submanifold 9? of the n-dimensional
manifold 9)?, the restriction of u e P^, a > (n — A")/2, need
not be in p^-("-/0/2 ^^ ^ function u belonging to
p^-0i-/0/2 need not have an extension u e P|̂ .

In the present part we did not put remarks concerning exten-
sions of our results to potentials connected with L^ classes as we
did in the preceding Part II. The treatment of the classes
PS'̂  ls quite analogous to the treatment in the present paper
of Pj^, which is the class P^2. However, the formulas are
much more complicated and the essential difference is that
instead of using quadratic interpolation we have to use another
method of interpolation (for instance the complex interpo-
lation [5, 10]).

In the text we will refer to preceding parts of the « Theory
of Bessel Potentials » without mentioning the number of the

(4) In Chapter 11, Part I, we gave such extension mappings which were simul-
taneous extension mappings not for all a > (n — /c)/2 but for a in a fixed interval.
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part, but only the number of the chapter, since in all parts
the chapters are numbered in succession. We remind the
reader that Part I [4] consists of Chapters i and n, Part II [1]
of Chapterm, and the present Part III of Chapter rv. Thus, 3),
§ 9, II means Proposition 3 from § 9, Chapter n (of Part I).



CHAPTER IV

POTENTIALS ON REGULAR MANIFOLDS

i. pfoc(a»).
Throughout this section S&i is an n-manifold with a C00

structure. All definitions are made using a particular C°° atlas
{(U(, hi)} for 9%. It is then shown that the concepts defined
are independent of the particular atlas used. For convenience
we use the notation V^ == ^(U;).

For each a ^ 0 we define Pi°oc(9%) to be the class of
functions u on 3% such that u o h]~1 belongs to Pfoc(V()
for each i. It follows from 3), § 9, II that Pfoc(3%) is well-
defined, i.e. does not depend on the atlas used in its definition.
Similarly, for each a ^ 0 we define Siga^) to be the class
of all subsets A of 3D? such that for each i, /i,(A n U)
belongs to Slaa? the class of subsets R71 with 2a-capacity zero.
3l2a(3TO) is well-defined, by virtue of 20), § 6, II and the fact
that a subset A of R" belongs to 8l2a iff each point of A
has a neighborhood whose intersection with A belongs
to Siga- The sets in 8l2a(3%) are called the subsets of 9J? with
2a-capacity zero. Stga^) is an exceptional class and Pfoc(S%)
is a saturated linear functional class rel. SttaaC^)- (For defi-
nitions of these terms see § 1, I.) Also we have the inclusion
relations : Pfoc(a») c Pfoc(a») and ^a(^) c 81 (̂3%) it (3 ^ a.
If a = 0, we will write Lfoc(^) for Pfoc(a») and « a.e. »
for « exc. ?l2a(9J?) ». Sets in 8lo(^) 1̂1 be called sets of
measure zero. By virtue of 2), § 2, II., we have the following
proposition.
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1) If two functions in Pfoc(9%) are equal a.(°., they are equal
exc. 8l2a(a»).

If D is an open set in R" and k is an integer ^ 0,
we say that y <= C^^D) iff ? e Ck{D) and every derivative
of order ^ k is locally Lipschitzian on D. For each integer
k ^ 0, we define C^c1^^) to be the class of all functions (p
on SR such that 9 o hr1 e C^^V^-) for each i. Also for
convenience we define C^1'1^^) to be the class of all func-
tions <p on $R such that, for each i, (p o hr1 is a locally
essentially bounded measurable function on V^. It is easily
seen that C^^SO1?) is well-defined. We sometimes write
Li^eW tor the class C^W- From 1), §9,11. and 6), §2,
II. we obtain :

2) If u e PL(^), a ^ 0, and y e CLTW, then yu e Pfoc(^).
{Here a* denotes the largest integer strictly less than a.)

The classes Lfoc(3%), 1 ^ p < + ̂  can be defined in the
same way as L^IR) and L^(a»). If ueL^(S»), we say
that a point P on SR belongs to the Lebesgue set of u
iff for some U^ containing P, the point ^'(P) belongs to the
Lebesgue set of u o h]~1' In case P is in the Lebesgue set
of u, the Lebesgue correction of u at P, written u^P),
is defined to be (u o /^(^(P))- F^m 5), § 0, III it follows
that the Lebesgue set of u and the Lebesgue correction of u
are well-defined. Also, by classical theorems concerning
Lebesgue corrections and by the results of § 0, III, we have
the following four propositions :

3) If ueL^c(3)?)? then the complement of the Lebesgue set
of u has measure zero and u^P) == u(P) a.e.

4) If u, ^e L^(m) and u(P) = ?(P) a.e., then u^ = ^L.

5) If ueP^(^), then ^ePf^) and u^P) = u(P)
exc. ^{m}.

6) If u is equal a.e. to a function in Pi°oc(S01?)? then
^PfoW

If 3%' is a C00 p-manifold contained in 9%, we say that a
coordinate patch U in 9J? agrees with 9J?' iff the points in
U n 3D?' are characterized by the equations xk = x^ k > p ,
for some constants x^ and U n 3)?' is a coordinate patch
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in 3%' with coordinates equal to the first p coordinates
in U. We say that 3D?' is a submanifold of 3D? iff it can be
covered by coordinate patches in 93? which agree with it (5).
If 9%' is a p-dimensional submanifold of 9%, then 23), § 6
and § 8, 9 in Ch. n, give us the following :

7) If A e SlaaO^) and 2a > n — p , then the set A' =A n 9%'
belongs to ^a-Oi-p)^').

8) If u <= Pi°oc(9.R) and 2a > n — p, then the restriction

u of u to W belongs to PilT^W.

We now suppose that 3)? has a positive definite Riemannian
metric of class C°°. If U is a coordinate patch in 9K with
coordinates {^,} we let {gij} denote the components of
the metric tensor on U with respect to these coordinates.
The Riemannian metric induces on 9% a structure of a mea-
sure space. A subset A of 9% is measurable iff h{A. n U)
is Lebesgue measurable for each coordinate patch (U, h).
Also, if A is a measurable subset of 9% which is contained
in U, then the induced measure [J. is given by :

v-W = f^s{y) dy,
where as usual g denotes the determinant of the matrix {g^}.
Since 9% now has a measure space structure, the concepts
Lfoc(9K), 1 ̂  p ^ + °°) ^d « set of measure zero » now have
a direct meaning. It is easily seen that the definitions of these
concepts in terms of the measure space structure agree with
the earlier definitions for manifolds not assumed to have a
Riemannian metric.

In order to have a direct definition of corrections for func-
tions on 9%, we use the concept of a normal coordinate
neighborhood. For every point P e 9% there is an open neigh-
borhood U such that (i) each point Q <= U can be joined to P
by a unique geodesic arc, and (ii) this arc is uniquely deter-
mined by its tangent vector at P. Hence, new coordinates
x^ . . ., x^ can be introduced in U such that the geodesic

(6) This definition is equivalent to the following: SOF is a submanifold of SDZ iff
9R' is contained in 9)1 and the injection map is of class C°° and has a non-singular
differential at every point.
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arc through P with unit tangent vector T has the equations

x, = t,s, i = 1, . . ., n,

where s is the arc length measured from P and the t, are
the components of T with respect to some fixed orthonormal
basis. Such a neighborhood U together with the coordinates
r^i, . . ., x^ is called a normal coordinate neighborhood of P.
When U is such a coordinate neighborhood we use the nota-

n
tion U(P, p) for the neighborhood of P defined by ^ x2 < p2.

We can now define the Lebesgue correction of a function
u e L^(3%) directly. We say that a point P e 9% is a Lebesgue
point of u iff there is a number u^P) such that

"["(W^-^'-^^^0
as p — 0. In this case u^P) is called the Lebesgue correction
of u at P. It is easily checked that this direct definition
of the Lebesgue correction agrees with the earlier definition
for manifolds without Riemannian metrics.

We can also define an analogue on 3D? of the correction
u^ (see § 0, Ch. in). However, we first define a more general
correction in Euclidean space which will be useful later (see
the proof of 4), § 4). Let D be an open subset of R\ For
fixed xeD and each p, 0 < p ^ po(;r), let ;yp(^, y) be a
measurable function of y defined for all y e R" and such that

(i) l?p(^ y}\ ^ M,p-71 for 0 < p ^ po(^), ye R»,
(ii) 9p(a;, y} = 0 for \y - x\ ^ C^p, 0 < p ^ po(^),

(ui) JR»?P(^ y) ̂  — 1 as p -^o.
If u e L^(D), we define

uW(x) = lim^9p(^, y)u{y) dy,

provided the limit exists and is finite. If x is a Lebesgue
point of u, then u^\x) is defined and equals u^{x). Hence,
in case <pp(^, y} is defined for all a; e D, u^ is an extension
of u^. Also, suppose that ^ is a bounded measurable func-
tion on R" vanishing outside a compact set and having
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^ , /^ __ y\
j^^ dx = 1; if we define <pp(^, y) == p"""^ ( ———" ) for each

o;eD, then u^ = u^. \ P /
We now define an analogous correction uW on 3)?. For

fixed Pe9% let U(P, po(P)) be a normal coordinate neigh-
borhood of P and for each p, 0 < p ^ po(P)» ^et ?p(P5 Q)
be a measurable function of Q defined for Q e 3% and such
that:

(i) |<pp(P, Q)| ^ Mpp-71 for 0 < p ^ po(P), Qegft.
(ii) 9p(P, Q) vanishes outside U(P, Cpp), for

0 < p ^ 1 po(P).
L.p

(iii) ^?p(P,Q)^(Q)->l as p->0.

If u e L^c(SO^)) we define

uW(P) = Hm^4yp(P, Q)u(Q) d(x(Q),

provided the limit exists and is finite.
9) If u e L^c(3K) and P is a Lebesgue point of u, then

u^\P) exists and equals u^P).

Proof. — This follows from the direct definition of u^
and the fact that

%^1 as -c-
where S(0, p) is the open ball in R" with center 0 and
radius p.

Thus, if 9p(P, Q) is defined for all P e 3%, uW is an exten-
sion of u^.

10) If u, ^eLLW and u(Q) = P(Q) a.6>., (Aen uW(P)
exists iff ^(P) exists, and in this case they are equal.

There are various ways to choose the correcting function
<pp(P, Q). One choice is :

<T)(P 0) = -^^p? (^-nr? v<; p.[U(P, p)]

where y,p(P, Q) is the characteristic function of U(P, p).
Another way to choose <pp(P, Q) is as follows : Let ^ be a

13
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bounded measurable function on R" vanishing outside a
compact set and having r^ ̂  dx = 1; for each P e S% let
(U(P, po(P)), hp) be a fixed normal coordinate patch at P
and define

^P,Q)-p-^(^Q)).

An important advantage of the correction u^ over the
Lebesgue correction u^ is that, while u^ corresponds
roughly to the average of u over spheres, for suitable choice
of 9p(P, Q), u^ can be the average of u over more general
sets.

If u is any sufficiently smooth function on 3)?, the Rieman-
nian metric on 3K enables us to define the tensor V^u of
the k^ order co variant derivatives of u. These are defined
inductively starting with V°u == u. If {A^ _,J are the
components of V^u, then the components of V^u are
given by:

A —^...^ \ J ) AAil-^- w ~MA7lt-"
^ / ^ A ^ ̂  A

~" W A i ^ ' " ^ ~ f t f ~ ̂  ^...^r

Here we use the usual summation convention; also, the

] ' [ are the Christoffel symbols defined by:
( ^ 7 \n=± ̂ (^ + ̂ -^v

(il\ 2 ° \^ ' ?)^ ^0:7

where {g^} is the inverse maxtrix to {gij}. By the results
of § 7, 9 in Ch. n, we have :

11) If u e= Pfoc(STO) and k ^ a, (Aen (^ components of
V^u w^/i respect to the coordinates in any particular coordinate
patch (U, A), considered as functions on V == A(U), belong to
Pf^V). In particular, the tensor V^ is defined exc. S^a^fcC^)-

The Riemannian metric defines a natural norm on the tensor
spaces associated with 9%. In the particular case of the tensor
^7ku the expression for the norm in terms of coordinates is :

IV^^A,,,^,.,^...^,
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where {A^ ^} are the components of V^u. It follows
from the preceding proposition that if us Pfo^SK) and
k ^ a, then [V^]2 belongs to L?oc(9K).

Remark. — Many of the notions discussed here extend to
the case where 3% has a C7" or C{^ structure, m ^ 0.
If m has a (y structure, we can define P^^) tor
0 ^ a ^ m + 1 and C^e1^) tor 0 ^ k ^ m. In order to
define 3l2<x(9%) tor any a ^ 0, we require only that 9%
have a C^ structure. Similarly, if 9% has a C^ struc-
ture, we can define the classes Lfoc(9%)? 1 ̂  p ^ oo, and the
Lebesgue correction of a function in L^c(9%). Provided 9)1
has sufficient structure so that the classes involved are defined,
propositions 1) through 6) remain true.

If W is a manifold contained in 9% and if 9% and W
both have C^ or C^c^ structure, then our definition of
submanifold still makes sense. Propositions 7) and 8) remain
true provided the classes involved are still defined.

For 9% to have a Riemannian metric, 9% must have at
least a C1 structure; also, if 9)? has a C7" structure, m ^ 1,
then a Riemannian metric on 9% is at best of class C7""1.
If 9J? has at least a C1 structure and a C° metric, then the
metric induces a measure space structure on 9% and the
spaces Lfoc(9%), 1 < p ^ + oo, are the same as those
defined without the use of a metric. If 9)? has at least a C3

structure and a C2 metric, then normal coordinate neigh-
borhoods exist and belong to the natural C1 structure on 9)?.
In this case the Lebesgue correction defined using normal
coordinate neighborhoods is the same as that defined earlier
without them, and propositions 9) and 10) hold.

If m has a C^ structure and a C^"1^ metric, m ^ 1,
then proposition 11) holds for a ^ m + 1.

2. The space P§i(P|U-

We shall assume that 9^ is a separable oriented Riemannian
manifold with a C00 metric g.

If m is an integer we definie P^ as the subspace of
PKc(^) on which the m-norm, |^|^^ (defined below), is
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finite; for non-integral a, P^ is defined by quadratic inter-
polation between P^ and P^4'1 where m = a*. If we have
two metrics g and g on the same manifold 3% we shall
add a suffix to prevent confusion, e.g. P^g or M^®^ (6).

For u e P^c(S^) we define the Dirichlet integral of order m
by:

(2.1) d^{u) = f^uW \Tg dx,

and the m-norm by :
m /m\

(2.2) W^= 5( / )d^{u),
l=Q\ i /

a hermitian quadratic norm.
If D c R/1 and e is the Euclidean metric then it is clear

from the definitions in § 2, III that PS,e = P^D) and that
the corresponding norms are equal.

1) If m is an integer then P^ is a complete functional
space relative S^m^) an^ lt l/s ̂  perfect functional completion
of C°°(aK) n PS,.

Proof. — Let U c 3% be open and such that its closure is a
compact subset of some coordinate patch (Uo, h) and set
V == A(U).

Now if {u^} is Cauchy in P^, it is clear from Theorems I
and II, App. II that ^ ° h-1^ is Cauchy in P^, = P^V)
and converges to a function in P^V). From this it follows
that P^ is complete.

Let {UJ be a covering of 9%, each U^ having the same
closure properties as U above. Then by considering uju^
and the remarks of the previous paragraph it is easy to see
that P^ is a functional space rel. Sl^m^)-

Suppose in addition that {U/J is locally finite. Let {yj
be a partition of unity with y^eCo^l^). Then by Prop. 6),
§ 2, III, (<pfcU) o h^1 e P^/i^Ufc)) for us P^ and has compact
support in /^(U^). Therefore there is a w^ e Co°(Afc(Ufc)) such
that | (9fcU)o/^i — wj^(u^ < ^^ W k 0 ^ extended by

(6) If SD^ is a domain in R» we shall always add the suffix to prevent confusion
with the standard a-norms, Cf. § 2, III.
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0 to Si% is clearly in P^. Since {U,J is locally finite,
w = 2^ o h, e C"(a») and

I" — ^Im.aft < S iTk" — Wk ° h^^fSt
k

= S l<Pk" 0 ^k'1 — wj^.h^u»),fl < £,
k

which proves C°°(S01?) n P^ is dense in P .̂
K {^J^Co^V) ( V = A ( U ) as considered in the first

paragraph of this proof) are Cauchy in P^V), and therefore
in P^, then ^ o h extended by 0 to 3)? is Cauchy in
P^. From this we can see that there cannot be a functional
completion of C°°(a%) n P^ relative a smaller exceptional
class that ^m^)- This completes the proof of Prop. 1).

From § 1 and (2.2) we see that P^CP^ (7). Let G be
the non-negative bounded operator assigned by the Lemma
of Appendix I to the Hilbert subspace P^1 of P^ (P^ -1

being saturated relative ^mW) and for m < a < m + 1
define W^ to be the Hilbert subspace of P^ corresponding
to G^. By Theorem III, Appendix I, W<^ is the
(a — m) — th interpolation space between P^ and P^4'1.

THEOREM I. — P^1, provided with the norm of W^,
has a perfect functional completion relative SlaaC^)- This
completion is denoted by P^; furthermore, P^ = PfocW n W^.

Proof. — P^-1 is dense in W^ and W^ is a functional
space rel. ^mW- Hence, W^ is a functional completion
of P^1 rel. S^mC^)- However, each equivalence class of
functions in W^ rel. ^mW contains a subclass
of functions in Pfoc^). To see this, let u be a function in
W^ and let {uj be a sequence in P^1 which converges
to u in the norm of W^. Let {(U^, h^)} be a covering of
^ by coordinate patches such that for each k the closure
of Ufc is a compact subset of a larger coordinate patch
(Ufc, /i^)fc, h is the restriction of h1^ and

V.=A,(U,)e8([0, oo))
(see § 7, III). It follows from Theorems I, II of Appendix II

(7) ^CP^ means P^cP^ and |u^^ ̂  |̂ .̂
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and Theorem II and Corollary 4' of Appendix I that for each k
the map u -->• u o h~f,1 transforms P|̂  boundedly into P^V^),
I == m, m + 1, and W^ boundedly into P^V/O. Hence
for each k the sequence {u^ o /^i} lies in P^^+^V^) and is
Cauchy with respect to the norm of P^V^). By taking suc-
cessive subsequences and using the diagonal process we get a
subsequence {u^.} such that for each /c, {u^ o h^} converges
pointwise to a function in P^V^) exc. ^(V^). Hence the
sequence {^raj converges pointwise to a function
^sPfocW exc. 3l2a(9%). It follows that u = u* exc.
3U )̂.

By 1), § 1, any two functions in Pfoc(^) n W^ which are
equal exc. 8l2m(S^) are necessarily equal exc. Slaa^)- Hence
the equivalence classes in PfocQ^) n W^ relative to equality
exc. 8l2a(S^) are ln one-one correspondence with the equivalence
classes in W^ relative to equality exc. ^(3%)- To show
that Pfoc(9%) n W^ is a functional completion of P^1 rel.
Sl2a(S%)? lt remains only to check that it is a functional space
rel. 3l2a(S%)* This is done easily by using the same procedure
as in the preceding paragraph.

That there cannot be a functional completion of P^4'1
relative to a smaller exceptional class is verified in the same
manner as the corresponding statement in Prop. 1).

Since PUSft) c Pf(^) and W^CW^,, we have
P&SP^ for m ^ P ^ a ^ m + 1 - Since this also holds for
a and (S integers (P ^ a), it holds for all a and [S,
(0 < P < a).

Note that P^, m < a < m + i? is the perfect functional
interpolation space between P^ and P^"1 relative to the
norm of W^.^, according to the terminology introduced in
Remark 1, Appendix I. Also, note that W^^ = P^ saturated
relative 3l2m(^)$ therefore, we have by Prop. 6), § 1, that if
u e W^.^, then u^ <= P^. This provides an alternative defi-
nition of P|̂  as {u^ueW^} saturated rel. ^aW.

If g and g are two C°° Riemannian metrics on 5%, we
shall call them equivalent if there are constants A^ ^ An
and B^, m == 1, 2, ... such that

i) the eigenvalues of g relative g lie between A^ and Ac
for all x e 3% and
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ii) Sup {N^(g; g){x)} ^ B^ where
^esffi

N»(g; g)(aQ == Max {(Ig-1^)!^^))^}.
v==l, ..., m

It follows from Theorem I, Appendix II that this is an
equivalence relation.

2) If g and g are equivalent then P^ g = P^ ̂  for all a
and

^,aMa.a)l,(7^ Ha,3^ ^ C^J ̂ la.^

wAere C^a and C^a depend only on A^, An, Ba*+i, a* an^ yi(8).

Proo/*. — For a an integer, Theorem II, Appendix II
supplies the proof. For non-integral a we apply Theorem II,
Appendix I.

The terminology « multiplier » was introduced in § 1, III.
For the analogous definition on manifolds we call y es C^1^^)
a multiplier of order m if

ly lm+i .oo .^ == Max (Ess Sup \^{x)\ J < oo (9).
O^l^m+l ( xe^DZ )

(If m = — 1 this means that

yeL^) and Ho.oo,^ = Ess Supj^)! < oo.\
^ssi I

If yeC00^) and |9l^,^ < oo for m == 0, 1, . . . then y
is a multiplier of order oo.

3) If u e P^ and (p 15 a multiplier of order a* (Aen
yu e P^ and

|?^|a,^ ^ 3a/2|9|a*+3.oo,3)l|^|a.^.

Proof. - By Prop. 2, § 1, yuePf^). Let a = m, an
integer, let I ^ m, and let (U, h) be a coordinate patch.
Then by the usual formulas for covariant differentiation we
have :

TOu)],== s [vi/'HWH.
J'UJ==i

Here the left-hand side is the i^ component of the tensor
^(P^)? where i = (i'i, .. ., i^) is an indicial set. The summa-

(8) See Theor. II, App. II for a more precise expression for C^ , and C^ .̂
(9) If we wish to specify a particular metric we shall write [y]^ oo 3^ g.'
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tion is over all partitions of the indicial set i into two comple-
mentary indicial sets / and /'. The symbol |/| denotes the
number of elements in the indicial set /. For a fixed integer /c,

there are exactly ( i ) distinct partitions /' u / = i where

I / ) == /c. Hence, we have :
1 / l\ . -i2rn^w ̂  [i ([ \^w\^w\c\

L/c=o \ /c / -1

^ 21y|^^i(^)|V^(^)|
fc=o \ K /

d^u) ^ 21y|2^ S ( l }d^{u)
/c=0 \ K I

m \ I •m\ l / 1 \ 1
MM^ lyl^oo^S z 2^ ,4.^)

l=o L\ v / /c=o \ /c / J

^gu{x}\2, a.e.
Thus

and

l=o L\ v / /c=o \

S r^ .,/ l \ / rn
m r m / / \ / m \ i

<I?I^.^S S2' , )(7)rf^(u)
fc==o U=k \ K I \ i I \fc==o U=k

< B-lyl^.^lul2,^.
For non-integral a, an application of Theorem II, Appen-

dix I completes the proof.
We shall call {(U^, y^)} a uniform system in 3% with

constants p and c^y m == 0, 1, . . . if:
i) (Ufc)° = U^ and {U^} has reduced rank p, i.e. every

xe^Sft is contained in at most p sets U^ (10).

ii) {?.}<= CW, y^ 0,
{^ : y^ ^ 0} cU/, and |?k|m.oo.a)i ^ ^m, m == 0, 1, . . .

(y^ is a multiplier of order oo).
There will be no confusion between the « uniform systems

in 3%» and the « uniform systems of gr-cells » introduced in
§10,111.

If A is a subset of 3K and the uniform system satisfies
the additional condition:

iii) Sy^ ==1 on A (hence A c L J U^,

(10) a Reduced rank p » is a weaker condition than « rank p » introduced in § 5, III.
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then we shall call {(U^, <p^)} a uniform system in 3% covering
A. If the Vjc in the uniform system {(U^, y^)} are coordinate
patches, i.e. possess a corresponding homeomorphism h^
into R", then we shall call {(U^, h^ y/J} a uniform system
of coordinate patches,

The uniform systems are the replacement on manifolds of
the loose coverings with finite rank introduced in § 5, III.
The remaining propositions of this section give some of their
properties and applications.

4) Let {(Ufc, y^)} be a uniform system in STO with constants
p and c^. We define the mappings Ii and 1^ by:

I x : P^^P°u,, (I,u),=uk
l2 : 2-LP^ -> P^, \^ . . ., u,, . . .) = Sy,u,,

where y^ 15 extended by 0 outside U^. r/ien /or aZI! a,
l3(P&)cS-^-P&, with bound ^ p112 and ^(S-LP^) c P^ ^/i
fcound ^ c^+l3a/2pl/2.

Proo/*. — If ueP^ then clearly (Iiu), e Pf^U^) and for
a == m an integer,

|Iiu||^Lp^ == S I^I^ .Ufc ^ pl^l^,^.
/c

The conclusion about Ii now follows by Theorems II and V
of Appendix I.

To prove our statement concerning the mapping I^, we
first prove the following three facts. (We use the notation (f^k
to denote the extension of y^u^ by zero outside U^; no
confusion will result from this).

(2.3) If u,eP^, then y^eP^(^).
(2.4) If UfceP^, then V^p^) = 0 a.e. outside U/, for

0 ^ I ^ m.
(2.5) If Uf, e P^, t/ien (y^.u/,)1- == y^Ufc on 9%. (We assume

here that u^ is a corrected function.)
Let Uk be a corrected function in Pj^. It is obvious that

(2.3) and (2.5) hold on U^ and that (2.3), (2.4) and (2.5)
hold on (9% — Ufc)°. Consider a point ^e^U^. Let U' be a
neighborhood of x such that U' is a compact subset of
a coordinate patch U with homeomorphism A, and such
that h(\]'} is an open sphere about h(x). Let V == A(U),
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V = /i(U'), Di = A(U, n U'), Da == V - Di, and

D = [ D i u D g U ^ D i n & D a ) ] 0 .

By referring to the property (U^)0 == U^ we obtain easily
that D = > V . Define

^) = u, o/r-i(^) for ^ e D x
and

^(S) = ?. ° ̂ (S) tor ^ e V.

We have ^ e Pg^ = P^Di), ^eC^V), |^v. < + oo for
all Z, and D,4(S) ==0 for ^ e V — Di and all i. It follows
that there exists a constant M such that

(2.6) |D^)| < Mr^)771^11) for \i\ ^ m, ^ e V.

Formula (2.6) implies that Jrn.D^D^'^) < + oo. By
Theorem I, part (a), § 9, III (and its proof) it follows that the
extension of ^ to V gotten by setting it zero outside Di
is equivalent to a function in P^V). For convenience we
denote this extension by ^. By applying (2.6) we see that
(^L = 4^ m ^'? so ^at ^ actually belongs to P^V).
Also, by using (2.6) and the Lebesgue correction we see that
all derivatives D^(^), |i| < m, are zero on V — Di except
possibly on a set of measure zero.

Next we prove a finite version of our statement about Ig,
namely :

(2.7) If u.ePS, for / c = l , . . . , N , and u = ̂  <p^,
N fc=l

then u e P^ and | u\ ̂  ^ pc^+iS01 S I ̂ 11 u,.
k=l

First suppose a == m, an integer. Then for each k we
have ?,u,ePi»oe(^) by (2.3), and

ly/c^clm.a^ = |?fc^/c|m.Ufe

by (2.4). By applying Prop. 3 to the manifold U^ we see
that (f^k e P^ and

l?A|m,2R < ^B^l^l^u,.

(n) ^'Dtt?) is the distance from $ to Dg. For the definition of J^.D^D^' see
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Statement (2.7) for the case a = m follows directly once we
notice that due to (2.4) and the finite reduced rank of the
system {U/J we have :

N 2 N

S y/c^c ^ p S ly/c^cl^.
fc=l m, SDl fc=i

For the case m < a < m + 1, Theorems II and V of Appen-
N

dix I give that u == ^ T^k belongs to W^m and satisfies
k=l

IHte < p^S'SKIl,^.
fc=l

However, by (2.5) we have u^ = u, so u e Pĵ .
oo

Finally, suppose (ui, Ug, . . . ) e S'1?^- K we define
N fc==l

WN == 5 P/c^/o then by (2.7) {wy} is a Cauchy sequence in
/c=:i 00

P^. On the other hand, Wy converges pointwise to u ===• ^ y^u^
fc=i

everywhere on 3%. Hence, uePj^; the bound for |u|a ssi
follows directly.

Let dg^ sQ^Xy y ) be the geodesic distance from x to y in 3D?
with respect to the metric g { e ' S ' ^R"^? y) == [rc — y|). U5

was defined in § 1, III as {y : d^^[y, R" — U) > §}. We now
introduce a more general definition which contains this one.
Let U be an open subset of 9%; we define

U^^^ {x:d,^{x,m-V) > §}.

If U c D c R71 then U5'^ D U^'^ (and this may be a strict
inclusion). For convenience, and consistency with Chapter in,
we shall write U5 for U^^" when U c R\

It was already remarked that the uniform systems in 3D?
replace for Riemannian manifolds the notion of loose coverings
of finite rank which was used extensively in Chapter in.
The notions introduced above allow one to speak about a
loose open covering {U/J of a set A in 3%. Namely, it
would be a covering such that, for some S > 0, A c ^ J U^'^.

k
The next two propositions will show that if {U^, y^} is a
uniform system in 3D? covering A, then actually {U^}
is a loose covering of A (Prop. 5); whereas if we have a
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loose covering {U/J of the whole of 3??, it is only under
some additional strong assumptions that we are able to prove
the existence of functions ^ such that {U^, y^} is a uniform
system covering 3% (see Prop. 6). Since the use of loose
coverings was important because they allowed one to define
corresponding partitions of unity, we have to accept, in the
case of manifolds, the replacement of loose coverings by
uniform covering systems which have already built in the
corresponding partitions of unity.

5) If {(Ufc, <pfc)} is a uniform system cohering 3% with
constants p and c^ then a%==[jU^'^ for any §<l/(pCi).

k

Proof. — Suppose x^ e m — |j U^'^. Since S ?fc(^i) == 1
k /c

and there are at most p non-vanishing terms, there is a /Ci
such that 9k^i) ^ 1/p and

.̂3^1, 3)? — UJ == inf dg^(x^ y) ^ S.
yem— Ufc,

Let {x{t)}o^t^i be a C1 arc in 2K such that x(l) == x^ and
x(0)=x^m-V^ i.e. 9,^0) =0. ^

Then, x(t) denoting the tangent vector —?
dt

1/P ^ ?^(^i) - T^o) =J,1 W ° V,?(^(<))] dt
^ l?fcji.oo.a)i X [arc length of {x{t)}].

Since the arc length can be made smaller than any §' > S,
we have S > l/(pCi), a contradiction.

6) L^ {(Ufc, hf,)} be a set of coordinate patches such that:
i) (Ufc)° == Ufc anrf {U^} /ia5 reduced rank p,
ii) 2%=^Ju^,

k

in) g is uniformly equivalent to e on each /^(U^), i.e. the
constants A^, An and B^ in (Ae equivalence relation are
independent of k,

iv) there are constants S and 6 ^ 1 , independent of k,
such that for any x, yeA^U^), if \x — y\ < S, then
^,h^u,)(^, y) ^ b\x—y\.
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Then there are ^s such that {(U^, h^ <pj} is a uniform
system of coordinate patches cohering SD? with constants p

( b \"1

and c^ = c^Ar"112 B^ + -y ) where c^ depends only on n
and m. /

Proofs Let V, = h^^) and W , = s f v — ^ (the
g \ _ \ Zb/
^ neighborhood of V/, in R"). Then V^ c W^46. Suppose

x e Wfc n /^(Ufc - U^2'^). Then by iv) and since x e W/,,

-I- ^ bd^(x, VJ > ^^u,)(^ V,) > d^h^x), U^'^).

Thus

^^(^1^), a» - u,) > ^.^(^ - u,, u^^)
-^^(U^'^ A^(o;)) ^ S-4

contradicting the fact that x e /^(U^ — U^2'^^) so that
W^n /^ l^— U^2'^^) ==0.

By Lemma 1, § 1, III there is a ^eC^R"), 0 ^ ^ ^ 1,
^k = ̂  <m V/c? == 0 outside W^; hence ^^ === 0 on
^(U,-U^^'^) and |D^)| < (-Y'Clfi, C,,i depending
only on TZ and | i\. ^ /

Therefore if we transfer ^ to U^ and extend it by 0
to m - Ufc, ̂  o A, e C°°(a%). By i) and ii), 1 ̂  2^ o /,, ^ p
so that the desired partition of unity is given by

?fc(^) = ̂  ° ̂ (^)/S ̂  ° ̂ (^).

The inequality follows from (All. 4) of Appendix II and an
easy calculation.

7) Let {(U^, h^ 9/c)} be a uniform system of coordinate
patches cohering S&? with constants p and c^ such that :

i) g is uniformly equivalent to e on each /^(U^), i.e. the
equivalence constants A^, An and B^ are independent of k,

ii) Vfc = Afc(Ufc) e8([m, m + 1]) wi(/i extension constant
r == F([m, m + 1]) independent of k.

Then for m ^ a < m + 1, u e P^ ^ a/zd (Wy i/*



302 R. D. ADAMS, N. ABONSZAJN AND M. S. HANNA

(u o h-,1, .. ., u o h^, . ..) 6 S^-P^Vt) and

p-^-^w^ ^ 51^°^Ta,v. <s s^^pr^K^
k

where C^a an(^ C^a are the constants given in Prop, 2).

Proof. — By Prop. 2) and Corollary 4), Appendix I,
P^V/c) == P^,f7- The proposition now follows from Prop. 4)
(and the inequality follows from the inequalities in the cited
propositions).

In general it is not known if P^^D) is dense in P^D),
D c R71. In § 5, III we show that this property is a weakly
localized boundary property. The next proposition gives an
analogous, though weaker, result for P^.

8) If {(Ufc, 9^)} is a uniform system cohering $R such that
PS^1 is dense in PE^ then P^1 is dense in P .̂

Proof. — If ueP^, then by Prop. 4), ^ M^.u/, < °o.
k

Now by choosing w^ e PS^"1, |̂  — u\^vu < ̂ ^ we have by
Prop. 4) w = 1^ . . ., w^ 0, . . ., 0, . . .) e P^4-1 and by
choosing ko sufFiciently large we have the desired approxi-
mation.

Remark. — The notations and results of this section extend
to the case where 9% has a C7" or C^^ structure by obvious
modifications.

3. Restrictions and extensions.

In this section 3% is a C°° Riemannian n-manifold and 9?
is a /c-dimensional C00 submanifold of SK with the induced
Riemannian metric. We consider restrictions to 9^ of poten-
tials on 3)1 and extensions of potentials on % to potentials
on m.

First considering the case k = n, we have :

THEOREM I. — If k = n, then the restriction mapping
u -> Ui == u\s^ transforms P^ into P^ with bound ^ 1,
for each a ^ 0.

Proof. — For integral a this statement follows by compa-
ring the expressions (given by integrals) for l^i ja ,^ and
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Ma,3K* F01 non-integral a it follows from Theorem II of
Appendix I.

Clearly the restriction mapping u -> Ui does not necessarily
map P^ onto P^. For example, let 9K == R" and let %
be a domain in B/1 which does not have the extension property
(for instance, a domain with a cusp on its boundary). To get
sufficient conditions for the existence of a linear extension
mapping, we first state a theorem which allows us to localize
the problem.

THEOREM II. — Assume a ^ 0. Let {(H-, y,)} be a uni-
form system in 9K covering % with constants p and {c^}.
If for each i there is a linear extension map of P&,ngi ln^0 P£»
with bound ^ ME, ME independent of i, then there is a linear
extension map of P^ into P^ with bound ^ c^+ipS^ME.

Proof. — Let u e P^ and let i^ = u|u,ngi- By 4), § 2, the
sequence (1^1, Ug, . . .) e S^-Pfe^, so the sequence of extensions
(ui, u^ . . .) belongs to S^-P .̂. Applying 4), § 2, again, we
see that the function u = Sy^- belongs to P^. The bound
for |fi |a,a% follows from 4), § 2.

Remark 1. — It is clear that if for each i there is a simul-
taneous linear extension map from Pi^n^i lnto P&, as a

varies over an interval, then there is a simultaneous extension
map from P|̂  into P^ as a varies over the same interval.

Theorem II can be applied, for example, in the case that
the sets U, are coordinate patches. In this case the question
of existence of an extension mapping from P&^.n^ into P^.
can be transferred to the image sets in R". The following
proposition gives sufficient conditions for the existence of an
extension mapping from P£,,^ into P£,^, where D is an
open subset of R", Di is an open subset of D, and {g^}
is a C°° Riemannian metric on D.

1) If {gij} is equivalent to the Euclidean metric on D with
constants A^, Au, and {B^}, and if Dies8([mi, m^]) with
extension constant Fi, then there is a simultaneous bounded
linear extension map of PS^ into PS, ^5 m-^ ^ a ^ mg,
with bound ^ cFi, where c depends only on n, m^ A^, Ay,
and B,,..Jm^

Proof, — For integral a the result is gotten, with the help
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of 2), § 2, by first extending to R" and then restricting to D.
For non-integral a the result follows from Theorem II of
Appendix I.

We now consider the case k < n. By 8), § 1, if u e P^,

a > n——^ then u = u\y^ belongs to Pfo^-^Jl); however,
2t

u9 does not necessarily belong to P^"-^2 (see Ex. 3, § 5).
^ _ f^

Also, a function u' e P^""^2, a > —_—, may have no
2i

extension u e P^ (see Ex. 4, § 5). We give here sufficient
conditions that the restriction mapping u —> u' transform
P^ into Pj^"-^2 and that there exist an extension mapping
from P^"-^2 into P^. First we state a theorem similar
to Theorem II which reduces these questions to local questions.

THEOREM III. — 1° Let {U;} be open sets in SDZ and {^1}
be C00 functions on 91, such that the collection {Vi} has finite
reduced rank p in 9K and {(U- n 91, ^)} 15 a uniform
system in 91 cohering 91 wit/i constants p and {c^}. J/* /or
eacA i restriction from U^- to U n 91 transforms P^. into
P^nHyT^2 witA bound ^ MR, MR independent of i, t/i<°yi
restriction from 9J? to 91 transforms P^ mto Pj^"-^2

wit/i bound ^ c^+ipS^MR where ? == a — —.—•
z

2° Let {(U(, 9^)} 6e a uniform system in SR cohering 9?
wi't/i constants p and {c^}. J/* /or eacA i t/iere 15 a linear
extension map of P^nl^2 lyl^0 PS, wit/i bound < ME, ME
independent of i, then there is a linear extension map of
p^n-w ̂  p^ ^^ bound ^ c^+ipS^ME.

Proof. — The proof of 2° is the same as the proof of Theo-
rem II; the proof of 1° is similar.

Remark 2. — A remark similar to that after Theorem II
applies here. If the common bound for the restriction maps of
P^. into P^y^2 is valid for all a in an interval, then so
is the bound for the restriction map of P^ into P^"-^/2.
Also if for each i there is a simultaneous linear extension
map from P^n^^2 mto P&< as a varies over an interval,
then there is a simultaneous linear extension map from
PS "̂01""̂ 2 into P^ as a varies over the same interval.
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In the case where the U are coordinate patches in 9Jt
agreeing with 9?, we can transfer questions about restrictions
and extensions to the image sets in Euclidean space. We now
prove two propositions dealing with these questions; however,
for convenience we first prove ^ lemma.

LEMMA. — Let D be an open set in R" with a C00 Rie-
mannian metric {gij} which is equivalent to the Euclidean
metric on D with constants A^, Au, and {B^}. Then:

(a) Restriction from R" to D transforms P^R") boundedly
into PS,^ for each a > 0. For 0 ^ a ^ m this map has a
simultaneous bound depending only on m, n, A^, An, and B^.

(&) If D e 8([mi, mg]) with extension constant I\ then there
is a simultaneous linear extension map of P£,^ into P^R"),
mi 5$ a ^ mg, with bound ^ cF where c depends only on
ma, n, A^, An, and B^.

Proof. — These assertions follow for integral values of a
directly from 2), § 2. Theorem II of Appendix I then shows
that they hold for non-integral a.

In the following two propositions D is an open subset of
R" with a C°° Riemannian metric {g^} and D' = D n R\
8'([mi, mg]) is the class of domains in R^ having the extension
property on the interval [mi, m^].

2) If {gij'} is equivalent to the Euclidean metric on D with
constants A^, Ay, and {B^}, and if De8([mi, mg]) with
extension constant F, then restriction from D to D' maps
P^g boundedly into pgr^""^2 for each ae [m^, mg] such that
a > (n — A:)/2. jFor a in any interval [ai, ag] c [mi, m^] where
a! > (^—^*) /2? ^^ map Aa5 a simultaneous bound ^ cF
w/i^re c depends only on n, /c, mg, a^, A^, Ay, and B^.

Proof. — Starting with a function on D, we extend it to
R", then restrict that function to R\ and finally restrict the
resulting function to D'. The above Lemma and Theorem la,
§ 8, II, justify these steps.

Remark 3. — The derivation of the bound in 2) shows that c
approaches infinity as ai \ (n — ^)/2.

3) If {gij} is equivalent to the Euclidean metric on D with
constants A^, An, and {B^}, and if D'eg'^mi, mg]) with
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extension constant F', then there is a simultaneous bounded
linear extension map of Pgr^-^2 into P^g for a in any
internal [ai, 03] c [mi + (n — /c)/2, m^ + {n ~ /c)/2] ^uc/i that
a^ > (n — A-)/2. T/ie simultaneous bound is < cF' wAere c
depends on n, /c, mg, A^, Ay, anrf B^+r

Proof. — The proof is similar to that of 2), except that the
procedure is reversed. Starting with a function on D', we
extend it to R\ then extend that function to R", and finally
restrict the resulting function to D. The Lemma of the
present section and Theorem I of Appendix III justify the
steps involved.

4. Bordered manifolds.

In this section we consider potentials defined on a C00

bordered yi-manifold S)?. Such a manifold is defined in the
same way as an unbordered one except that if (U, h) is a
coordinate patch in 3%, Jfchen h maps U homeomorphically
onto an open subset of R^ rather than onto an open subset
of R". (We use_the notation R"j. for the open half-space
x^ > 0; hence R" .̂ is the closed half-space x^ ^ 0. We
denote by R71-1 the hyperplane x^ = 0 bounding R^).
Points in 3% which correspond via the coordinate homeo-
morphisms to points in R^ are called inner points of S)?;
points which correspond to points in R^ are called border
points of 3D1?. The set of all inner points of SD? we call the
inner part of 9% and denote by 9%1; the set of all border
points we call the border of S% and denote by ^39?. We
remind the reader that 3%1 and &S0? form unbordered mani-
folds of dimensions n and n — 1 respectively.

If D is a relatively open subset of R"^, we say that
u e Pfoc(D), a^ 0, iff u has an extension u to an open subset D
of R" containing D such that uePf^(D). It is easily checked
(by using a partition of unity) that uePf^(D) iff each point
in D has a neighborhood (open in R"^) on which u coincides
with some function in P^R"). Now suppose ^Sl is a C°°
bordered n-manifold (without a Riemannian metric); let
{(U,, h^)} be an atlas for ^. For a ^ 0 we define PfoeQ^)
to be the class of functions u on 3)? such that, for each k,
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u o h^ e Pi°oc(^/c(Ufc)). By using the second characterization of
Pfoc(D) given above it is easily proved that PI^®?) is
well-defined. The exceptional class 8l2a(9%) is defined as in
the case of unbordered manifolds; Pfoc^) is a saturated
linear functional class rel. SlaaC^)-

We now consider restrictions of functions in Pfoc(9)?) to
m1 and ^m.

1) For a ^ 0 the restriction map u —> u1 = u\s^i transforms
Pfoc(3R) into Pfoc^1)- Moreover, this map is one-one.

Proof. — The first statement is immediate. To prove the
one-one-ness, suppose u, we. Pfoc(33?) and u1 === w\ Let
(U, h) be a coordinate neighborhood of a border point and
consider the functions u o h~1 and w o h~1. If <p is a bounded
measurable function vanishing outside a compact subset of
R", such that / y dx •= 1 and y == 0 for x^ ^ 0, then by
the results of § 0, III,
(u o ^-i)? == uo h-1 and {w o h-1)9 = w " h-1 exc. S^a^U)).

However, since
u o h-1 = w o h-1 for ^ > 0, (u " /i-1)? == (w o A-1)?.

Note that the mapping u -> u1 of PfocCIR) into Pi^SK1)
is not in general onto. Because of 1) we can use this mapping
to identify Pfoc^J?) with a subspace (proper, in general) of
pium

The proof of the following proposition is direct.
2) For a > 1/2 the restriction map u—> u' = u\^ trans-

forms P^(^) into P^W.
We call the function u' the border values of u. Hence,

each function ^^PfocC^)? a > 1/2, has border values
u e Pfoc1^^)* The map u -> u is not necessarily one-one;
however, the following proposition shows that it is onto.

3) For a > 1/2 there is a simultaneous linear extension
map u ->u transforming Pfoc1^^) into Pfoc(3K).

Proof. — Let {(U^, h^)} be a locally finite open covering of
b3% by coordinate patches in 9%, and let {<p/J be a corres-
ponding partition of unity such that Sy/c === 1 on &3%. We
may assume that for each k the closure of U^ is a compact
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subset of a larger coordinate patch U^ and /^ is the restric-
tion of the corresponding homeomorphism h'^ Let
^eCo^R"-1) be such that ^=1 on A,(U,) n R71-1 and
4'fc == 0 outside a compact subset of ^(U^) n R""1. By 1'),
§ 9, II, given u e P^2^^), the function ^(u' o ^-1),
extended by zero outside Afc(Ufc) n R""1, belongs to
pa-i/2(R"-i) and agrees with u o V on h,{V^) n R»-1.
Extending this function to R" by means of Theorem I,
Appendix III, we obtain a function ^ e P^R") such that
^ = u o /̂ -1 on hh(Vk) n R"-1. The function y^ o /^),
extended by zero outside U^, belongs to Pfoc(2%)- Hence,
u = 2y,(^ o h,) e PfocW and u == u on 0^.

Remark 1. — We say that a function ue P^SR1), a > 1/2,
has border values iff there exists a u' e P^^^SK) such that
the function u defined by u = u on 9??1, u == u' on ^9%,
belongs to P^SK). It is clear from 1) that if a function
u €= Pfoc^1) has border values, they are unique. Also we see
that the subspace of functions in Pfoc^1) having border
values is exactly the subspace which we have identified with
pum

Now assume that the bordered manifold 9% has a C00

Riemannian metric. For m an integer ^ 0 we define P^
to be the subspace of P£c(9%) on which the norm |u[^^
(defined in the same way as in the unbordered case) is finite.
P^ (with the norm |u|^g^) is a complete functional space rel.
Slam^)- F011 m < a < m + 1 we define P^ by quadratic
interpolation between P^4-1 and P^. That is, if W^ is the
( a — m ) — t h interpolation space between P '̂1 (saturated rel.
8l2m(S%)) and P^, then P^4-1 (provided with the norm of
W^) has a perfect functional completion rel. 3t2a(3)?);
denoting this completion by P^, we have P^==P^(a%) n W^.
With these definitions we have the following theorem.

THEOREM I. — For a ^ 0 the restriction map u —> u1 == u\s^i
is an isometric isomorphism of P^ onto P^i.

Proof. — Suppose a == m, an integer. It is immediate that
the mapping u -> u1 transforms P^ isometrically into P .̂.
To show that this mapping is onto PSif, it is enough to show
that each weP^. has an extension weP^(9%). To do this,
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let weP^t, let {(U/,, hj,)} be a locally finite covering of 9%
by coordinate patches, and let {<p/J be a corresponding parti-
tion of unity. We may assume that, for each /c, Vj, ls a compact
subset of a larger coordinate patch Ui<1 and h^ is the restric-
tion of the corresponding homeomorphism h'k. Let
^ e C°°(R^) be such that ^ = 1 on h^k) and ^ == 0
outside a compact subset of h^Vu)' Then ^(w o /4~~1),
extended by zero outside /^(U^) n R^, belongs to P^R^)
and hence has an extension in P^R"), Thus the function
w^ = w|u^na)t1 has an extension w^ePj^U^). Setting
w == Sy/cWfc, we get that w e P^c(S%) 8Ln(^ w == w on ^l-

For non-integral a the theorem follows by Theorem II
of Appendix I.

By Theorem I and Prop. 2) each u e P^<, a > 1/2, has
border values u e= Pfo^2^9!)?). Moreover, we can give a
formula expressing u' in terms of u. To do this we introduce
the notion of a normal coordinate neighborhood of a border
point P of 9%. First, let U'(P, p) be a normal coordinate
neighborhood of P in ()$%, where we consider 63% as a
Riemannian (n — 1) — manifold with the metric induced by
9%, and let x^ . . . , x^-i be the coordinates in U'(P, p).
From each Q e U'(P, p) there issues a unique geodesic arc
in 3% normal to ()3%. Also, for each p ^ some fixed po
there exists a o- > 0 such that the normal geodesic arcs up
to length (T are mutually disjoint and cover an open neigh-
borhood of P. In this neighborhood we choose the coordinates
x^ . . ., x^ where x^ . . ., x^-i are as before and Xn is the
arc length along geodesies normal to 69%. Such a coordinate
neighborhood we call a normal coordinate neighborhood of P.
We use the notation U(P, p) for the particular normal coor-
dinate neighborhood defined by:

n—l

S x2 < p2, 0 ^ x, < p.
i==l

4) Let u e P^f, a > 1/2, and let u be the border values
of u. Then:

(4.1) u(P) - lim i f u(Q) <^(Q)
p*o^.[U(P, p)jju(p,p)

for all P e 5% exc. ^a-i (&S»).
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Proof. — Since we assume that S% satisfies the second
axiom of countability, it suffices to prove that each point
PO e ^2% has a neighborhood U such that (4.1) holds for
all P e = U n & a % exc. 3l2a-i(U n ̂ ). Fix a point Po e bg»
and let (U, h) be a coordinate neighborhood of Po. If
u € PSi1? a > 1/2, then we know that v = u o A-1 has an
extension v to an open subset V of R" containing V = A(U)?
such that ^sP^V). We will show that if re is a Lebesgue
point of ?, xe V n R^, and P === A"1^), then the limit in
(4.1) exists and equals ^(x). To do this we apply the genera-
lized correction defined in § 1. For y near x define

^ ( x y}- y^p)(y)^g(^
W^- p.[U(P,p)] -

where W(rc, p) is the image of U(P, p) under h. That
(pp(^, y) satisfies the conditions (i)-(iii) for a correcting function
stated in § 1 follows directly once we notice that there exist
positive constants Ci and Cg (depending on x) such that

H(x, Cip)cW(a;, p)cH(a;, Cgp),

where H{x, p) denotes the half-sphere
{ y : \x — y\ < p, 0 < yj.

If u e P^, a > 1/2, the border values u are not neces-
sarily in P^2. (Example 3, § 5, can be modified to show
this.) Also, if u e P^72, a > 1/2, u' may not have an exten-
sion u e P^. (Example 4, § 5, can be modified to give an
example of this.) Sufficient conditions that the restriction map
u —> uf transform P^ into P^^2 and sufficient conditions
that there exist a bounded linear extension map transfor-
ming P^72 into P^ can be obtained by methods similar to
those used in § 3.

We conclude this section with a discussion of the problem
of completion of a bordered Riemannian manifold. Myers and
Steenrod in their paper [11] and more recently and precisely
Palais in his note [12] have proved that, given a metric space
X with a distance function d, there exists at most one unbor-
dered C°° Riemannian manifold structure on X such that the
geodesic metric agrees with d. Moreover, given a metric
space (X, rf), there is at most one bordered C°° Riemannian
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manifold structure on X such that the geodesic metric
agrees locally with d (12). From this fact it follows that, given
a metric space (X, d) and given n > 0 there is a uniquely
defined largest open subset U of X having a bordered C°°
Riemannian yi-manifold structure with geodesic metric agreeing
locally with d.

Now let ^SSl be a C°° bordered Riemannian n-manifold,
let ISt be the abstract completion of 9% with respect to the
geodesic metric, and let d be the metric on 3%. We denote
by 9K* the largest open subset of 9% having a bordered C00

Riemannian n-manifold structure with geodesic metric agreeing
locally with d. Since 3% is an open subset of 9%, 9% c 3%*.
Moreover, 9%1 is a submanifold of (9%*)1 and ^)3Dt is a
submanifold of b9%*. Also, since 9%1 is dense in 9%, we
have W = SOT. We call m the full completion of m
and 3K* the regular completion of 9%. For example, if 9%
is an open square in the plane with the usual Riemannian
structure, then 9% is the closed square while 9%* is the closed
square minus the corner-points.

As an example of the use of the of notion regular completion,
suppose that 9% is an (unbordered) C00 Riemannian n-mani-
fold with a compact regular completion 9^* such that
(3K*)1 — 3% has (n — l)-dimensional measure zero (for
instance, 9% == an open disk in the plane with the usual
Riemannian structure). Then each u e P^, a > 1/2, deter-
mines unique border values u e P^?*2. Also, the class P^1

is dense in P^ for each integer m ^ 0. These statements
are proved by using Theorem I', § 3, III, and the fact that
we can cover 9%* by a finite number of coordinate patches
which are as regular as we please.

5. Examples.
Example 1.
From Corollary 4' of Appendix I it follows that if D is an

open subset of R" belonging to U[m, m + 1]), then

(12) In addition, one can give metric properties on (X, d) which are necessary
and sufficient for the existence of such a structure. These results will be proved in
a later paper.
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v

P^D) == PD.<. tor m ^ a ^ m + 1 (and the norms on these
spaces are equivalent for each a). Here we give an example
of an open set D c R1 such that P^D) ^ P£, for
1/2 ^ a < 1.

Let D be the domain obtained by removing an interior
point from a finite open interval. Let Di and Dg be the two
components of D, and for any function u on D let Ui
and Ug be the restrictions of u to Di and Dg respectively.
By Theorem V of Appendix I, the [correspondence
u^—^ {ui, Ug} defines an isometric isomorphism between
P£., and PD,,.-i-P£,,. for each a ^ 0. Also, if ueP^D),
then {ui, u^} e P^(Di) JL P^) and ^ KIU ^ ^H^D.

k ^
Since for k = 1, 2 and all a ^ 0 the spaces P^D^) and
PS^ g coincide and have equivalent norms,

P^D^P^e for a ^ 0, ( c means continously imbedded).

On the other hand, if 1/2 ^ a < 1, the function u = 0
on Di, == 1 on Dg, belongs to PD.<? but not to P^D).

Example 2.
This is another example where P^D) 7^ P£ g; in this

case D is connected.
Let D be an annulus (in the plane) which is slit along a

radius. By introducing polar coordinates relative to the center
of the annulus and the slit, we define a homeomorphism T
of D onto a rectangle D*, such that T and T~1 are C00

with bounded derivatives. T defines a correspondence
between functions u on D and v on D* given by:
u{x) = p(Ta;). From the properties of T and the Interpolation
Theorem of Appendix I, it follows that for each a ^ 0,
u e P^e iff v e P£*,e and in this case their norms are equi-
valent. Also, since T~1 is Lipschitzian, u e= P^D) implies
^^(D*) and

Ma.D* ^ ^Ha,D, a ^ 0.

Since the spaces PS*^ and P^D*) are equal and have
equivalent norms, P^D) c PS ^ for a ^ 0. On the other
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hand, if 1/2 ^ a < 1, a smooth function u which = 1
near the upper edge of the slit and == 0 near the lower edge
of the slit, belongs to P£^ but not to P^D).

Example 3.
Let 3% be an n-dimensional Riemannian manifold, let 91

be a /(--dimensional submanifold, and suppose a > (n — /c)/2.
Theorem III, § 3, gives sufficient conditions that restriction
from 9% to 91 transform P^ boundedly into P^"-^2. In
the example below this restriction property does not hold.

Let f(x) be a positive continuous function on
— oo < x < + oo such that f [x) —>• 0 as \x\ -> + oo.
Let 9% be the open set in the plane: \y\ < f{x)^
— oo < x < + °°? with the Euclidean metric, and let 91
be the re-axis. Assume that f is chosen so that 9% has finite
area. Then the function u '=. 1 belongs to P^, but its res-
triction u' to 91 does not belong to P^2 (since in particular
u^P^.

Example 4.
Again, let 9J? be an yz-dimensional Riemannian manifold,

let 91 be a /c-dimensional submanifold, and assume
a > (n — k)f2. Theorem III, § 3, gives sufficient conditions
for the existence of a bounded linear extension map of
p^-(n-fc>/2 ^^ p^ Here we give an example where such an
extension map does not exist.

Let 9% == R3 with coordinates re, y, z. Let 9? be the
surface gotten by revolving a curve y = f {x) about the
re-axis. Assume that f {x) is positive and C00 on
— oo < x < + °°? that f (x) -> 0 as |re| —> + oo in such a
way that 91 has finite area, and that f^x) is bounded on
— oo < x < + °° t01* each k ^ 0 (for example, take
f^x)=e~x^). The intersection of 91 with the (re, y } — plane
consists of two symmetric generating curves. Let C denote
the curve lying in the half-plane y > 0.

The function u' = 1 on 9? clearly belongs to P^. On the
other hand, u' does not have an extension u e= P|̂ , because
if it did, the restriction u" of u to C would belong to P^/2.
(This can be verified as follows. Define a transformation
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(^ YI, 0 = T(^ y, ^) of S)l onto R3 by :

\=x, r ^ = = y — f ( x ) , ^=z.

T is a hoineomorphisni which maps C onto the S;-axis. If
^ Y), 'Q = u(x, y, z), then ^eP8/2(R3) and hence the
restriction v" of v to the ^-axis belongs to P^R1). This
implies u^eP^2.)



APPENDIX I

The quadratic interpolation.

For completeness sake we give here the definitions and
proofs concerning quadratic interpolation. They were presented
in the literature [2, 9] in different forms and not so completely
as needed here.

We start by considering a compatible couple of Hilbert
spaces V and W. The shortest definition of what such a
compatible couple means is that both spaces V and W are
Hilbert subspaces of a common topological Hausdorff vector
space (13). This topological vector space plays no role whatsoever
in the considerations, and it is of importance to state the
intrinsic properties of the couple which make it compatible.
These characteristic properties are the following [3] :

1° [V, W] form a linear couple, i.e. V n W is a linear
subspace of V as well as W and the corresponding identi-
fication (coupling) mapping TC is a linear isomorphism of
V n W as subspace of V onto V n W as subspace of W.

2° The identification mapping IT is a closed mapping from
V into W, i.e. if {x^} c V n W is a Cauchy sequence in V
and in W then its limits in V and in W are equal and thus
contained in V n W.

For a compatible Hilbert couple [V, W] the vector space
V n W has a direct meaning. The vector space V + W has
still a direct meaning if V and W are Hilbert subspaces of
a common vector space, whereas if we use the intrinsic defi-

(13) Hilbert subspace means a subspace with its own hilbertian structure such
that the corresponding injection mapping (identity mapping) is continuous.
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nition we identify V + W with the quotient space (V+W/Z)
where Z is the closed subspace of the direct sum V + W
composed of couples {v, w} with v == — w e V n W.

Denoting by || |]v and || ||w the norms in V and W
we define the norms on V n W and V + W as follows :

(AI.l) || ull^nw =\W +N1^,
(AI.2) H|̂ w = min [W + IHPw].

vev.wew
v+w=u,

It is immediately proved that the norm (AI.l) on V n W
is quadratic and makes V n W into a Hilbert space. The
proof that V + W with the norm (AI.2) is a Hilbert space
is less immediate; the shortest way to prove it is to take the
definition of V+W as the quotient space (V+W)/Z (as
done above) when V + W is made into a Hilbert space by
putting 1| {^, w}||2 = IHI^r + IMIiv- Then the quotient space
is identified with the orthogonal complement of Z and the
norm (AI.2) on V + W is just the norm of V + W restricted
to this complement.

The preceding definitions assign to each compatible Hilbert
couple [V, W] a quadruple of well determined Hilbert spaces
[V, W, V n W , V + W ] . Even if V is contained in W,
when V n W = V and V + W == W, these equalities only
mean equalities of spaces, but we still put norm (AI.l) on V
considered as V n W and norm (AI.2) on W considered
as V + W. In this way all that follows will be valid without
any exceptions.

LEMMA. — Let 96 be a Hilbert space and V a Hilbert
subspace of 36. Then there exists a linear non-negative bounded
operator G on 96 such that

1° For u e 36, Gu e V and (u, v}^ = (Gu, ^)v for all v e V.
2° The null-space of G is ^QV (V is the closure of V in 36)
3° If G112 is the positive square root of G then G^2^) === V

and for /eV, \\f\\^ = UG^y.
4° The upper bound of G = sup |̂ .

"ev [Hl̂ r

The operator G is unique. The so-established correspondence
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between Hilbert subspaces V of 96 and the non-negative
bounded linear operators G is 1 — 1 and onto (14).

Proof. — Since V is a Hilbert subspace of 96 we have
c = sup {MII^/IHI^ : ̂ e V} < oo. Consequently the antilinear
functional (u, ?)^ of v which is bounded on 96 is, a fortiori,
bounded on V with its norm and hence realized in the
Hilbert space V as (Gu, ^)v. This defines Gu uniquely as
an element of V. It is clear that G is linear. By putting
v == Gu we get (u, Gu)^ = {Gu, Gu)v ^ 0. Hence G is
non-negative. To see that it is bounded by c, write

l|Gu[|̂  ^ c(Gu, Gu)v = c(u, Gu)^ ^ c||u||^||Gu|[^.

Thus, 1° is proved. 2° follows immediately from 1°.
To prove 3°, notice first that the range of G is dense in V

(in the norm of V). Otherwise there would exist ^05 0 7^ ^o e V?
such that (u, ^o)^ = (Gu, ^o)v = 0 for all u e 96 which is
impossible. On the other hand, the range of any self-adjoint
operator is dense in the norm of 96 in the orthogonal comple-
ment of its null-space. Hence the elements f= G^u are
dense in V, whereas the elements G^2/* = Gu are dense in V
in the norm of V. By the formula (Gu, Gu)v == (u, Gu)^
we get (G^2/; G^/^v = (/, f)^> Therefore the mapping
G112 is a linear isometry of the range of G112 provided with
the norm of 96 into V provided with the norm of V. By
continuity it is extendable to an isometry of V onto V.
Finally, G^2^) = G^fV) = V.

To prove 4°, we use 3° and write

(u, Gu)^ (G^u, G^u)^ (^, ̂sup -————— = sup v————,——'— = sup -——/— = c.
ue^ (^, U)^ ^v (u, U)^ i,ev (P, ^)v

To finish our proof it remains to show that if G is a linear
non-negative bounded operator on 96 then there exists a
unique Hilbert subspace V to which it corresponds. To this
effect we take the positive square root G172; put V == G^2^).
The orthogonal complement of the null-space of G is then V
and G112 restricted to V is 1 — 1 and onto. We put then

(14) This lemma is well-known; the first version, not quite complete, was esta-
blished by K. Friedrichs [7]. We give the proof for completeness sake.
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for /•eV, IIG^/'llv = Hte Then if we put for v e V,
(/ === G^2/; feV, we have

(Gu, ^)y = (G^G^u, G^2/^ = (G^u, /•)^
- (^ G172/^ = (u, P)^

which shows that G corresponds to V. By part 3° of the
lemma there is no other possible choice of V and || ||v.

THEOREM I. — 1° Let [V, W] be a compatible Hilbert
couple and G, H be the operators on V + W which, following
the Lemma, correspond to V and W respectively. Then
G + H = I (identity) and the operators corresponding to
V n W in V + W, V and W are GH, H restricted to V
and G restricted to W respectively.

2° If, for two Hilbert subspaces V, W of a common Hilbert
space 96 the corresponding operators G and H satisfy
G + H = I then ^ ̂  V + W (15).

Proof. — 1° We use the intrinsic definition of a compatible
couple and the corresponding definition of V + W. We
denote by S the direct sum V + W. By Vo and Wo we
denote the subspaces of S of elements {v, 0} and {0, w}
respectively. By o- and T we denote the canonical mappings
P-> {v,0},w^ {0,w}. We put Z = {{u, — u}: u e V n W } .
Z is a closed subspace of S and we put T == SQZ. TCy, 'TCW
and T^T are the orthogonal projections in S on Vo, Wo
and T respectively. We identify now v e V with ir-i-ov
and w e W with TCI-TW. If u e V n W then

ir'rO'u — TTrTU = ̂ {u, — u} = 0.

Hence the identifications are consistent with the coupling
of V and W which allows the identification of [V, W]
with [iTTO-V, TtTTW]. With this identification V + W ^ T
where T is taken with the norm of S. In view of the identi-
fication, (T and T may be considered as the inverses of TTT
restricted to Vo and Wo respectively. Consider on T the
operators G and H corresponding to V s Tc-rcrV and
W == TiT^W. We claim that G = TCi-Try restricted to T and,

(15) For Banach spaces A, B, A = ,̂ B means that A and B are identical as
vector spaces and, moreover, have the same norms.
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similarly, H == TCT^W It is enough to show this for G. In
fact, for t e T and 9 e V, we have,

(TCT'M? ^)v == (0"T;T^V<, OT^)s == (^V^, <3"P)s == (^ Ov)s

= ((, -TCT^S == (<, ^T.

This equation, valid for every v in V, shows that ir-r^v^ == G^.
It follows immediately that

G( 4~ Ht == TC-rTTv^ ~t~ TCT^W^ == 'TCT('^V "t" ^w)^ === ^T^ == ^.

To prove that GH corresponds to V n W we notice
that for u e V + W, GHu = G(I - G)u == HGu, hence
HGu e V n W. Then, if x e V n W, we have

(HGu, ^)vnw == (GHu, ^)v + (HGu, x)w
= (H^, ^)v+w + (G-^, ^)v+w == (^, ^)v+w

which proves our assertion. To show that H corresponds to
V n W in V, take any ^ e V and ^ e V n W . Then
y = G^2/; x = G^g == H^h where f and g are in V
and A e W. We have HP == HG^f == G^^/^e V n W and

(HP, ^vnw == (HG1/2/', ^^^y + (HG1/2/; ff^^w
= (H/1, g)v+w + (H1/^1/2/', A)v+w
= (/•, g)v+w - (G1/2/*, ^)v^w + (G1^, ^)v+w = (^ o;)v,

which shows that H restricted to V corresponds to V n W
in V. The assertion about the restriction of G to W is
proved similarly.

2° Since for x e ̂  Go; e V and Hx e W, it follows that
x == Gx + Ho; e V 4" W. Hence, 36 as vector space is the
same as V + W. We still have to check the equality of norms.
Since V and W are Hilbert subspaces of 3t there exists a
c > 0 such that [Hl^ ^ c||p[|2^ for p e V and ||w||2- ^ cl|w[|2^
for w e W. We have then

IHJ^w = min {[W + IH^w : P e V, w e W, a; = P + w}
^ cmin {||p||̂  + iH[|̂ : peV, weW, a; = v + w}

^tii^ii^n.
(16) This follows from \\x—w\\2 + |H|2 = -!- [|.r||2 4- 2 w—-^-
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The closed graph theorem then gives that there exists a
constant C such that [|*r||^4.w ^ C||̂ |||̂ . Therefore the scalar
product in V + W is given by a bounded, positive operator
M with bounded inverse : {x, y)v+w = {MX, y}^ It follows
that the operator G' corresponding to V in V 4- W by
our Lemma is given by

(G'x, ^)v = {x, ^)v+w = (Mrc, ̂  == (GMa?, p)v.
Hence G' == GM and similarly, H' = HM and

G' + H' = (G + H)M.

Since G' + H' = I by 1° and G + H == I by hypothesis,
M == I, which finishes the proof.

Consider now a fixed compatible Hilbert couple [Vo, Vi]
and the corresponding operators Go and Gi = I — Go in
Vo + Vi. It will be convenient to use the spectral decomposi-
tion JL\ of Go in the space Vo + Vi. The spectrum is
contained in the closed interval 0 ^ X ^ 1. The null-space
No of Go is the eigenspace corresponding to the eigenvalue 0
and the null-space N1 of Gi is the eigenspace for X == 1.
For any u <= Vo + Vi we have

u = ^ rfExu, G^u = ̂  X1/2 rfExu,
(AI.3) Gmu=f^{i-\)^dE^u

G^G^u = f^ ̂ (l - \)112 dE^u
ueVo^- llull2^ = ^X-^HExull2 < ao(AI.4a)

(AIM)
(AI.4c)

ue Vi ̂  |[U||^ ^ j^ (1 - ̂ -^IIExull2 < 00

ueVonV i ^==^ IM^nv,-^^(i ^- ÎIE^ull2 < oo.
We have further

Ni c Vo, V, = (Vo + Vi)ONo, No c V
(A 1.5)

i»
= (Vo + v,)eNiV,

Vo n V, = (Vo + Vi)Q(No + Ni).
For every number T, 0 < T < 1, we define the interpolation

spaces V^ between Vo and V^ as follows :
(AI.6) V^ is the Hilbert subspace of Vr + Vi corresponding

to the operator G^G^.
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Clearly, for T == 0 and T = I the notation we started with
is consistent with this definition. Using the resolution of
identity JL\ we get an equivalent definition

(AL6') ueV,^=^ HI? = / lXT- l(i -^-^IIE^n2 < oo.i/o

From (AI.6') and (AI.4c) it follows immediately that

(AI.7) Vo n Vi c V, c Vo n Vi for 0 < T < 1.

By approximating u e V^ by (Ei- i /^— EI/^ with n / ^ 00
we check that

(A 1.8) Vo n Vi is dense in V^ ^IM the norm of V^<

We remark next that for 0 < T < 1,

V, = GO^G^VO'H"^)
but for T = 0 or 1 we get

Vo = G^Vo n Vi) == orthogonal complement in
(AI.9) ____ V o ^ N i

Vi = G^Vo n Vi) == orthogonal complement in
v^No.

Then by checking the norms as expressed in terms of the
resolution of identity E^ one sees immediately that for any
real o-o and o-i the operator G^G^* is defined on Vo n Vi
and is a unitary operator on all the following spaces provided
with their respective norms :

VonVi with norm of Vo + V^ Vo n V^ Vo, V^, V, for
0 < T < 1.

If [Wo, Wi] is another compatible Hilbert couple we will
repeat the definitions, notations and constructions as above
except that the operators will now be denoted Ho and
Hi = I — Ho and we will obtain the interpolation spaces
WT-We can now state the interpolation theorem.

THEOREM II (INTERPOLATION THEOREM). — Let T be a
linear mapping of Vo + Vi into Wo + Wi such that it
transforms continuously Vo into Wo and Vi into Wi
with respective bounds MQ and Mi. Then

14
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1° T transforms continuously Vo + Vi into Wo + Wi
with hound ^ max (Mo, Mi).

2° T transforms continuously Vo n Vi into Wo n Wi wi(A
bound ^ max (Mo, Mi).

3° T transforms continuously V^ i^ifo W^, 0 < T < 1,
witA bound ^ M^M .̂

Proof. — 1° If u = UQ + Ui, UQ <= Vo and Ui e Vi, then by
(AI.2)
ITul^w, ^ min(||TuoU2Wo+ IITuill̂ )

^ max (Mo2, Mi) min (Kl^ + 11^11^ )
=max(Mo, MDHÎ .

2o If ueVonVi , TueWonWi andby(AI.l)
[ITuH^nw, = IITull̂  + ||Tu||̂  ^ max (Mo, Mi)|[u||^nv<

3° Since in this part we are considering only V ^ w i t h
0 < T < 1, we can restrict our consideration to Vo n Vi,
a closed subspace of Vo + Vi. We will retain the notation
Go, Gi for the restrictions of Go and Gi to Vo n Vi. With
this convention for a > 0, G? and G? will have well-deter-
mined inverses G^ and GF" (they may be unbounded).
The transformation T maps Vp n Vi into Wo n Wi. Hence
Vo n Vi is mapped into Wp n Wi. Thus we can restrict our
considerations to Wo n Wi. The above remarks apply also
to Ho and Hi restricted to Wo n Wi. We can now make
the following remark which is checked immediately by using
the spectral representation of our operators.

(^i-o/2Qp2 ^p H^H^-^2) is an operator valued function
of the complex variable ^ which is analytic in the uniform
operator topology for ^ == T + t(J m ̂ e open strip 0 < T < 1
and is continuous in the strong operator topology in the closed
strip 0 < T ^ 1.

Consider now p e Vo n Vi. Then G^G^ e Vo n Vi,

^Go^G^) e Wo n Wi, Ho-^Hr^^Go^G^ e W o n W i
and also
Ho-̂ ^Hr̂ Go1-0^ )̂ _____

= ^^ -̂̂ ^^^^^ (̂Go^^G^ )̂ 6 Wo n Wi.
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Consequently the operator valued function
^-i+o/2H^/2T(G^)/2G^)

is analytic in 0 < T < 1 in the uniform operator topology
and continuous in 0 ^ T ^ 1 in the strong operator topology.
Therefore

w(^) == M^-lM^^Ho-l+^2H^^2T(Gol-^/2G^^)

is a vector valued function analytic in the open strip and
continuous in the closed strip.

For ^ = icr(T = 0) this vector valued function becomes

w{i^ = Mo(T-lM^iaHo<^/2H^la/2Ho-l/2T(Go^iCT/2GW2G;/2p).

Hence

IK^)llw,nw, = ||H (̂̂ )l|w, = Mo-l||T(Go-iCT/2Gr2Glo/2p)||w,
^ l|G^k=|M|v^.

Similarly we prove that |[w(l + ^)||wonw, ^ IMJVon^- By the
maximum modulus theorem [6] for vector valued analytic
functions we get H^COHwonw, ^ ll^llvo?^ tor all t in the
strip. In particular for 0 < T < 1,

ll^)llw,nw< = Mo-l+TM^T||T(Gol-^2G^ |̂|w,
^ ll^llTonT-^IIG^-^G^^v,.

When ^ varies over Vo n Vi, Gol~T)/2G^2^ varies over a
dense subspace of Y,. Hence the last inequality shows that T
is a bounded transformation of V^ into W^ with bound
^ M;-̂ .

THEOREM III. — Let H be a linear positive bounded operator
on a Hilbert space Wo, Let Wa be the Hilbert subspace of 9&
corresponding to the operator H20^ a ^ 0. Then for any T,
0 ^ T ^ 1, and 0 ^ a < (3, Wa(i-T)+pT is the ^-th inter-
polation space by quadratic interpolation between Wa
and Wp.

Proof. — Consider the subspace W' corresponding to the
operator H201 + H2?. By using the spectral decomposition E\
of H we see that the elements ueWa are characterized by
Mk=/x~'2a^l|E^||2 < oo, and the elements ueW' are
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characterized by ||u||^ = f (^ + X2?)-1 d\\E^u\\2 < oo. It
follows that Wa c W and similarly, Wp c W'. Wa and Wp
are then necessarily Hilbert subspaces of W. Using the
expression of norms and scalar products in Wa and W in
terms of the resolution of identity E\ we check immediately
that the operator Ha which corresponds to Wa in W'

^2a
corresponds to multiplication by -..^—.—.s"^? i-^- rt ls

(A + A «-)
the operator H^H201 + H2?)-1. Similarly the operator
H2P(H2a 4- H2?)-1 corresponds to Wp in W'. Since the sum
of these two operators is == I it follows, by Theorem I, 2°,
that W7 = Wa + Wp. Hence the T-th interpolation space
between Wa and Wp corresponds to the operator on W
which is H^-^+^H^ + H2?)-1. Therefore this subspace
corresponds in 96 to the operator H20^"^2^ as is stated in
our theorem.

As application we give the following corollary.

COROLLARY 3'. — For the space of potentials P^R") we
have that P^-^+i^R") is the ^-th interpolation space by
quadratic interpolation between P^R") and P^R").

Proof. — We have only to remind the reader that
P^R") = Gy,(L2{Rn)) where Ga are positive bounded integral
operators on L^R") which, in view of the convolution formula
Ga * Gp == Ga+p, are necessarily the a-powers of Gi, i.e.
Ga=G?. Since for feL2{Rn), ||Ga/1p« = \\f\\v we recognize
that the spaces P^R") are Hilbert subspaces of L^R")
corresponding to the operators Gga == G2®. Hence the prece-
ding theorem applies.

Remark 1. — Some clarification should be given concerning
the last Corollary. The spaces P^R") as introduced in Ch. n
are not exactly subspaces of L^R"). The elements of L^R")
are classes of equivalence rel. 3lo (]Le- relative to the sets of
Lebesgue measure 0), whereas the elements of P^R") are
classes of equivalence relative to the corresponding class of
exceptional sets, the class 8laa c 3lo- However, each class of
equivalence in L^R") has elements in common with at most
one class of equivalence in P^R") (and then the former



THEORY OF BESSEL POTENTIALS 325

contains the latter) and therefore we may identify the elements
of P^R") with elements of L^R"). By virtue of this identi-
fication we can proceed as in the proof of the Corollary, but
then we obtain the interpolation space as a class of elements in
L^R"). In other words we obtain, by Corollary 3', the class
pa(i-T)+i^Fl") saturated rel. 3lo- To recapture the proper class
pa(i-T)+p-^p^ ^ have to apply the above identification in
reverse which can be obtained by correcting the function in the
class saturated rel. 8lo-

This situation may present itself in a more general case
when we deal with two saturated functional Hilbert spaces (17)
91 and 92 on a common basic set § relative to two excep-
tional classes 3l1 and 8l2 respectively.

We first remind the reader that a saturated functional
Hilbert space 9 rel. 81 is, in the first place, a linear class of
functions defined on 8 with a quadratic pseudo-norm having
the property that [| u\\ = 0 ^==^ u(x) = 0 exc. 81. Since each
such class is a subspace of the linear class of all functions
defined on 8, we have a natural meaning for the classes
^ n S2 and S1 + 9?2. We define then, by formulas (AI.l)
and (A 1.2) the pseudo-norms on S1 n S2 and S1 4- 3?2. The
compatibility of the two functional spaces means that for no
function /lk e ̂  with [[f^ ^ 0 one gets H^b^^ = 0
for k = 1, 2. This is equivalent to the fact that if fe 91 n 3?2,
then H/'ll^i = 0 -4=^ [j/'ll^ = 0. Assuming that the compati-
bility holds, we notice immediately that the class S1 + S2

is a functional Hilbert space rel.

^ u 3l2 = {(A1 u A2): A1 e 3li, A2 e 3l2}

and that 91 n 92 is a functional Hilbert space rel. 8l1 n 8l2.
However, to apply the abstract interpolation here, we must
identify the elements of the Hilbert spaces 3s1, 92 and S1 n 3^,
i.e. the equivalence classes rel. 8l1, 8l2 and 8l1 n 8l2 respec-
tively, with the equivalence classes rel. 8l1 u 3l2 containing
them, which are elements of the Hilbert space S1 4- 92.
This leads to interpolation spaces which are functional spaces
rel. 3l1 u 8l2. However, we can give a more precise definition
of the interpolation spaces as functional spaces, proceeding

j17) Similar developments can be made in case of functional Banach spaces.
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as follows. The functional space 91 n 3^ rel. 8l1 n Sl2 is dense
in the interpolation space with its norm. Therefore the inter-
polation space is a functional completion of 91 n 92 relative
to the interpolation norm. Hence we can ask for the best pos-
sible completion, i.e. with the smallest possible exceptional
class. In particular, if there exists a perfect functional comple-
tion of 91 n 312 rel. Sl1 n SS? with the interpolation norm on it,
we will call this the perfect functional interpolation space. Its
exceptional class will always be contained between 8l1 n 3l2
and S^ugl2 .

In the case of the Corollary 3', we recapture in this way the
interpolation space P^^+P^R") with its proper exceptional
claSS 8l2a(l-T)+2pT-

In order to state the next theorem in its strongest form we
recall a few facts about general interpolation methods between
Banach spaces (see [3]).

The notion of a compatible couple of Banach spaces [V, W]
and the definitions of V n W and V + W as Banach spaces
are similar to those given above for Hilbert spaces (except for
some differences in the definitions of norms of V n W and
V 4- W). For a compatible couple [V, W] we say that the
Banach space A is an intermediate space between V and W
if it is a Banach subspace of V + W and V n W c A c V + W.
An intermediate space A is an interpolation space between V
and W if any linear operator T transforming V + W
into V + W which transforms continuously V into V
and W into W, also transforms continuously A into A.

An interpolation method F defined on a class Sl of
Banach couples is a function which assigns to each couple
[V, W] e X an intermediate Banach space F[V, W] between
V and W (18) with the following property: if T is a linear
mapping of Vo + Wo into V^ + Wi for [V,, WJ e 3t,
i = 0, 1, and if T transforms continuously Vo into Vi
and Wo into Wi then T transforms F[Vo, Wo] into
F[Vi,Wi] continuously.

One of the main results of [3] can be briefly stated as follows :
1° If F is an interpolation method on some class 31 of

(18) If F' assigns the same spaces as F but with different (necessarily equi-
valent) norms, then F' is considered different from F.
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Banach couples, then F[V, W] is an interpolation space
between V and W for any [V, W] e 3t.

2° If A is an interpolation space between V and W for
some compatible Banach couple [V, W], then there exist
general interpolation methods (19) which assign A to [V, W].

It is obvious now, in view of Theorem II, that for the class
3t of compatible Hilbert couples, the assignment of V^ to
[VQ, Vi] forms an interpolation method and hence Vc is an
interpolation space between Vo and Vi.

THEOREM IV. — Let E and E7 be two Hausdorff topological
vector spaces and let T be a linear mapping of E onto E'
and S a linear mapping of E' into E such that TS == I
(identity on E'^. Suppose now that V and W are Banach
subspaces of E and that V = T(V) and W = T(W) are
Banach subspaces of E' such that T transforms continuously V
onto V and W onto W, and S transforms continuously
V into V and W7 into W. Then if F is any interpolation
method defined for both couples [V, W] and [V, W] we have
F[V, W] == T(F[V, W]) and S(F[V, W']) c F[V, W].

proof. — By our hypothesis we have T(F[V, W]) c F[V, W]
and S(F[V, W'])cF[V, W]. Since TS = I we get
F[V, W] c T(F[V, W]). Hence the statement of our theorem.

Remark 2. — In view of Theorem IV, if we consider any
general interpolation method which assigns to the couple
[V, W] a fixed interpolation space A between V and W,
this interpolation method will assign to the couple
[T(V), T(W)] the same space T(A) which, in particular,
must be an interpolation space between T(V) and T(W).
However, the norm on T(A) will depend on the interpolation
method.

We can apply Theorem IV to the following case. We take a
closed interval [To, Ti], 0 ^ To < Ti, and consider an open
subset D c B/1 with the simultaneous extension property
over this closed interval, i.e. De=8([To, Ti]) (see § 7, III).
We take as E the class P^R"), and as E', P^D). The
simultaneous extension property means that there exists a

(19) General in the sense that they are defined for all compatible Banach couples.
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linear extension mapping S, S(E') c E such that it transforms
v

every P^D), To ^ a ^ TI, continuously into P^R") with a
uniform bound for all such a'5. By T we denote the restric-
tion mapping assigning to any function defined in R" its
restriction to D. Even if D is not in a simultaneous extension
class we have always that T transforms P^R") continuously
into P^D) (with a bound ^ 1). If De=8([To, Ti]), and
since S is an extension mapping, it follows that TS == I. Hence
T^R")) = P^D) for To < a ^ T^. By taking in Theorem IV
V = P^R") and W = PP(R") with To ^ a < ? ^ ̂  and
applying Corollary 3' we obtain the following corollary:

COROLLARY 4'. — The ^-th interpolation space by quadratic
interpolation between P^D) and ]P?(D) is equal to P^-^+l^D).
However, the interpolation norm is in general different from the
usual norm on P^-^+P^D) (but the two norms are equivalent).

Remark 3. — We can obtain the same space P^(D) by
quadratic interpolation between two different couples
[P^D), PP(D)] and [P^D), PP'(D)] with a < y < ^
a' < Y < (3'. For each couple we have to choose different T,
namely (7 — a)/((3 — a) and (y — a')/((3' — a') respectively.
The two so obtained interpolation spaces will have equivalent
but different norms.

The next theorem is concerned with direct orthogonal sums.
If V1 are Hilbert spaces for i belonging to a set of indices 3
we denote by S -LVl the vector space formed by all systems

{ ,̂ ^eEV^such that \\{^}p = S Mi'v. < oo. As is
ie^

well known this is a Hilbert space. Suppose now that for each
i e 3 we have a compatible couple [V1, W1]. We consider then
V = 2 ̂ V1 and W = S ̂ W1. The natural definition of

ie=3 ^ lej

V n W is the set of all systems {u1}^ with u1 e V1 n W1

and the two norms Ku^flv and Hu^llw finite; one checks
immediately that [V, W] is a compatible Hilbert couple
and that V n W = Si(V1 n W1) and V + W = S-L(V1 + W1).

If G,o and G^i are operators on V1 + W1 which corres-
pond to V1 and W1, then one verifies immediately that the
operators Go and Gi on V + W corresponding to V
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and W respectively, are given by

Go{u1}^ = {Giou1}^ Gi{u1},^ = {Gnu1}^

By using the definition (AI.6) we obtain then the following
theorem.

THEOREM V. — If [Vo, Vi], ie 3, are compatible Hilbert
couples and V^ 0 ^ T ^ 1, are the corresponding interpolation
spaces by quadratic interpolation, and if we write Vo = S ̂ Vo?

ie^
Vi == S J-V^ t/i^n tAe corresponding interpolation space V^

z'5 obtained as V^ ̂  Y -^-V1.
^



APPENDIX II

Equivalence of metrics.

Let 9% be an n-dimensional C°° manifold, g and g be
two C°° metrics on 3%. If T is a /c-covariant (or contra-
variant) tensor on 3% we shall write V^T(^) for the tensor
of the m-covariant derivatives of T and |T(^)|^ for the
norm of T at x, both computed with respect to g, and we
shall write g~1 for the contravariant tensor associated with g.
A similar notation will be used for g. The eigenvalues of g
relative g will be designated by Xi(^) ^ • • • ^ X^).

In this appendix we will show that if the eigenvalues of g
relative g are bounded (above and below) and |V^g(^)|y,
v = 1, . . ., m, is bounded uniformly on 9%, then the potential
norms \u\^^g and \u\^^g are equivalent. Furthermore we
shall explicitly display the dependence of the constants of
equivalence on these bounds.

We define for integers r:

1 for r == 0,
Max {(Ig-1^)!^^)!^}(AII.l) N,(g; g){x)

v==l,...,r
for r ^ 1.

For positive constants c and c we note (by using the fact
that V^ = V^ and the homogeneity of the norms) that
N.(cg; eg) = c-^N^g; g).

Our main theorems here are the following.

THEOREM I. — For any x e 9% and r ^ 1

(AII.2) |V;-g^)|, ^ C^2^)"^2' N,(g; g)(x)
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and

(AII.2') N.(g; g)(x) ^ C^)Wn^yN.(g; g){x)

where Cr depends only on r and C'r = Max {C;^}.
v=l, .... r

THEOREM II. — If there are positive constants A(, Ay and
B ,̂ m == 1, 2, . .., wi(/i 1 ^ B^ ^ B^+i ^and setting
B_i = Bo == 1) 5uc/i (Aat A.i ^ \{x) ^ • • • ^ ^(aQ ^ An
and N^(g, g)(a;) < B^ /or aH a;6a» then for ueP^(a»), m
a non-negative integer,

(AII.3) |u|^^,- ^ CW^l + Ar^B^ilu)^^,

and

( A \2(m-l)
/ " A T T ^ ^ 1 7 / 1 2 <: r(2)A—ra/2/^ i A—w\2 yi " \ R2 li^l2 ^^All.O J I U| ̂  ̂ g ^ L.̂  2V^ ^1-1-^^ ; A~ ] ^m-lWm,^^

where C^ and C^ depend only on m.
The proofs of Theorems I and II are based on the following

lemma.

LEMMA 1. — Let T be a k-covariant tensor on 3D? and
(U, h) a coordinate patch on ^Sft. If V^T(^) exists at x e h{V)
then

—-^-(k-+-r) r

(AII.4) |V^T(^ < W 2 S c^{g; g^xW-^x)^
5=0

where CQ = i and c,, 5 ^ 1 , is a constant depending only
on r, A* and s.

Proof of Theorem I. — In (AII.4) we set T = g and note
that \^gg(x)\g == n1'2 for r = 0, and =0 for r > 0.
By an obvious computation (AII.2) now follows (cf. (All.5), ii)
and iii)).

From (AII.2) (and (All.5), ii) and iii)) we have

({g-^Mg^M1' ^ ^(^-^(Cyn^N^g; g^Y,\ ^w /
and (AII.2') is now clear.

Proof of Theorem II. — Let (U, h) be a coordinate patch
on 3%. Since the metric densities satisfy \/g{x) ^ A^V/g^)?
(AII.3) is clear for m = 0.
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Now suppose m ^ 1 and V^u(^) exists at x <= A(U)
'it exists exc. ^mWU)) on ^(U)).

Since ^7^u(x) == ^7gu{x} we apply (A 11.4) with T == V^u;
note that ^{x}-' ^ 1 + Ar"*, 0 <£ 5 ^ m, and apply the
Cauchy-Schwarz inequality. Thus for O ^ r ^ m — 1 we
have

ivr»(»)i? «; .̂(^^"'"^ 2.»;(,_"+ iV^te; «)(•'))
xd.^.r+i)!^-^)!;)

ro / m\^ ^(i+Ar^B^st^lv^^^
5==0 \ ^ /

where <4 depends only on m. From this and the inequality
between the metric densities (All.3) follows for m ^ 1.

(AII.3') follows directly from (AII.3) and (AII.2') by inter-
changing g and g and noting that

Xi^)-' ^ 1 + A^-^ ^ 1 + Ar" for 0 ^ r ^ m — 1,

X frc)nv / ^ 1, and that the eigenvalues of g relative g are
Ai(^)
bounded above and below by Ar1 and An"1 respectively.

Proof of Lemma 1. — We fix a coordinate patch (U, h)
and a point r c e V = = A(U). All tensors are transferred to V
and in what follows we do not need to mention x and V.
Let A and B be a- and fe-covariant tensors and C a
c-contravariant tensor. Then AB will be the (a+&)-co variant
tensor formed by taking the product of A and B. If a ^ c
we shall use the symbol C o A for any of the covariant
tensors obtained by contraction of all the indices of C with
certain indices of A followed by some permutation of the
free indices. We remind the reader of a few well known facts :

(AII.5) i) |AB|, - |A|JB|,, |C o A|, ^ |C|JA[,,
V(C o B) = (VC) o B + C o (VB),

ii) xrw ^ |A|| < xriAi^, wi^ ^ |ci^ ^ ^iq^
in) \g\^=\g-l\1,=^

Let j .,[ and ) .,( be the Riemann-Christoffel symbols
( /AC) (//f)
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of g and g, and $ == ]^: ̂  = } .̂  — ] l^. From the
( (/ /c) (/n >) 5

usual formulae for covariant differentiation we have for a
/c-covariant tensor T

(AII.6) V,T - V,T = R where R
( k )=== < V d)06 T (/ ^ --Mfc+iA i'i... iv-ia^+i... ifc (
(v=i }

with ^+1 the index of differentiation. We can also deduce
from (AII.6) that $ is a tensor (cf. (AII.7)).

To determine an explicit expression for <D, let g^
be a component of V^g, k the index of differentiation.^ ^
Then ^ g,̂  = ̂  — ga/^} — g;«{.U and since V^g = 0,

0=|^- ^{ffc}'' - g.,{jk}'. Thus

8W = g-̂ .̂  + g.A
Noting that $^ is symmetric in i and / we have by a
direct calculation

(AII.7) ^ = ̂  ^(g,.,, + g.,,, - g,,,,)

and from the obvious symmetry in g and g

(AII.7') - $& = -I- g^g,^ + g^f - gy,,)

where g^ is a component of V^g.
Then from (AII.6) we have

(AII.8) V,T = V,T + ̂  S ± g-̂  o [(V,g)T]

where the summation consists of 2/c positive terms of the
form

1 S Sii».\ ik+t1 i'i ... il-i^il+t... ifc J

or
r ^006 /^ T^ i
'i. ̂  8a-ik+^ i l1 ii... if-iPif+i... ik S

and k negative terms of the form
•f a^a TT .̂t & &i^fc+il a11,.. . if-iP^+i... ik 5 •
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By noting that V^g"'1 = 0, we have from (A 11.8) by an
easy induction on r,

(AII.9) V^T = VTT + S 5 ± (i-)'̂ "1)' ° ̂ '̂
... TO(7'-Sv/T)]

where the outer summation is taken over all systems
i

v == (vi, . .., v^), with v; ^ 1, S ̂  < r? ^ = I? • • • ? r ancl the
j=l

inner summation is taken over certain contractions of all the
indices of the 2^-contravariant tensor {g~1)1 = g~1 .. . g~1

(-times

with the {21 + r + /c)-covariant tensor (V^g) . . . Wg)
(V^^^T) followed by a permutation of the free indices.
For each fixed system {v j the number of terms in the inner
summation depends only on the system {v/}, r and A*. Thus

(AII.10)
Î T|, ^ IV^TI, + S ̂ |g-^|v^|,... TOjv^v/ri,

v

< |V;T|,+ i r s ^\g-^wg\,...\^'g^\^-s^\„
s=lLS^=^ J

where c'y depends only on v, k and r and the inner summa-
tion is taken over all v == (v^, .. ., v^), Vy ^ 1, Z = 1, . . ., r,
Vi + • • • + ^ = s.

If we consider any term in the inner summation then by
(AII.l)

^-W^.-.l^l.- ̂ g-ww^'... wg-ww^'
^ c;^Max^(|g-^|V^|^^}]-

< cWg';"g').
Hence from (AII.10), we have

(AII.ll) |V^ < X^^IV^TI,
< V^2 i c,N,(g; g)|V^T|,

^==0

where CQ = 1 and c^ == S c^ which depends only on ky
^j=S

r and s. This proves Lemma 1.



APPENDIX III

Simultaneous extensions from subspaces of R".

Theorem 1&, § 8, II, gives a formula assigning to each
function u' e pa-^-^Rfc) an extension uesP^R"). Theo-
rem Ic, § 8, II, gives a formula which assigns to a system of
functions {^05 ^i? • • • ? ^r} defined on R"~1 a function
u e P^R") which has the functions ^ as successive normal
derivatives on the hyperplane x^ = 0. In this appendix we
state similar formulas which give maps which are simulta-
neous, i.e., such that the function u assigned to u' (or to
{^05 ^i? • • • ? ^r}) does not depend on the potential class of
which u' (or each Vp) is considered a member. The proofs are
omitted since they are slight variations of those in § 8, II.

Remark. — The maps defined by Theorems Ib and Ic are
simultaneous to some extent. Consider formula (8.3) of Theo-
rem 16f or some fixed a=ao > (^—/c) /2 . If u'eP^-^R^,
(n — /c)/2 < a ^ ao, then the function u defined by (8.3)
belongs to P^R"),

Ma,!̂  ^ c\u\ (1-^-^12,^9

and u|nfc = u'. The simultaneity properties of formula (8.5)
of Theorem Ic were noted in Remark 2, § 8, II. However, the
maps defined by the theorems of this appendix are simulta-
neous for larger ranges of a.

THEOREM I. — Let $ be an integrable function on R"""*
such that

lo /^WW + hW^T < + oo for all a ^ 0.

2o^(^)^=l.



336 B. D. ADAMS, N. ABONSZAJN AND M. S. HANNA

If u' 6 p«^>-»)/2(R^ (^ _ ^)/2 < a, (Aen the formula

(AIII.l)

u(^ = (2^(»-^(^^^^(i + |i;̂ )-<-*)/̂ (0

defines a function u e P^R") sucA t/iat

KK,. = (2^)»-'ty^(l + h'/|2)aW)12 ̂ " Ml-(n-,,/2.n*

anrf u|Rfc = u'.

Remark. — Formula (AIII.l) defines a bounded linear map
of H^-^R^) into H^R") (20) for each real a, with the
property

(AIII.2) ^/)=(2^-^/^u(^^)^ a.e.

For a > (n — /c)/2, (AIII.2) implies that u' is the restriction
of u. For a < (n — /c)/2, R* is an exceptional set for a func-
tion u e= P^R") and hence in general the restriction of such
a function is not defined.

An example of a function $ having the properties required
in Theorem I is :

$(Yj") = (2^)(fc-n)^-<l/2)h^

For this $ we can evaluate the bound of the map defined by
Theorem I explicitly. We have

(2^-^(1 + hWIW)!2 ̂ "
= {^-W^n - /c)/2, {n - /c)/2 + a + 1 ^ 1),

where ¥(a, &; jz) is the confluent hypergeometric function of
the second kind. Also, in the case a = {n — /c)/2 (with this <I>)
it can be shown that the corrected function u defined
by (AIII.l) is continuous for x" ^ 0 and that, if
u^{x') = u{x, x"}^ Uyf converges to u' in L^R^) as x"
approaches 0.

(20) For the definition of the spaces H^R") see, for instance, Hormander [8, p. 45].
For a > 0, H^R") is the space P^R^) saturated relative to the class of sets of
measure zero.
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THEOREM II. — Let r be an integer > 0 and assume
0 ^ p <; r. Let ^p,r(t) be an integrable function on R1 such
that:

10 ,C(1 + ̂ Tl^p,^)!2 dt < + oo for all a ^ 0,

2° f^W^,r{t) dt == ̂  for 0 < q < r.

J/" P 6 p«-p-i/2(R"-i)^ p + 1/2 < a, t/ien the formula

(AIII.3)

u(^) = (2^1/2k.(^-pi|7^)(l + ISn2)-^)/2^')

defines a function u e P^R") 5ucA that

KK» = (2^Qi + ̂ TIk^)!2 ^I^ILp-i/a.R-

OTZC?

^u
^ '̂n R"-

Tq = ̂ pq^ /or 0 ^ q ^ r, q < a — 1/2.

The functions ^pp ^ can be chosen in various ways. For
example, let ^p,r(t} = ^~p^~(l/2)^?p,^(^ where ^p,r{t) is the
polynomial of degree ^ r such that 2° holds.
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