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BI-QUOTIENT MAPS
AND CARTESIAN

PRODUCTS OF QUOTIENT MAPS
by Ernest MICHAEL (1)

1. Introduction.

In this paper we introduce a new class of maps which seems
to have many desirable properties. In particular, it permits
us to characterize those quotient maps whose cartesian
product with every quotient map is a quotient map. All maps
in this paper are assumed to be continuous and onto.

DEFINITION 1.1. — A map f: X —^ Y is called bi-quotient (2)
if, whenever y e Y and U is a cohering of f^ty) by open
subsets of X, then finitely many /*(U), with U e U, cover
some neighborhood of y in Y (3).

As we shall see, all open and all proper (4) maps are bi-
quotient, and all bi-quotient maps are quotient maps. These
and other general properties of bi-quotient maps are proved
in sections 2 and 3. Our principal concern, however, is with
product maps.

If /a : Xa —>- Ya is a map for all a e A, then the product map
f=H^ from ILY, to O.Ya is defined by f{x) = (/,(^)).
That brings us to out first theorem.

(1) Supported by an N.S.F. contract.
(2) This terminology is explained by Theorem 1.3.
(3) Professor 0. Hajek has kindly pointed out that bi-quotient maps are equi-

valent (in view of our Proposition 2.2) to the limit lifting maps which he defined in
[Comment. Math. Univ. Carolinae 7 (1966), 319-323], and that our Theorem 1.3
is thus equivalent to Proposition 2 in that paper. It is a pleasure to acknowledge
Professor Hajek's priority.

(4) A map f: X —> Y is called proper (= perfect in Russian terminology) if f
is closed and if f~l(•y) is compact for all yeY. Example 8.1 shows that not all
closed maps are bi-quotient.



288 E. MICHAEL

THEOREM 1.2. — Any product (finite or infinite) of bi-
quotient maps is a bi-quotient map.

Theorem 1.2 stands in sharp contrast to the behavior of
quotient maps, which are not even preserved by finite
products (4). In fact, the following theorem shows that the
only quotient maps which are well behaved under even the
simplest products are bi-quotient maps. We denote the identity
map on Z by iz.

THEOREM 1.3. — If / ^ X — ^ Y is a map, and if Y is
Hausdorff, then the following are equivalent.

(a) f is bi-quotient.
(b) f X iz is a quotient map for every space Z.
(c) f X iz. is a quotient map for every paracompact space Z.
Theorem 1.3 should be compared with Bourbaki's result

[4; p. 117, Theorem 1] that a map f: X-> Y is proper if
and only if f X iz. is a closed map for every space Z. (This
is actually Bourbaki's definition of a proper map, which he
shows, in the above theorem, to be equivalent to our definition
in footnote (3)).

Theorem 1.3 raises the question of what happens if the
second factor is not an identity map. Here a useful criterion
was provided by J. H. C. Whitehead [17; Lemma 4] in case
the first factor is an identity map : If Y is locally compact
Hausdorff, then iy X g is a quotient map for every quotient
map g. In [12; Theorem 2.1], it was shown that local compact-
ness is not only sufficient here, but also necessary. These
results, when combined with Theorem 1.3, finaly lead to the
following theorem.

THEOREM 1.4. — If / * :X->Y is a map, and if Y is
regular, then the following are equivalent.

(a) f is bi-quotient and Y is locally compact.
W f x S is a quotient map for every quotient map g.

(4) Provided products and quotient maps retain their usual meanings, as they do
in this paper. If these meanings are suitably modified, however, then the product
of any two quotient maps becomes a quotient map. (See R. Brown [6; Proposition
3.1] and N. Steenrod [15; Theorem 4.4].)
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(c) f X g is a quotient map for every closed map g with
paracompact domain and range.

Theorem 1.4 does not, of course, entirely settle the problem
of products of quotient maps, since such a product may be a
quotient map even though neither factor satisfies the condi-
tions of Theorem 1.4 (a). The following theorem covers many
such cases, and seems to have rather minimal hypotheses.
(For instance, Example 8.6 shows that the assumption
that Xi is a /c-space (5) cannot be dropped.)

THEOREM 1.5. — If fi: X; -> Y( (i === 1,2) are quotient
maps, and if Xi and Yi X Yg are both Hausdorff k-spaceSy
then /i X /a is a quotient map.

Characterizations and general properties of bi-quotient
maps are developed in sections 2 and 3, while Theorems 1.2-1.5
are proved in sections 4-7. Section 8 is denoted to examples.

2. Two Characterizations.

PROPOSITION 2.1. — If Y is Hausdorff, then the following
properties of a map f: X —>- Y are equivalent.

(a) f is bi-quotient.
(b) If y e Y and °ll is an open cover of X, then finitely

many /'(U), with U e U, cover some neighborhood of y in Y.

Proof. — That (a) -> (b) is clear. Let us therefore assume (b)
and prove (a). Let y e Y and U a cover of ^{y) by open
subsets of X. Since Y is Hausdorff, there is a cover T) of
Y — {y} by open sets whose closures in Y do not contain y.
Let W =U^f-l{CG). Then W is an open cover of X, so
(b) implies that y has a neighborhood N = A u B, where A
is the union of finitely many f{V) with U e °ll and B is the
union of finitely V € Z\ But then y ^ B , so A D N — B
is also a neighborhood of y in Y. That completes the proof.

The identity map from a finite space with discrete topology

(5) A topological space X is called a k-space if a set A c X is closed whenever
A n K is closed in K for every compact K c X. Locally compact spaces and
first-countable spaces are ^-spaces.

10



290 E. MICHAEL

to the same space with a non-discrete topology shows that
Proposition 2.1 may be false if Y is not Hausdorff.

Recall now that a filter base S> is a non-empty collection
of non-empty sets such that the intersection of two elements
of % always contains an element of S> [4; p. 66]. If ^B is a
filter base in Y, and if y e Y, then y adheres to S> if y e B
for every B e %.

PROPOSITION 2.2. — The following properties of a map
f: X -> Y are equivalent,

(a) f is bi-quotient.
(b) If S) is a filter base in Y, and if y e Y adheres to %,

then some ^e/>-l(y) adheres to />-1(<B).

Proof. — (a) —> (b). If (b) is false, there is a filter base S)
in Y, and a y e Y adherent to %, such that each x e= ^{y)
has an open neighborhood U^ in X which is disjoint from
/^(B) for some B e d3. But then {LLp: x e f""1^)} covers
/^(y)? ^u^ no neighborhood of y in Y is covered by finitely
many /'(IL).

(b) —> (a). If (a) is false, there is a yeY, and a cover °ll
of ^{y) by open subsets of X, such that no neighborhood
of y in Y is the union of finitely many /'(U). Let S> consist
of all complements in Y of such finite unions. Then y
adheres to %, but no x^f^^y) adheres to ^(^B). That
completes the proof.

Proposition 2.2 should be compared with Bourbaki's result
[4; p. 117, Theorem 1] that a map f: X--> Y is proper if
and only if, whenever S> is a filter base in X such that y e Y
adheres to f^B), then some ^^/^(y) adheres to ^8.

3. General Properties.

Recall that a map f: X —> Y is called a quotient map if
V c Y is open in Y whenever /"^V) is open in X. This
immediately implies that every bi-quotient map is a quotient
map. We can, however, do somewhat better. A map f: X —> Y
is called hereditarily quotient if ^(U) is a neighborhood of y



BI-QUOTIENT MAPS AND CARTESIAN PRODUCTS 29f

in Y whenever U is a neighborhood of /^(y) in X. (Accor-
ding to A. ArhangePskiy [2; Theorem I], this is equivalent to
requiring that /'[/'^(S) be a quotient map from /^(S) onto S
for every S c Y, which explains the terminology.) The follo-
wing result is now immediate.

PROPOSITION 3.1. — Every bi-quotient map is hereditarily
quotient.

Let us record in passing that closed maps, as well as quotient
maps with first-countable range, are also hereditarily quotient.

Before continuing, let us note two other simple properties of
bi-quotient maps. First, every bi-quotient map f is heredi-
tartly bi-quotient, in the sense that /'[/'"^(S) is a bi-quotient
map from /^(S) onto S for every S c Y ; this yields another
proof of Proposition 3.1. Second, if /*: X-> Y, and if there
is some X' c X such that /*(X') = Y and /'[X' is bi-quotient,
then f is bi-quotient.

PROPOSITION 3.2. — Each of the following conditions implies
that a map f: X —> Y is bi-quotient.

(a) f is open.
(b) f is hereditarily quotient, and ^/^(y) is compact for

every y in Y (where ^ denotes boundary).
(c) f is proper.

Proof. — The sufficiency of (a) is clear, (b) requires only
routine verification, and (c) is a special case of (b). That
completes the proof.

For the next result, we need some more terminology. A map
/*: X —> Y is called compact-cohering if every compact subset
of Y is the image of some compact subset of X. A space Y
is called a q-space [11; p. 173] if every y <= Y has a sequence
of neighborhoods Q^ such that, if y^ e Q^ for all n and if
S == {Vn}^=i ls infinite, then S has an accumulation point
in Y (6). Clearly first-countable spaces and locally compact
spaces are ^-spaces.

(6) A. Arhangel'ski? has pointed out in a letter that, in the presence of paracom-
pactness, ^-spaces coincide with the spaces of pointwise countable type which he
defined in [1].
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PROPOSITION 3.3. — If Y 15 Hausdorff, each of the following
conditions implies that a map f: X -> Y is bi-quotient.

(a) /* is compact-cohering, and Y is locally compact.
(b) X is paracompact, f is closed, and Y is a q-space.
(c) X is Lindelof, f is quotient, and Y is a q-space.
(d) £ac/i ^^(y) ^ Lindelof, f is quotient, and Y is

first-countable.

proof. — (a) This follows from Proposition 2.1 and the
definition.

(b) These conditions imply [11; Theorem 2.1] that each
^-i(y) is compact. Since closed maps are hereditarily quotient,
f must be bi-quotient by Proposition 3.2 (b).

(c) By Proposition 2.1, it suffices to show that, if y e Y
and 11 is an open cover of X, then finitely many /'(U)
cover some neighborhood of y in Y. Suppose not. Let

n

{Ujr=i be a countable subcover of U, and let V^ == ^_JU
i==l

tor all n. Let {Qn}?=i be the sequence of neighborhoods of y
guaranteed by the fact that Y is a g-space. By assumption,
no /'(VJ contains CL, so there is a z/n e Q^ — /'(VJ for
each n. Since the /'(VJ cover Y, the set S of all these y^
must be infinite, so S has an accumulation point, and hence
a subset R c S which is not closed in Y. But /^(R) n V^
is relatively closed in V^ for all n (since S n f(\^) is finite),
so /"^(R) is closed in X. This contradicts the assumption
that f is a quotient map.

(d) Let y < = Y , and °U a covering of /l~l(y) by open
subsets of X. Pick Ui, . . . , U ^ in U to cover ^(y); if
^-i(y) is empty, pick V^eU to intersect /^(z/). Let

V,=(JU,, and let W, = V, u (^(y)). Then {WJ is an

increasing sequence of open subsets of X which covers
f^^y), so some /"(W^) is a neighborhood N of y in Y by a
result of A. H. Stone [16; p. 694, Lemma 1]. But /•(V,) = /•(W,),
so N is covered by f{V^), . . . . / ' (U^) . That completes the
proof.

Our next result shows that bi-quotient maps preserve some
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topological properties which are not preserved by all heredi-
tarily quotient maps (see Examples 8.1 and 8.4). In view of
Proposition 3.3 (c), this result slightly generalizes two lemmas
of A. H. Stone [16; p. 695, Lemma 2 and 3].

PROPOSITION 3.4. — Let f: X —> Y be bi-quotient.
(a) If X is locally compact, so is Y.
(b) If X has a countable base, so does Y.

Proof. — (a) For each x <= X, let ICp be a compact neigh-
borhood of x in X. Then the interiors of these K^. cover X,
so if y e Y, then the union of finitely many /*(Ka.) is a neigh-
borhood N of y in Y. But this N is compact, so that y
has a compact neighborhood.

(b) It is easy to check that, if ^ is a base for X, then the
interiors of finite unions of sets /'(B), with B e ,)3, from a
base for Y. That completes the proof.

COROLLARY 3.5. — Let f: X —> Y be a quotient map,
with Y Hausdorff, and let X ha^e a countable base. Then Y
has a countable base if and only if f is bi-quotient.

Proof. — This follows from Proposition 3.3 (c) and Propo-
sition 3.4 (b).

We conclude this section with a result on the composition
of bi-quotient maps.

PROPOSITION 3.6. — Let f: X —^ Y and g : Y —> Z be
maps.

(a) If f and g are bi-quotient, so is f o g.
(b) If f o g is bi-quotient, so is g.

Proof. — Both (a) and (b) can be routinely verified by
using the characterization of bi-quotient maps in Proposition
2.2.

4. Proof of Theorem 1.2.

Throughout this section, assume that /a : X^ -> Ya is a
map for all a e= A, that X == H^X^, Y = 11̂ , f: X -> Y
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is defined by f = IIa/a? 8in(^ Pa : X -> Ya and gfa : Y -> Ya
are the projections.

LEMMA 4.1. — If Ua c Xa /or aH a, t/ien

//n^^n^11^-
\ a / a

Proof. — Observe that

/YD p^u^ = /•(n,u«) = iuu, = F| <^/»u. = f""| /p^u,.
\ a / a a

That completes the proof.

THEOREM 1.2. — If each fg, is bi-quotient^ then so is /*.

Proof. — We use the characterization of bi-quotient maps
given in Proposition 2.2. Let y adhere to S> for some filter
base ^6 in Y. Then there exists an ultrafilter 9 which con-
tains S> and converges to y [4; p. 66, Proposition 2; p. 67,
Theorem 1; p. 79, Corollary]. Hence q^ converges to z/a
for all a. Since /a ls bi-quotient, there is an x(<x) e f^^yy.)
which adheres to f^q^. Let x e X be the point with
Xy. = x{(x.) for all a. Then ^s/'-^z/), and it remains to
show that x adheres to /'^(S^).

If Ua is a neighborhood of Xy, in Xa, and if F e 3?, then
Ua intersects f^q^ = pa/^F) (since Xy, adheres to
/^^a^ so /Pa'^Ua) intersects F. Since 9 is an ultrafilter,
/pa^Ua) is an element of 9^, and hence so is any finite inter-

n

section C^fp'ai1^^), so that these intersections intersect
1=1 -

every F e 9. Hence, by Lemma 4.1, j I p a ^ U a , ) intersects
i==i

/^(F) for every F e .7, and this means that x adheres to
/l-1^) and hence to />-l(^).

5. Proof of Theorem 1.3.

(a) -> (b). If f is bi-quotient, then its product with any
bi-quotient map, and hence surely with any identity map i^
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is bi-quotient by Theorem 1.2, and is thus a quotient map by
Proposition 3.1.

(b) —- (c). Obvious.
(c) —> (a). Suppose that f is not bi-quotient, and let us

find a paracompact space Z such that f X iz is not a quotient
map.

By Proposition 2.1, there is a 2/0 <= Y and an open cover ^ll
of X such that no neighborhood of yo in Y is the union of
finitely many /'(U). Let cB be the collection of all comple-
ments in Y of such finite unions. Then yo e B for all B e ^@.
We may suppose that each U e °U intersects /^(yo)? so

that no B e 35 contains yo.
Let Z be the set Y, topologized as follows : Each point

of Z — {yo} is open, and the sets {^/o^B, with B e ^6,
form a base for the neighborhoods of 2/0 in Z. Then Z is
Hausdorfl* because (^\S) === 0, and Z is paracompact because
it has only one non-isolated point i/o. To prove that
h == f X iz. is not a quotient map, let

S= {(y, y ) e Y X Z: i /^=2/o} ,

and let us show that S is not closed in Y X Z while /^(S)
is closed in X X Z.

To show that S is not closed in Y X Z, we need only
check that (?/o, yo) e S. Let N == V X (B u {yo}) be a basic
neighborhood of (t/o, yo) in Y X Z, where V is a neigh-
borhood of yo in Y and B e ^6. Since 2/0 e B but yo ^ B,
there is some y e V n B with y =^ yo and (y, y) e N. Hence
(2/o? !/o) e S-

To show that ^^(S) is closed in X X Z, suppose that
(x, y) ^ /^(S), and let us find a neighborhood W of (n;, y)
in X X Z which misses /^(S). If y ̂  yo^ then f{x) =/= y
(since (rr, y) ^ /^(S)), and we can take

W = /^(Y - {y}) X {f/}.

If y = y^ pick some V eU which contains rr, let
B = Y - f(V) and let

W = U x ( B u { y o } ) .
That completes the proof.
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6. Proof of Theorem 1.4.

(a) -> (b). Assume that Y is locally compact Hausdorff
and / * : X - > Y bi-quotient, and let us show that f X g
is a quotient map for every quotient map g : R— S. Observe
that

f x g = (iy X g) o (/• X in).

Now IY X g is a quotient map by the result of J. H. C. White-
head [17; Lemma 4] quoted in the introduction, and f X ip
is a quotient map by Theorem 1.3. Hence f X g is also a
quotient map.

(b) —^ (c). Obvious.
(c) -> (a). Assume that (a) is false, and let us contradict (c).

If f is not bi-quotient, then Theorem 1.3 already assures us
that f X iz is not a quotient map for some paracompact
space Z. If Y is not locally compact, then [12; Theorem 2.1]
implies that, tor some closed map g with paracompact
domain and range, ly X g is not a quotient map. But then
f X g cannot be a quotient map either, and that completes
the proof.

7. Proof and applications of Theorem 1.5.

The theorem asserts that, if f,: X, —^ Y( {i = 1,2) are
quotient maps, and if Xi and Yi X Yg are Hausdorff
/c-spaces, then f = /i X /a is a quotient map. We begin with
two lemmas, each of which asserts the theorem under addi-
tional hypotheses.

LEMMA 7.1. — The theorem is true if Xi X X^ is a Haus-
dorff k-space.

Proof. — This follows immediately from a theorem of
R. Brown [6; Proposition 3.1].

LEMMA 7.2. — The theorem is true if Xi is locally compact
Hausdorff.
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Proof. — In this case, let g = ix, X /2 ^d h = /i X iy,,
and note that f = h o g. Now g is a quotient map by the
theorem of J. H. C. Whitehead which is incorporated in
Theorem 1.4 (a) — (b), and h is a quotient map by Lemma 7.1
(since the product of the locally compact space Xi and the
/c-space Yg is locally compact by D. E. Cohen [7; 3.2]).
Hence f is a quotient map, and that proves the lemma.

Let us now prove the theorem in full generality. Since Xi
is a Hausdorff /c-space, it is the image, under a quotient map
gi, of a locally compact Hausdorff space X^ [7]. Let
f[ = ̂  o g^ and let f = f[ X f^ Then f is a quotient
map by Lemma 7.2. But f = f o (gi X ixj, so f is also a
quotient map. That completes the proof of the theorem.

We conclude this section with three specific cases where the
rather general conditions of Theorem 1.5 are satisfied. All
spaces will be assumed Hausdorff.

(7.3). Xi is a /c-space and Yg is locally compact: This
suffices, because quotients of /c-spaces are /c-spaces, and the
product of a locally compact Hausdorff space and a /c-space is
/c-space [7].

(7.4). Xi, YI and Yg are first-countable : This is clear
(and slightly generalizes a result of R. Brown [5; Corollary
4.10], where Xi, Xg, Yi and Yg are all assumed first coun-
table).

(7.5). Xi and Xa, or Xi and Yg, are both /c^-spaces:
Here we call a space X a k^-space if it is the union of coun-
tably many compact subsets K^ such that a set A c X is
closed whenever A n K^ is closed in K^ for all n. K. Morita
[14] showed that quotients of /c^-spaces (which he calls space of
class @') are /c^-spaces, and it is implicit in a result of
J. Milnor [13; Lemma 2.1] that the product of two Hausdorff
/c^-spaces is a /c^-space. These facts imply our assertion.

8. Examples.

Examples 8.1-8.5 describe various quotient maps f: X —> Y
which are not bi-quotient. It follows from Theorem 1.3 that,
in each case, f X iz is not a quotient map for some para-
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compact space Z. In Examples 8.1 and 8.4, we go on to show
that this Z can, in fact, be chosen separable metric; for the
other examples, Theorem 1.5 implies that Z cannot be
chosen metric.

Example 8.6 describes two quotient maps with compact
range whose product is not a quotient map. The section con-
cludes with Lemma 8.7, which describes a method of cons-
tructing quotient maps f such that f X f is not a quotient
map.

EXAMPLE 8.1. — A closed map f: X —> Y, with X locally
compact separable metric, which is not bi-quotient. Moreover,
f X iz is not a quotient map for any metric space Z which is
not locally compact.

Proof. — Let X be the disjoint union of countably many
copies of the interval [0, I], let Y be the space obtained by
identifying all the 0'5 in X, and let / ' : X — > - Y be the
quotient map.

If Z is any metric space which is not locally compact,
then [12; Theorem 4.1] implies that f X iz is not a quotient
map.

EXAMPLE 8.2. — A compact-cohering, hereditarily quotient
map f: X —> Y, with Y locally compact metric and Y
separable metric, which is not bi-quotient.

Proof. — Let Y be any separable metric space which is
not locally compact. Let X be the disjoint union of all the
compact subsets of Y, and f: X —> Y the obvious map.

EXAMPLE 8.3. — A hereditarily quotient map f: X —> Y,
with X locally compact metric and Y compact metric, which
is not bi-quotient.

Proof. — Let Y be a closed interval, let X be the disjoint
union of all the convergent sequences in Y, and f: X -> Y
the obvious map.
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EXAMPLE 8.4. — A quotient map f: X -> Y, with X
locally compact separable metric and with each ^(y) compact,
which is not hereditarily quotient. Moreover, f X iz is not a
quotient map for some separable metric space Z.

Proof. — Let X be the disjoint union of the open interval
( i l l )Xi == (0, 1) and the space Xa = <0, -7-? -^-? -—» . . . ^ .
( 2i o 4 ^

Let Y be the space obtained from X by identifying each
1 . 1— e Xi with — e Xg, and let /*: X -> Y be the quotientn n

map. (This is [9; Example 1.8]). Here Xg is a neighborhood
of {0} = f^fW in X, but f{X^) is not a neighborhood of
/•(O) in Y.

Let

Z==(0, l)—j-^:n==l, 2, . . . i .

To see that h == f X iz is not quotient, let

S== {{f{x), a;)<=Y X Z: ; reZ, ;r>0}.

Then S is not closed in Y X Z, but /^(S) is closed in
X X Z.

EXAMPLE 8.5. — A quotient map f: X —> Y, wi(/i X locally
compact Hausdorff and Y compact Hausdorff, and with each
/'-l(y) compact, but with f not hereditarily quotient.

Proof. — Let Y be [0, Q], the set of ordinals < the first
uncountable ordinal Q. Let Xi = Y — {Q}, let X2 be
the set of limit ordinals in Y, let X be the disjoint union
of Xi and Xg, and let f: X-> Y be the obvious map.
It is not hard to check that f is a quotient map. However,
Xa is a neighborhood of {Q} = />-1(Q) in X, but f(X^)
is not a neighborhood of 0 in Y.

Remark. — By starting with Y as the space constructed
by S. P. Franklin in [10; Example 6.2.], we can slightly
improve Example 8.5 so as to make X paracompact. We
cannot make X metrizable, however, for that, by a result
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of A. Arhangel'skii [3; Theorem 2.6], would make Y metriz-
able, which is impossible by Proposition 3.3 (d).

EXAMPLE 8.6. — Hereditarily quotient maps f^: X^ -> Y(
(i = 1, 2), with YI and Yg compact metric and with X^
and Xg paracompact, but with f^ X /a not quotient.

Proof. - Let N == {1, 2, . . . }, and let Yi and Yg both
be the convergent sequence N u {co}. Now consider the
Stone-Cech compactification ?N. Since (3N — N is a
compact Hausdorff space without isolated points, a theorem
of E. Hewitt [8; Theorem 47] implies that ?N — N has two
disjoint dense subsets Ei and Eg. For i = 1, 2, let X,
be the disjoint union of all sets N u {x} c ?N, with xe. E;.
Since each N u {x} is a regular Lindelof space, and hence
paracompact, both X; are also paracompact. Define
fi: X, —> Y; by mapping each element of a copy of N to
itself, and mapping each x e E, to oo.

The maps f^ are clearly continous. Let us check that each
fi is hereditarily quotient. We must show that, if U is a
neighborhood of /T1^) in X;, then /i(U) is a neighborhood
of co in Yf Suppose not. Then Y( — /i'(U) is an infinite
set S. Let S be the closure of S in ?N. Since S is open
in N, it is open in j3N, and hence so is S because [SN is
extremally disconnected. Let S* = S n ((3N — N). Then S*
is open ?N — N, and it is non-empty because S is infinite.
Thus x e S for some x e E^. But that is impossible, since
U n (N u {x}) is disjoint from S == /T^S).

To see that h = f^ X /g is not a quotient map, let

S = { ( t / , y )eYi X Y, :z /eN}.

Then S is not closed in Yi X Yg, since (co, co) is in S — S.
However, R = ^^(S) is closed in Xi X Xg, because any
point in R — R would have to be of the form (x, x) with
x<= EI and xe Eg, and that can't happen since Ei and Eg
are disjoint. That completes the proof.

We conclude this section with a simple lemma, which shows
how our examples could be modified to produce quotient
maps f such that f X f is not a quotient map.
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LEMMA 8.7. — Suppose fi: X; —> Y( (i = 1, 2) are quotient
maps such that /i X /2 15 not a quotient map. Let X == Xi + Xg
anrf Y = Yi + Yg fee the disjoint unions, and define f: X ~> Y
fcy /'| Xi == /i. Then f is a quotient map, but f X f is not a
quotient map.

Proof. — That f is a quotient map is clear. Let us show
that f X f is not a quotient map.

Note that Yi X Yg is a subset of Y X Y7, and that
/i X /2 is the restriction of f X f to (fx /'^(Yi X Yg),
so that this restriction is not a quotient map. Since Yi X Ya
is closed in Y X Y, and since the restriction of a quotient
map to the inverse image of a closed set is always a quotient
map, it follows that f X f cannot be a quotient map. That
completes the proof.
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