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PROBABILITY AND A DIRICHLET PROBLEM
FOR MULTIPLY

SUPERHARMONIC FUNCTIONS Q
by John B. WALSH

Introduction.

We shall use the notation C(A) for the set of continuous
real-valued functions on the set A. Let D be a bounded
domain in R" and ^)D its boundary. It is classical that under
mild smoothness restrictions on ^)D, if /*eC(^D) there
exists a function hf which solves the Dirichlet problem,
i.e., hj- is harmonic in D, continuous in D, and equal to f
on bD. The function hj- can be gotten by the Perron-Wiener-
Brelot method, that is hj' is equal to the lower envelope of
functions lower semicontinuous in D and superharmonic
in D which are greater than or equal to f on the boundary.
Kakutani [25] was the first to treat the Dirichlet problem
probabilistically. He showed that if /*€=C(^D) and 7f is
Brownian motion from xe D, then g^x) = E^Z-^r))} is a
harmonic function of x, where T is the first time 7f hits
^D; the function gf solves the Dirichlet problem whenever
a solution exists.

A deeper treatment of the problem was initiated by Doob
([15], also [17] and [18] where the approach is more general)
who observed that Brownian motion has the supermartingale
property with respect to the class of superharmonic functions,
i.e., if u is superharmonic and does not grow too fast at
infinity, u{7f{t)) is a supermartingale. Thus martingale

(1) This paper is part of the author's Doctoral dissertation and the author is
grateful to Professor J. L. Doob of the University of Illinois for his guidance in
its preparation.
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theory could be applied to the Dirichlet problem, and indeed
to most of classical potential theory. The probabilistic approach
to potential theory is not limited to the classical case. General
probabilistic treatments of the Dirichlet problem have been
given by Doob ([17] and [181) and Courrege and Priouret [12],
and of potential theory in general by Hunt [23] in his cele-
brated papers in the Illinois Journal.

In this paper, we wish, not to generalize, but rather to
specialize in that we treat the Dirichlet problem not for the
harmonic functions but for a proper subset of them, the mul-
tiply harmonic functions. A function is multiply harmonic in
two sets of variables in R" if n == p + q tor positive integers
p, q and f is harmonic in the first p variables and separately
is harmonic in the next q. One defines multiple harmonicity
for more than two sets of variables similarly. When we speak
of the class of multiply harmonic functions we shall always
mean the class of functions which are multiply harmonic
with respect to a given partition of the variables.

Although we treat a smaller class of functions, we get a
much larger class of processes than in the classical case; it
turns out that there are processes quite different from Brow-
nian motion which satisfy the supermartingale property with
respect to the multiply superharmonic functions. Thus,
while previous probabilistic treatments of potential theory
deal with a Markov process which is unique apart from its
initial distribution and behavior at the boundary, our set-up
involves a family of stochastic processes which are not neces-
sarily Markov. The strong Markov property, vital in the clas-
sical case, has as a counterpart the dual concepts of continuing
and conditioning stochastic processes, which we discuss in
section one.

Our approach is based on the following observation. Let T^
be the set of all continuous stochastic processes from x
which satisfy the supermartingale property relative to mul-
tiply superharmonic functions. If D is a domain in R"
and f is a bounded Baire function on <)D, and if LLp c T^
is a set of processes which are « nice » for small times, then the
function <&y defined by

W = sup E{/-(X(TD))}
xeUa;
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is multiply superharmonic in D, where TD is the first time X
hits ^)D. We call <])y a Dirichlet solution; one of the aims
of this paper is to justify this.

These Dirichlet solutions are closely connected with the
solutions of a Dirichlet problem of a type introduced by
H. J. Bremermann ([10]; see also [21], [26], [28]). Bremermann
studied the problem for pluriharmonic functions, i.e., functions
which are the real parts of functions holomorphic in several
complex variables, and for plurisubharmonic functions, but
the problem is readily transferred to our case. He used the
Perron-Wiener-Brelot method to get solutions for the Dirichlet
problem. Bremermann's problem, stated in our terms, is as
follows: Let S c ^)D and /*eC(S), and let hj- be the lower
envelope of functions multiply superharmonic in D, lower
semicontinuous in D and greater than or equal to f on
S. Then hj- is said to solve the Dirichlet problem if
lim inf h^y) = f{x)y x e= S. In the classical theory, such enve-

y->x
lopes are harmonic; a fundamental difference between this
and the classical case is that the functions hj- are multiply
superharmonic but are seldom multiply harmonic. Under mild
restrictions on the domain we find that $y solves the above
problem and that hj- == <t>^.

A different approach, using Leja's method of extremal
points [29] was used by Gorski [20] and Siciak [35]. This
method yields pluisubharmonic solutions which in certain
cases turn out to agree with Bremermann's.

The concept of the Silov boundary enters the problem in a
natural way. This boundary is one of the logical boundaries
on which to pose the Dirichlet problem; it plays a central
role, for example, in Bauer's general treatment of the Dirichlet
problem [3]. (The Silov boundary of a closed set A with
respect to a class G of functions on A is defined to be the
smallest closed set on which every function in G has its
minimum, or sometimes maximum, depending on the class.) In
[10], Bremermann showed that in certain domains, his Diri-
chlet problem is solvable only for functions defined on a certain
Silov boundary; his results have been extended to somewhat
more general regions by Gorski [21], Kimura [26], and Kusu-
noki [20].
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A Silov boundary turns out to be pivotal in our treatment
too. We give several characterizations of it, the most interes-
ting from the probabilistic viewpoint being that it is the
smallest closed set S with the property that for any fixed
x e D there is a process X e T^. which hits ^)D in the set S
w.p. 1.

1. Conditioned and continued processes.

1,1. Notation.
We will denote Euclidean n-space by R", and write

R = R1, R+ == [0, oo). If a, be R we will use the lattice
notations a/\b and a V & for inf (a, b) and sup (a, b)
respectively. We will also use this notation for (T- fields; if F
and G are a-fields of subsets of a set Q, then F V G is the
smallest cr-field containing both F and G. If F(t) is a

(r-field for each t in an index set Q, then V F^) ls ^e
smallest a-field containing all F((), (€=T. (€T

Let Q be a separable complete metric space. The set of all
stochastic processes {X((), ^eR_^} with values in Q and
right-continuous sample functions will be denoted by %Q.
In situations where the context makes it clear that the para-
meter set is R+, we shall write {X(()} rather than {X(^),
teR+}.

Let Q^c b6 ^e space of all right-continuous functions
(o : R- .̂ —> Q. Let £B(<) be the o"-field generated by sets of
the form :

{(o <= Q^ : (jo(,9) <= A} where 0 ̂  s ̂  t

and A c Q is Borel.

Define % =\/S>(t). We call (Q,,, ^) the canonical space
(

and {^(t), (eR_^} the natural fields. For any probability
measure P on (Q^, %) there is a stochastic process
X= {X((), <eR+} on (Q,,, %, P) defined by

X(^, co) = co((), (O€=Q^.

We say that X is canonically defined on (Q^? l^? P)- Conver-
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sely, if XG^SQ is defined on a probability space (0, 3^ P),
there is a unique measure P on (Qrcj ^) such that the process
X == {X((), ^ € = R ^ _ } defined canonically on {Q^ 33, P) has
the same finite-dimensional joint distributions as X. X is
called the canonical process of X. The probability P on
(Q,,, ^) is defined by: P(A) = P{(x): X(., co)<=A}, Ae%,
where on the right-hand side we are considering X(», co)
as an element of Qpc- If Xi, Xg e %^ we say they are equi-
valent, and write X^ ̂  X2, if they have the same canonical
process.

1.2. Stopping Times.

If X == {X(()} is a stochastic process defined on a proba-
bility space (Q, ^, P), a family {S(t), t €=R^_} of sub (T-fields
of S is said to be admissible for X if

a) 9{s) c 9(t} whenever s < f.
b) X(() is measurable ^(t), (eR^.
Let X e %^ be defined on the probability space (Q, 9?, P)

and let {^(t)} be a family of (T-fields admissible for X.
A measurable function T : Q' —> [0, oo], where Q' is some
measurable subset of Q, is a stopping time for {^(t)} it
t eR+ implies {co : T((D) < ^} e^((), and is a strict stopping
time if (eR_^ implies {(o : T(o)) ̂  t} e^(f).

We find it convenient not to insist that T be defined
everywhere. This is a minor point for if T is a stopping time
which is not defined everywhere it can be extended by setting
T = -|- oo on the set where it was not previously defined.
We will always make the convention that if T(co) is not
defined, X(T(co), o) and X(( + T(co)9 C)L)) are undefined also,
but X(T((o)A<, co) = X(^, co). (These conventions would
automatically hold were we to set T == + oo off its original
domain.)

Remark. — If Xe^ and {9(t)} is a family of (T-fields
admissible for X, then for any set A<=%(^

{o) :X( . , (o)eA}^).

To see this it is enough to notice that it is clearly true for
8
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sets of the form {a) : co(s) sA}, where 0 ̂  s <; ( and A
is a Borel set in Q, and that these sets generate %(().

Let Xe^Q be defined on (Q, 9?, P) and let {9(t}} be a
family of a-fields adapted to X. Let T be a stopping time
on Q^c relative to the natural fields. Then there is a unique
random variable T on Q defined by

T((0) = -(X(., CO))

where on the right-hand side we consider X(-, co) as an
element of Q^c- I1 follows directly from our previous remark
that T is a stopping time, and is strict if T is.

DEFINITION. — Let T and T be as above. We say that T
is the natural image of T. Any stopping time which is the
natural image of a stopping time on ilrc ts a natural stopping
time. A stopping time which is the natural image of a stopping
time on Qpc is a natural stopping time and any stopping time
which is the image of a strict stopping time on Q^c ls a natural
strict stopping time.

DEFINITION. — Let T be a natural stopping time on Q^c
and let Xi, Xg e %Q. Let Ti and ^ be the natural images of
T for Xi and Xg respectively. We say that Xi and Xg
are equivalent up to time T, and write Xi — (^Xg, if X^ — X^
where X,(() = X,(tAT,), i = 1, 2.

1.3. Conditioned Processes.

The idea of conditioning a stochastic process on a given
event has been applied in connection with Markov processes,
where the conditioned process often has a simple relation to
the original process. This idea is closely connected with the
strong Markov property. In probabilistic potential theory the
concept of a Markov process conditioned to hit a given point
has proved useful [19]. In general, the concept of a conditional
process falls under the heading of conditional distribution.
In this section we develop one special case.

Let Xe^Q be defined on the probability space (Q, ^, P)
and let T be a stopping time relative to an admissible set
of (T-fields {^, t>0}. The idea of the process {X(r + t),
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t ̂  0} conditioned on X(r) will be useful in the following.
The definition is analogous to that of a conditional expectation;
we define a family of processes rather than a single process.
The family so defined is unique only in a certain almost
everywhere sense.

DEFINITION. — The conditional X(r + •) process, denoted
§r(X), is any family {X2', z^A.} of right-continuous stochastic
processes satisfying.

El) A c Q is a Borel set.
E2) For any Aes%, the function z -> P{X'(.) e A} is

Borel measurable.
E3) For each A <= % and Borel set B c Q, if ^ is the

distribution of X(r) in Q:

(1.3.1) P ( { X ( T + - ) ^ A } n { X ( T ) e B } )
= ^{X^eA}^).

BOA

PROPOSITION 1.3.1. — ^(X) always exists. If {X^ zeA.}
and {Y^, z<=A'} are (wo versions of 8^(X), (Aen /or js no(
in some set of ^-measure zero, X2' ̂  Y^.

Proof. — The requirements for a conditioned process depend
only on the joint distribution of T and this process. Thus,
if we define T'(o)) to be equal to T((o) when the latter is
defined, and — 1 otherwise, it is enough to consider the pair
(r', X(«)) defined canonically on the space Q' = R X Qpc?
relative to fields 0i X %, where 0i is the class of Borel sets
of R. The sample functions of X are right-continuous,
so % is generated by X(() for ( rational. It follows easily
that (Q', CL X S>) is a Lusin space in BlackwelFs sense [5],
so if y is the a-field generated by X(r), P has a conditional
distribution P* relative to 9\ that is, a real valued function
on Q' X (OL X S>) satisfying:

(a) For Ae=(9L X %, P*(-, A) is ^'-measurable and equal
to P{A|^} w.p.l.

(b) For fixed co, P*(OD, •) is a probability distribution on S>.
For each z in the range of X(r) define a process X2

canonically on Q^ by:
if A<=^ , P{X ^(•)6A} == P*((O, {T' > 0} X A) where co
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is any element of {r' ̂  0, X(r') == z}. The family of processes
so defined then satisfies (E1)-(E3).

The second assertion follows easily from the observation
that the field S> is generated by a countable field of sets,
hence any two functions satisfying (a) and (fc) must agree off
some co-set of probability zero. Q.E.D.

It is important in the above that we be able to reduce to a
canonical space; for an arbitrary space Q and sub-a-field 9
the conditional distribution P* may not exist. (See for
instance [5], where Blackwell discusses this problem and gives
a class of probability spaces for which conditional distributions
do exist.)

1.4. Continuation of Stochastic Processes.

Let X es %Q and for each point z e R", let X2 e= %^ have
the property that P{X^(0) = z} == 1. Let T be a stopping
time for X. In this section we consider the problem of the
existence of a process X answering the description : « X
is equivalent to X up to time T. If JC(T) == z, then JC is
equivalent to X7 from then on ». This problem has been
considered by Courrege and Priouret [14]; similar results for
strong Markov processes have been proved by Ikeda, Naga-
sawa and Watanabe [24].

DEFINITION. — Let A c Q be a Borel set. The family
{X^, z 6 A} of continuous processes is coherent if A s ̂  implies :

(1.4.1) the function z -> P{X;:(•) e A} is Borel measurable.

One can show in the usual way that it is enough that (1.4.1)
holds for all sets in some finitely additive field generating %,
and it is even enough that (1.4.1) hold for all sets of the form
{co : co(^) 6 A;, i == 1, . . ., m} where (, e R^ and A, e Q
are Borel sets.

Note that to say that {X^, zeA} is coherent is merely to
say that the corresponding distributions in the sample space
are measurable functions of z.

We can now state the central theorem of this section,
which is a consequence of a theorem of Courrege and Priouret.
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THEOREM 1.4.1. — Let XG^Q and let T be a natural strict
stopping time for X, finite where defined^ which is the natural
image of T on Q^c* Let A c Q be a Borel set such that
P{X(r) ^ A} == 0. If {X2, z<=A} is a coherent family of right
continuous processes such that P{X^(0) == z} == 1 for each
zeA, then there exists a canonical process X such that

a) X — (r)X
b) {X2, z ^A} 15 a version of ^(X)

c) X(- A ^) and X(* + ^) ar6 conditionally independent
given X(T).

TVo^. — Another way of phrasing (b) is « X^ is equivalent
to the X(( + r) process conditioned on X(r) == z ».

Proof. — The conclusions of the theorem involve only
equivalences so there is no loss of generality in assuming X
and {X7, z^A} are defined canonically. In this case ^ == T.
In what follows write T instead of ^.

Let P be the distribution of X and P^ the distribution
of X2. By Theorem I.I.I of [14], there is a measure P on
(Qrc? ^) ^ch ^at

(a) If A€S^(T), f»(A) - P(A).
If (^ : Q^c -> Qrc ls ê shift operator, i.e.,

(9,CO)(.) = CO(T + -),

then
(fc) ^{er^A)!^)}^ PI(T){A} with P-probability one.
Let JC be canonically defined on (Q^o ^? ^)- Conditional

independence of ^(rA-) and ^(r + •) given X(r) follows
from (&) as does the fact that {X^, zeA} is a version of
g,(X).

T is clearly a natural stopping time for X. Note that it
A<=£8, { X ( T A - ) eA} e^B(T); this is obvious if Ae^(r), in
which case X(rA •) e A ^=^ X(.) e A. If A is in the field G
generated by X(r + •), then if co and o/ are such that
X(T((O) + •, co)eA and X(<, o)) == X((, co') for t < T(co),
then T((O') = r((o) and X(T(eo') + •? ^ /)e A. Thus by
Theorem 1.4 of [13], {X(r + •) <= A} e ̂ (r). The conclusion
follows since sets of the form Ai n Ag, where Ai<=%(T),
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Ag^G, generate S) [13]- Thus (a) implies

X(-AT) — X(.AT), or X — (r)X,

which completes the proof.
The necessity for a strict stopping time in Theorem 1.4.1 is

illustrated by the following trivial example. Let X be uni-
form motion to the right on the real line, starting from the
origin, and let X° be uniform motion to the left. Define a
natural stopping time T for X by T == inf { ( : X(() > 0}.
Then if X is the process which is equal to X until time T,
and is X° from then on, X = X°; then X -/- (r)X for,
as X is never greater than zero, T is not defined for X.

Theorem 1.4.1 leads us to introduce the operator I\ which
is in a sense the dual of the operator 8^.

Let X e ^SQ and let T be a natural stopping time for X.
Suppose A c Q is a Borel set with the property that
P{X(T)e=A C } == 0, and let U == {X2, ze=A} be a coherent
family of ^Q-processes. Then define Y^(X; U) to be the right-
continuous stochastic process satisfying.

1) Y-r(X; U) is canonically defined.
2) Y , ( X ; U ) ~ ( T ) X .
3) U is a version of (^(Y^X; U)).
The existence of -Y^X; U) is guaranteed by Theorem 1.4.1.
It is an interesting though trivial fact that it is not neces-

sarily true that Y^X, 8-c(X)) ~ X for Xe^Q^ i.e., we may
cut a process in two and then glue it back together in the same
place and come up with a different process. The reason for
this is that the behaviors of the process Y-c(X, ^r(X)) before
and after time T are conditionally independent given the
process at T ; this may not be true of the original process X.

Let XiegKQ and let U,, == {X^, z<=AJ, n = 1, 2, . . .
be coherent families of continuous processes with
P{X^(0) == z} = 1. We assume for simplicity that all these
processes are canonically defined; if not we can reduce to
equivalent canonical processes.

Let Ti, Tg, . . . be a sequence of finite natural strict times on
Q^c and suppose that n^m implies T^^T^ in the sense that
whenever T^(co) is defined, so is T^(co), and T^oo) ̂  T^(co).
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Define a sequence Xi, Xg, . . . of continuous processes,
with corresponding probability measures Pi, P^y . . . on
Qrc by induction.

a) Xi == Xi
b) If X^, / ̂  n have been defined such that

PJ(o:co(T,(co))eA4,}=0,

then define X^i = Y^(X,, U.+i).
By definition X^+i — (^)X^. This induction defines a

process for each n. Even more is true, however.

THEOREM 1.4.2. — Let Xi, U^, T^ and X», n == 2, 3, . . .
be defined as above. Then there exists a process X ,̂ e %^ with
the property that for each n, X^ ~ (^n)X^.

Proo/'. — Let P^ be the probability measure on (Q^, ^6)
associated with X^; let X be the coordinate variable
X((, (o) = a>(() on Q^ and let ^ be the o'-field generated by
{X((AT,) , t^R+}. X,+i~(TjX^, hence P^i agrees with
f\ on %„, or more generally, if m > n, 1̂  agrees with P^
on S>n. If A is a set of the form :

(1.4.2) A = {X(t,A^.)eA,, , == 1, .. ., m},
Aj Borel sets, then A e ̂  for some n.

For each fixed (i, . . . , ^, T^, . . . , T^, we can uniquely
define a probability measure on the a-field of all sets of the
form (1.4.2) by P*(A) = P,(A), n > max n,. For different
sets of ^i, . . ., („,, T^, . . ., T^, these measures are consistent,
so by Kolmogorov's extension theorem, there is a measure P^

on the (T-field ^ = V ^n generated by all sets of the form
71

(1.4.2); and P^ is consistent with all the measures P^ In
particular, P^ = P^ on S>^

Now let XQ e Q and define X^ on (Q^, ^3, PJ by:
X^((, co) == lim X((ArJ, if the limit exists

n-> oo

== XQ otherwise.

Note that X^ is not canonically defined but is right
continuous. X(^ArJ is ^-measurable for each n, so the
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set on which the limit of X((ATn) exists is in S>^ for each t,
hence X^ is 3 ,̂ measurable. For each M, X^((ArJ = X(^ArJ.
Since f^ agrees with P^ on 3 ,̂ we have X^ — (Tn)X^.

Q.E.D.

2. Multiply superharmonic functions.

Let Q = R" and for k .̂ i let 3) be a decomposition
of Q into the direct product of A* subspaces Qi, . . ., Q^.
A* will be called the degree of 2). Let m; be the dimension
of Q^ ^ == 1, . . ., /c. If z e Q ^ then there are z1, . . ., z\
where ^eQ^ such that z == (z1, . . ., 2^). We call z1 the
I th coordinate of z.

DEFINITION. — Let 3) be a decomposition of Q of degree k
and let D c Q be a domain. An extended real valued function f
on D is multiply superharmonic relative to 3) if

(a) — oo <; /*<; + °° and f=/= + 00 ;
(b) f is bounded below on each compact K c D;
(c) for each integer p, 1 ̂  p ̂  k, if ^e Q .̂ are fixed for

i -=^ p, then the function ^ -> f{'C1, . . ., 2;̂  . . ., (^) 15 eit/ier
superharmonic or identically -|- oo on eac/i component of
Dn^'.^^^p}.

Unless there is danger of ambiguity, we will ordinarily assume
the decomposition 2) of Q is fixed and will not indicate it.

If m^ = = = • • • = = m^ ==• 2, the class of multiply superharmonic
functions contains the class of plurisuperharmonic functions,
introduced by Leiong (see [30]). These functions have close
connections with functions of several complex variables : if g
is a holomorphic function of several complex variables its real
part is pluriharmonic and the negative of its absolute value
is plurisuperharmonic. On the other hand, the Bergman
extended class of pluriharmonic functions in certain domains
turns out to be exactly the class of multiply superharmonic
functions [4].

The following theorem is due to Avanissian [2].

THEOREM 2.1 (Avanissian). — If f is multiply superhar-
monic in D, it is superharmonic in D. Consequently, if f
is multiply harmonic, it is also harmonic.
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The corresponding theorem for plurisubharmonic functions
was proved by Leiong [30]. Avanissian actually stated
Theorem 2.1 for the case where m, ̂  3, all i, but the
theorem remains valid in our setting.

Note that we allow the possibility that m^ == 1 for some
or all of i == 1, . . ., /c, with the convention that in one
dimension, harmonic and superharmonic functions are linear
and concave respectively. This case is of some interest, and is
a source of easily visualized examples.

For each i = 1, . . . , /c, let B,(z\ r,} be the ball in Q,
with center z1 and radius T\. If z = (z1, . . . , z^) and
p = (r^, . . ., r/J, define the polycylinder B(z, p) by:

B(z, ip) = Bi(^, ri) X • • • X B,{z\ r,)

B(z, p) has a distinguished boundary surface which we shall
denote by B*(z, p) :

B*(z, p) =bBi(z1, ri) X • • • X ^B ,̂ r,).

Let \ be normalized Lebesgue measure on ^B;(z1, y\),
i = 1, . . . , A-, i.e., \(bB;(z1, r,)) = 1, and define the measure
^ on B*(2;, p) by X,p = ^i X . . . X ^

The following characterization of multiply superharmonic
functions is a trivial consequence of some results in [2].

PROPOSITION 2.2. — Let f be a lower semicontinuous^
extended - real - valued function on a domain D c Q. If
—oo << /*<^ + °° an<^ f^ 4~ 00? then f is multiply super-
harmonic iff for each z e D and each sufficiently small
polycylinder B(z, p) centered at z,

^)>/B.(.P)AO^W
We will denote the class of all functions multiply super-

harmonic in a domain D c Q by S(D). A fact that we shall
often use is that if /*eS(D), there exists a sequence of func-
tions {/*„}, each of which is multiply superharmonic and
continuous in a given relatively compact subdomain, such
that fn f /*. The functions fn can even be chosen to be
infinitely differentiable ([2], p. 142).
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3. Tp processes.
3.1. Elementary properties.
A stochastic process {X(<), 9^, (eR^}, where the a-fields

3<t are admissible for X, is said to be a local supermartingale
if there exists a sequence of stopping times T^OO such that
for each TZ, {X((ArJ , ^(AT^ ^R"^} is a supermartingale.
If G is a class of functions defined on some subset of Q,
a stochastic process {X(^), 9^, teR^_} is said to satisfy the
supermartingale property relative to G if f^G implies
{/*(X(()), 3 ,̂ f eR^} is a local supermartingale.

We change notation slightly : from now on, %q will repre-
sent the class of all continuous stochastic processes with
values in Q, rather than the class of right-continuous
processes.

DEFINITION. — If rceQ^ Ta; is the class of all processes
X == {X((), 9?(, <e=R^} where {3?J is admissible for {X(()},
satisfying.

1. XeggQ and P{X(0) == x} = 1.
2. X satisfies the supermartingale property relative to the

class of all functions which are multiply superharmonic in Q
and finite at x.

If /*eS(Q) and X<=T^, the stopping times {r^} relative
to which /*(X(()) is a local supermartingale can always be
taken to be of the form T^ == first time X hits ^)D^, where
{D,J is any sequence of bounded domains containing x
which increase to the whole space. This is clear if f is conti-
nuous; for a general /*€= S(Q) it follows from the fact f is
the limit of an increasing sequence of continuous multiply
superharmonic functions.

Note that we get an equivalent definition if we require
only that X have the supermartingale property for conti-
nuous multiply superharmonic functions, for /*<= S(Q) implies
there are continuous /^eS(Q) such that fn\f- Then
/'(X((AT^)) is the increasing limit of supermartingales
{f^(t/\^^)) and therefore must be one as well, providing
E{/*(X(0))} > oo, i.e., / '(^)<oo. Further, the class C(Q)
of continuous real-valued functions on Q is separable in
the topology of uniform convergence on compact sets, so we
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need require only that X satisfy the supermartingale pro-
perty relative to any countable dense subset of C(Q) n S(Q).

Let {Z-^t), (<= R+} be Brownian motion on Q with initial
point x. Let Zf be Brownian motion on Qy with initial
point Xs', then the following processes are easily seen to be
in T^:

a) {Z^), ^R+}.
b) {X^((), ̂  R+} where X^(() = (z1, . . ., Z^((), . . ., ^k).
Note that there are non-trivial T^-processes with the

property that for some /*e S(Q), />(X(()) FEE + oo. For example,
let Qi = Q^ = R3, so Q == R6. For x = (x\ x2) define :
f(x) = i|\xl\A|\x2\. Then /'e S(Q) and /* is infinite on the
set {x1 = 0} u {^2 == 0}. The process X^\t) = (Z°((), 0) is
in T, by (fc) above but f(X^\t)) = + oo.

Let II;: Q —^ Q, be the projection of Q onto Q;, i.e.,
II;(z1, . . . , z^) = z\ If u is superharmonic in Q,, the
function u o H; is multiply superharmonic in Q, so if
Xe=T^, u o II;(X(()) is a local supermartingale. According to
a theorem of Kunita and Watanabe [27], this implies the
process Y,(() == II;(X(()) can be obtained from Brownian
motion by a random time change. More precisely, Kunita
and Watanabe's theorem gives us.

THEOREM 3.1.1. — Let XeTa;. Then there is a Brownian
motion process {Z(()} on some space (Q, 9^, P), admissible
fields {^t}, and a family {rj of stopping times relative to
these fields, such that t -> T(((O) is right-continuous and increa-
sing for a.e. co, and the process {II^X^))} is equivalent to
the process {Z(T(), (e=R^}.

PROPOSITION 3.1.2. — If D is a bounded domain in Q
and a;e=D, Xe=T^, then lim XD^) exists w. p. 1, where XD

t-> 00

is the X- process stopped the first time it hits ^)D. Consequently,
XD eit/ier eventually converges to bD or converges to a point in
the interior of D w. p. 1.

Proof. — Let ?i, . . ., ^ be a set of linear functions on Q
which separates points. Then ±^eS(Q), i == 1, . . ., TZ so
^(XD(()) is a martingale. It is bounded since XD(() <= D for
all ( and ^ is bounded on D. Therefore lim ^(XD^))

t->00
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exists w. p. 1, for all i. The Z; separate points of D so this
implies Xo(() converges w. p. 1.

3.2. A Martingale Lemma and Corollary.
The following lemma, which is a partial converse to the

martingale sampling theorem, seems to be a part of martingale
folklore, but as we have not seen it stated explicitly and shall
need it, we prove it here. We state it for an increasing set of
stopping times indexed by the ordinals rather than for a
sequence of times; this slight generalization adds little to the
difficulty of the proof and is often convenient, if not necessary,
in applications.

We first introduce some notation. Let {Z(^)} be a right-
continuous real-valued stochastic process and {^{t)} an
admissible set of cr-fields. Let {Ta, as 1} be an increasing set
of everywhere defined stopping times, where I is some
countable initial segment of the ordinals, and To ==0. If ^
is a limit ordinal, we assume TQ = sup Ta. When a is an

a <^
ordinal not in I, we make the convention that Ta ̂  + 00*

For a e l set Za(<) = Z((ATa) and let
Fa(<) == ^(t A Ta) if a is not a limit ordinal,

== V FQ(() if a is a limit ordinal.
p<a

Then for a e= I, let:

Ga+lW-Fa+l^a+t)
== {A : A n {Ta + t< S} e Fa+i(5), S^ R+}.

LEMMA 3.2.1. — With the above notation suppose that for
each ae I, {Za+i(Ta + t), Ga+i(<), te R+} is a super martin gale.
Then

(a) For all finite a, {Za(^), Fa(Q, (e R+} is a supermartingale.
(b) If in addition {Z(()} is continuous and bounded below

then {Za(^) Fa(t), t e R+} is a supermartingale for all a e= I.

COROLLARY 3.2.2. — Under the hypothesis of Lemma 3.2.1,
if either

(a) I is finite
(b) I == {1, 2, . . .} and lim T^ = oo w. p. 1 or
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(c) Z is continuous and bounded below and sup Ta == oo
a

w. p. i, then {Z((), ^(t), ^e R+} 15 a supermartingale.

Proof of Lemma 3.2.1. — The proof is by induction on a.
The conclusion is automatically true if a == 0.

Case I. a == P + 1, some ?. Let <i < ^ and Ae=Fa(<i).
Consider

(3.2.1) ^Z^)-^^^,,Z^) +^,,^,«,Z^)

+AntT?>y z«( t l)
= Ii + la + la-

Let <7; = (t; — Tp) VO, i == 1, 2. If Tp < („ then (; = Tp + <r,.
Now TR ̂  To, hence Tp is a stopping time relative to {^~a{t)}
([11] Proposition 21). By Proposition 23.1 of [II], (TI and ^
are stopping times relative to {3'a(^ + s)} = {Ga(s)}. It is
straightforward to verify A n {rp < ti} s Ga((Ti), and since
{Za(rp + (), Ga((), teR+} is a separable supermartingale by
hypothesis :

(3-2-2) ^ = /Ant.,<^ ̂ P + ̂ ) > /Anl^<^ z^ + ̂ )
=== AntTp«<| z^)

^ can be handled similarly by stopping the supermartingale
{Za(rp + s), G<x(5), 5eR+} at the bounded times 0 and ^
to get:

(3.2.3) I2>/An!,^,«.^z»(TP+^
=An!t<<T,<t.(z«(t2)•

If Tp > (2, Za((,) = Zp(f,), 1=1 , 2. By the induction
hypothesis, Zp(() is a supermartingale, so

(3-2-4) I3=JAn^x.z^)>JAn^>^z^)

"jAniT^^ z^)-

The supermartingale inequality follows by adding (3.2.2),
(3.2.3) and (3.2.4). This proves (a).

Case II. Let a = sup jS. Assume {Z((), t^R^-} is bounded
P<a

below. By the inductive hypothesis {Zp((), Fp(t), <eR+} is a
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supermartingale if [3 < a. Then the processes Z|(^) = Zp(() A n
are bounded supermartingales.

Let A<=9^)= V ^e^)- The fields 9?3-(() increase with 8
P<a • •

so by choosing y large enough, y < a, we can find a set
A^eF^(ti) such that P{Ay + A} is as small as desired.
Then for y << ? < a :

(3.2.5) j^ Z^,) > ̂  Z^) since A, e F,{t,) c F^).

Z2 is bounded and Z is continuous so we can go to the limit
under the integral in (3.2.5) as ^a. Since (ATg^ATa,
V<, Zp(() -> Z^(() so

(3.2.6) A^^A,^)-

Let v f a and P{Ay + A} -> 0. By the dominated conver-
gence theorem we can go to the limit:

(3.2.7) /^Z^)>^Z^).

Now let n go to infinity. ZS(t)fZa((), and we have:
E{Z^O)}>E{ZS(0)}>E{Z^)} for all n, hence E{Z^)}<oo.
By increasing convergence we can go to the limit in (3.2.7)
to get the supermartingale inequality.

Proof of Corollary. — This is trivial from the lemma if I
is finite since then I has a largest element, say y, and by
our convention, Z(t) = Zy+i^), which is a supermartingale.

Suppose {Z(()} is bounded below and let Z"(() == nAZ(^) ,
Z^(() = nAZa(t) . By the lemma, {Z^(()} is a supermartingale
relative to the fields {Fa(t)}. If t^ < ^ and Ae=9?(^) then
A n {To > <i} e Fa(^i) and

(3-2-8) /Ani.^^) ==JAn^.>^z^)>/An^^^^)•

As Ta f oo, the set being integrated over increases to A and
ZS(^) —> Z^^). By bounded convergence :

(3.2.9) J^Z^^Z^).

Let TZ -> oo to get the supermartingale inequality. Q.E.D.
We remark that the assumption in Lemma 3.2.1 and Corol-
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lary 3.2.2 that Z be continuous can be weakened; it is
enough if Z is only quasileft continuous, i.e., if Ti, Tg, . . . ^ T
are stopping times, then Z(-Tn) -> Z(r) w. p. 1. The hypothesis
that Z be bounded below was used only in going to the
limits in (3.2.5) and (3.2.8) and can be weakened considerably.
It is enough, for instance, that the negative part of Z is of
class (D), which in turn is satisfied if the negative part of Z
is uniformly integrable (see [33] pp. 101-102).

3.3. Local Behavior of Tp Processes.
THEOREM 3.3.1. — Let X = = { X ( ( ) , teR_^.}eT^ and let D be

a bounded domain, with x^ D. Let f be multiply superharmonic
in a neighborhood of D such that f(x) < oo. If XD is the X
process stopped the first time it hits ^)D, then /"(XD^)) is a
supermartingale.

We first prove the following lemma, which is known to be
true without the continuity hypothesis in case k == 1 ([6]
p. 32), where k is the degree of the decomposition of Q.

LEMMA 3.3.2. — Let D c Q be a bounded convex domain
and suppose f is Continuous and multiply superharmonic in
some open neighborhood of D. Then there exists a continuous g,
multiply superharmonic in all of Q, such that g{x) = f{x)
for x^D.

Proof. — Choose a domain D' such that D c D' c D' c do-
main of definition of /*. If a;e^D', by convexity of D
there is a linear function h such that h{x) < f(x) and
h(y) ̂  sup f(z) for all y e D.

zeD
By continuity of f and compactness of bD', there exists a

finite number of linear functions h^ . . . , h^ such that if
H=in f ( / i i , . . . , ^ ) then 1) H{x) < f(x) for a;e=bD' and
2) H(rr) ̂  f(x) on D. Then the function g satisfies the
requirements of the proposition, where

§W=
^min(/(a;), H(a;)) if x<=D'
>H(a;) if a;eQ-D'.

Proof of 3.3.1. — It is enough to prove the supermartingale
property for continuous f.
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Choose a domain D' such that D c D' and f is multiply
superharmonic in a neighborhood of D'. If we could extend f
to be multiply superharmonic in Q, the proof would be
immediate. However if D' is not convex, we may not be
able to do this. Therefore we use Lemma 3.3.2 to extend f
from sufficiently small neighborhoods to the whole plane.

We can cover D with a countable number of open balls S;
such that S^-cD'. Suppose x^Si and let Ti be the first
time XD hits ^)Si, if XD hits ^)Si, and undefined otherwise.
If Ti(o)) << oo, then for some i (which may depend on co)
XD(T,)€=S(. Define i'i(co) to be the smallest index i such
that XD(TI((O), co)eS,. Then let Tg^) be the first time after
Ti(co) that XD hits ^(<o), etc.

If the limit of Ti, Tg, . . . is finite with positive probability,
let T^ = lim T^, and continue with T^+i, . . . through the
countable ordinals. If Ta(^) is not defined for some a (and
therefore for all (3 > a) define Ta(co) = oo with the conven-
tion that XD(OO) = lim Xn(<), which exists for a.e. co by
Proposition 3.1.2. ^Qo

For an ordinal a, let ^(oj) be the smallest i such that
XD(Ta((D), co)e=S,. For each /, Sy is convex and f is contin-
uous and superharmonic in a neighborhood of S,. By
Lemma 3.3.2 there is a continuous ^^5(0) such that
g j = f on S/-

Since XeT^., gj['Xj)(t)) is a local supermartingale. Let
X£ = XD((Ara). Then note g/Xfe+^Ta + <)) is a supermar-
tingale since it is obtained from the continuous local super-
martingale gj(Xjy{t)) by optional stopping. Let (3 > t^ and
let Aeg?+(^+ ̂

yj(X£+i(T, + <i)) = S f^^, &-(X^(T, + ^)).

But {l^ = /} ̂ ^+(Ta + ^i) SO this is

> S ̂ ^| ̂ (X^(T, + t,)) =fj(X^{^ + ^)).

Thus /'(XS^^a + <)) is a supermartingale. It is bounded and
supTa((o) ==oo , so by Corollary 3.2.2, f{Xj^{t)) is a super-

martingale. Q.E.D.
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PROPOSITION 3.3.3. - Let D c Q be a bounded domain and
x^ D. If f is multiply superharmonic in a neighborhood of D,
and XeTa;, then /*(X((ATD)) is a right-continuous function
of t with probability one, and is, a fortiori, a separable super-
martingale.

Proof. — There exists a sequence {/*„} of functions which
are continuous and multiply superharmonic in some neigh-
borhood of D, such that f^\f in that neighborhood. For
each n, /^(X((ATD)) is a continuous supermartingale, so by a
result of Meyer ([33], Thm T16, p. 99), the limit must be
right-continuous.

In the case k = 1, it is known that the paths of /*(X((ATD))
are continuous w.p. 1. We conjecture this is true for /c> 1
as well.

3.4. Conditioning and Continuing Tp Processes.
In sections 1.3 and 1.4 we introduced the operators 8^

and 1\. In this section we consider these operators applied
to Ta; processes. The following two theorems can be thought
of as the T^ process analogues of the strong Markov property.

THEOREM 3.4.1. — Let X^Ta. and let T be a natural
stopping time with the property that X((Ar) is bounded for
all t. Let {X2, z<=A} be a version of ^(X). Then for a.e.
(p^)z, X^eT^, where ^ is the distribution of X(r).

Remark. — It follows that there is a version of ^(X) which
satisfies X^eT^ for every z in Q.

Proof. — X^e^Q by definition. It is easily shown that
P{XZ(0) = z} = 1 for a.e. (p-r)^ We must verify the super-
martingale property. We can and will assume that the proces-
ses X.2 are canonically defined relative to the natural fields
%(().

Let D be a bounded region containing x such that
X(-Ar) never leaves D. Let <i < tg anc! Ae^(^).
Suppose there exists a set A c Q, such that (^(A.) > 0 and :

(3.4.1) zeA=^/-(X^)) >f^f(XW).

Let A = { & ) : (»)(T((ri) + •)eA}. A ® % whenever A is.
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Since T and t + T, (<= R+, are stopping times for the
continuous supermartingale {/"(XD^)), (eR_^}, the process
{f(Xj){t + ^))? t^R-^} is also a supermartingale. Thus:

(3.4.2)
Anw^(Xo(T + ^)) >AOIW^/(XB(T + ̂ )).

But the left-hand side is :

^/IL^/W^))]^).
By (3.4.1) this is :

< /A Ul̂ ^)] ̂ z) = AnWA, /WT + t,))

which contradicts (3.4.2). Therefore ^r(A) == 0.
Thus for fixed /*, D, t^ t^ and Ae33i)(^), there is a set

A(D, /*, ^i, ^2, A) of pi^-measure zero such that if ^^A(D, /,
^i? ^2 ? ^)9 then

(3.4.3) J^ [f{XW - f{XW)] > 0.

%D(^i) is generated by a countable finitely additive field G,
and (3.4.3) holds for all A e G if z is not in some null set
A(D, /, ^i, (g). But if (3.4.3) holds for every set in G, it must
hold for every set in ^(^i)- Next, outside of some null set
A(D, f), (3.4.3) holds for all rational (i and ^ such that
^i ̂  ^29 ^d hence for all values of t^ and (3 by continuity.
If DI, Dg, . . . f Q is an increasing sequence of regions with
the property that X(»Ar) never leaves Di, then for z
not in a null set A(/*) = \_J A(D^, /*), X" satisfies the super-

n
martingale property relative to the function f. Finally if z
is not in some null set A, X^ satisfies the supermartingale
inequality simultaneously for all functions in some countable
set which is dense in C(Q) n S(Q), and therefore X2 must
be in T .̂.

THEOREM 3.4.2. — Let XeT^ and let U = {X2, z^A.}
be a coherent family such that for each z, X^ e T^. Let T be a
natural strict stopping time for X, and suppose P{X(() ^ A} === 0.
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Then T^(X; LJ)eTa. (where 1\ is the operator introduced
in 1.4).

Proof. — Let X = Y^(X; U). This is canonical by defini-
tion, and we may assume X is canonically defined as well.

Conditions (Tl) and (T2) are clearly satisfied, so we
must verify the supermartingale condition (T3). Let D be a
bounded domain containing x and let TD be the first time X
hits bD if X ever hits bD, and + oo otherwise. Set
XD(<) = X((ATn). Let T I = = T A T D and let f be a conti-
nuous multiply superharmonic function. X ~ (^)X implies
}C ~ (^i)X. This together with the fact that XeT^ implies
/"(XD^ATI)) is a supermartingale.

We claim that the post-Ti process is a supermartingale
relative to the fields S>^{t) == %((ATD).

Let ti << (2 and consider the cr-field 9(t^) generated by
XD(TI + 5), 0 < s < <i. Let Ae3?((i) and let

A. = {co : (o(r(o)) + •) e A}.

Then As33(^). Since the family U is a version of 8^(X)
we see :

/An^>.|AXn(T, + ^)) =f,[f^W)] ^(z).

Now XD^T^ so f(X^{t)) is a supermartingale, and Ae^B(^)
so the right hand side is :

>/A[AAXW)] d^z) =/AU^>^(XD(T, + t,)).

Since /'(X.D^i + t)) is constant on the set {TD ̂  T}, this
give us the supermartingale inequality. This does not quite
prove our claims, as we have only shown that /*(XD(TI + t))
is a supermartingale relative to the fields 9{t). However,
JC(5) for s ;> TI and X(^) for s <; Ti are defined to be
conditionally independent given X(r), so that this remains a
supermartingale relative to the larger fields S^VS^). By a
theorem of Courrege and Priouret ([13]) %(r) \/9{t} == %(r + <),
which establishes our claim.

By Corollary 3.2.2, {f{X^t)), %(t), t^R+} is a supermar-
tingale. Q.E.D.
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4. Ua; processes and the the Dirichlet problem.

4.1. ITy processes.

Let D c Q be a domain. Let D be a metrizable compacti-
fication of D; that is, D is a compact, metrizable topological
space in which D is a dense subspace. All topological notions
in this section will be understood to be relative to D unless
it is specifically stated otherwise. Thus the boundary of D
is D — D, which we will denote by ^)D.

In the classical case, where k = 1 and the notions of
harmonic and multiply harmonic functions coincide, one
ordinarily takes ^)D to be the geometrical boundary of D
or the geometrical boundary of D together with the Alexan-
droff point at infinity if D is unbounded. One may wish to
use other compactifications, however, such as those corres-
ponding to the Feller or Kuramochi boundary; or the Martin
boundary, which is the most natural boundary from the
standpoint of the Dirichlet problem and its probabilistic
treatment.

If /*eS(D) is bounded below we denote the greatest lower
semicontinuous extension of f to D by ~fr; that is J == f
on D and if x^^D, f(x) = lim inf/^y). Let

yen
y->x

S(D) = { J : f ^ S(D), f bounded below}.

A sample path originating at a point of D is said to converge
to ^)D if it eventually leaves any compact subset of D.

We will put two restrictions on the domain D and its
compactification, the first one minor and the second somewhat
more stringent. We require that

HI) for r r ^ D there is a process x^Ty; which converges
to the boundary of D;

H2) if x, ye^D, there is a function /*eS(D) and sets N
and N', where N is a neighborhood of either x or y and
N' is a neighborhood of the remaining point, such that f > 1
on N, /*< 1 on N'. We say f strongly separates x and y.

Note that since D has a countable base for its topology,
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if (H2) holds there must be a countable subset of S(D) which
strongly separates points of ^)D.

By a theorem of Levy, if the dimension of Q is three or
greater, Brownian motion will eventually leave any compact
subset of Q. If the dimension of Q is two and the degree
of decomposition of Q is two, it is easy to find examples of
T^-processes (not Brownian motion) with the same property.
Thus the only cases excluded by (Hi) are Q == D = R and
the case in which dim Q = 2, k = 1 and the complement of
D in Q has logarithmic capacity zero; these two cases are
of little interest in the present context.

Let DI c Dg c . . . be a sequence of relatively compact
subdomains of D and for any process X let

T,((O) =inf{t: X(t, co)eD^,
undefined if there is no such (. Then let

^((o) = sup ^((o) if X((, oo)
i

converges to D, undefined otherwise.
The following is a standard lemma.

LEMMA 4.1.1. — Let A < = S ( D ) be bounded below on D.
Let x e D and X e T .̂, and suppose X converges to 5D
-w. p. 1. Then lim A(X(()) == h^ exists w. p. 1. and

t^Tp

h{x) > E{AJ.
Proof. — We may assume h ̂  0. Suppose h{x) < oo.

(The case h(x) = oo can be handled by considering h/\n
and letting n^oo . ) The process

Y(() - h{X{t)) if t< TD
==0 if < > T n

is a supermartingale. By Proposition 3.3.3 Y is right-conti-
nuous, and hence separable. Thus Y has left limits w. p. 1.,
so lim Y(() = h^ exists. If Ti, Tg, . . . are the stopping

t^D
times defined in the preceding paragraph, by the optional
sampling theorem h(x), Y(Ti), Y^), . . . is a positive super-
martingale. Thus :

h(x) > lim E{Y(rJ} > E{lim Y(rJ} = E{h^} Q.E.D.
n>oo n»-oo
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PROPOSITION 4.1.2. — Under (Hi) and (H2), if x^D and
XeTa; and if Q' is the w-set on which X(-, (D) converges to
bD, then for Qi.e. (oeQ', lim X((, co) e^i^.

t^T^tri)

Proof. — Let W be the countable subset of S(D) which
separates boundary points. If /"eW we may assume f is
bounded by taking f/\2 if necessary. By Lemma 4.1.1, if co
is not in some exceptional null-set F, for all /*eW /*(X((, co))
has a limit as (f TD if coeQ', or as (f oo if oo ^ Q'. If
a) e Q' — f, there must be at least one point of ^D in the
closure of {X((, 00), 0 < ( < TD}. But there can be at most
one point of bD in this closure, for if x and y were two
such points, take /*e W to be a function which separates x
and y. Then there must be infinitely many times s, t arbi-
trarily close to TD tor which /'(X(5, co)) > 1 + £ and
/*(X((, (o)) <; 1, which contradicts the convergence of /'(X((, (A)))
as ( f TD.

Remark. — A corollary to the above proof is that if X e T^.,
for a.e. co there can be at most one point of bD in the
closure of the set {X((, co), < < Tn}, where if TD(CO) is not
defined, « ( < TD » is taken to mean « V( ̂  0 ».

DEFINITION. — L^ C c bD be a Borel set. If o-eD, Ilp(C)
15 (/ie cZa55 of processes X satisfying :

(Ul) XeT,,

(U2) X i5 Brownian motion until it first leases some neigh-
borhood of x,

(U3) P{X(Tn)eC}=l .
When C = ̂ )D, we will write U., for U.,.(bD). The signi-

ficant property of Ua; processes is (U2) which assures us that
they are (( nice » in a neighborhood of their origin.

DEFINITION. — A set C c ^)D is a V-boundary for D if C
is closed and if for every a;<=D, LLp(C) -=^ 0. Under (HI), <)D
is always a U-boundary.

Before proceeding to the Dirichlet problem we need some
facts concerning coherent families of stochastic processes.

Suppose C c b D , z e = D and X e = U ^ ; and let N be a
neighborhood of z with closure in D. Then if V == {X^,
.re^N} is a coherent family of processes such that X^eTy
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and P{X l c(TD)<=C} == 1, the process Y,,(X; V) is in U,(C).
This is an immediate consequence of Theorem 3.4.2.

LEMMA 4.1.3. — Let Vj and Vg be coherent families of
canonically defined processes, where V^ = {Xf, zeAJ, i = 1, 2.
Let T be a natural strict time on Q(. such that for z^Ai,
P{X^(r) « Ag} = 0. Then the family:

V3={Y,(X^; V,), zeAJ
15 coherent.

Note. — The hypothesis that the processes be canonically
defined is merely a device to define T for all processes, and
can be dispensed with at the expense of a slightly more cum-
bersome statement.

Proof. — Let Pf be the distribution of Xf, i === 1, 2,
and let JP^ and JP[ be the distributions of P{ conditioned
on « X^(r) = x » and « T not defined » respectively.

If Ai, Age a6, let

Ai= {X( .Ar )eAi} and A^ = {X(. +^^l^}'

If ^^ is the distribution of Y^X^, Vg) on Qg:

P,(Ai n A^) = / P^A^^PK^) ̂ (^) + [1 - ̂ (Q)].?^^ n AJ.

We must show z —> f^(Ai n A2) is Borel measurable. The
second term is clearly measurable. Let dv^ == a;P^(Ai) d\s^{x)
and let G be the class of functions f: Q-> R such that
z —> j f[x) d^^(x) is measurable. G contains indicator func-
tions of Borel sets since if A c Q is Borel:

f W d^{x) == ̂ .P!(Ai) d^{x) = PKAi n {X^T) e A}).

This is measurable in z since V\ is coherent. G is clearly
linear and closed under increasing convergence, so G contains
all Baire functions. In particular, x —> Pj(A2) e G.

Q.E.D.
We can now prove an important fact about the existence

of coherent families of Ua. processes. The hypothesis (U2)
plays a fundamental role in the proof; it is not known whether
the corresponding theorem is true for Ty; processes.
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THEOREM 4.1.4. — Let A be a Borel subset of ^D and f
a Baire function on A. Let K c D be Borel and <peC(K) .
If there is a family {X^, ze- K} such that for each z<= K :

a) X^U,(A)
and

b) E{/-(X^))} > y(z),
then there is a coherent family satisfying the same conditions.

Proof. — Let z<= K; X^e U^(A), so X^ is Brownian motion
until it first leaves some open ball B with B c D.

Let {^X, x^^B} be a version of ^(X*^). For y^B, let
ply be harmonic measure on bB relative to y. By Theorem
3.4.1 ,,X<sT^ for a.e. (p^).r<=^B and further

1 = P{X-(Tn) e A} = ̂  PLX(Tn) <= A} ̂  Qr),

so P{^X(TD) e A} == 1 for a.e. ((^)^.
Let Z-^ be Brownian motion from y and consider

X^ == Y^(Z^, §^(X^)). (Intuitively this is the process which
is Brownian motion until it hits bB and is a;X from then
on if X^rJ = x.) X^ ̂  U,(A), and, if we let g{x) = E{^X(TD)},

E{/*(X^))} = E{E{AX^))|X^(TB)}}= V&B ̂ (^d^ (tr)= ^(y)5
where this defines h[y).

Now A(z) > <p(z) > — oo. Thus A is either = + °° ^r

harmonic, and therefore continuous, in B. 9 is continuous
so in either case there is an open neighborhood N^ of z on
which h > 9.

The family V^ = {X^, ye NJ is coherent by Lemma 4.1.3.
For each z e K we can find such a neighborhood N^ and
family V^ == {X^, z/eNJ. Since D has a countable base
there is a countable set {zj such that K c [_} N.,p and we

i
can clearly find sequence {MJ of disjoint Borel sets such

that M,cN^. and K = LJ N,. Then the family {X^y^K}

given by XL7 == X^. if y^M, satisfies the requirements
of the theorem. Q.E.D.
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4.2. The Dirichlet Problem.

We follow Bremermann in allowing multiply superharmonic,
as well as multiply harmonic solutions. We consider the pro-
blem on certain subsets of the boundary rather than on the
whole boundary. This is somewhat analogous to the case of
the Dirichlet problem for certain parabolic differential equa-
tions (see [16]) where large portions of the boundary may be
irregular for the Dirichlet problem and therefore can be
ignored.

Given a boundary function on one of these sets, we define a
multiply superharmonic function — we prejudice the issue
somewhat by calling this function a « Dirichlet solution » —
which is connected with the boundary function in a natural
way. We then have two problems : first to study the function
and in particular its boundary behavior, and second to study
the class of boundary sets for which such an approach is
possible. We address ourselves to the first problem in this
and the next section, and to the second problem in section 6.

Let C be a U-boundary and f a Baire function on C.
We say /*<= I(C) if for each x^ D there is an rpe= U^(C) such
that — oo < E{/*(X(TD))} < + oo. In particular, f is in
I(C) if it is bounded below.

DEFINITION. — Let /*e I(C). The Dirichlet solution ^f
of f is:

^{x)= sup E{AX(Tn))}.
xeiyc)

If f is defined on some larger set than C, then <^ will
mean the Dirichlet solution of the restriction of f to C.

Note that we have defined ^ relative to the classes
LLc(C), not relative to the apparently more natural classes
Ta.(C) of T^. processes which hit C with probability one.
The reason is that ^f is multiply superharmonic whereas the
corresponding fact for the function ^ defined using Ta.(C)
depends strongly on the nature of the boundary and boun-
dary function /*. In fact, ^ is multiply superharmonic iff
^ ̂  (j^c

Roughly speaking, ^ corresponds to the lower envelope
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of all multiply superharmonic functions g satisfying
lim inf g{y) ^> f[x) for x e C, while ^f corresponds to that

y->x
lower envelope regularized to be lower semicontinuous.

THEOREM 4.2.1. — Let D c Q be a domain and C a U-
boundary. If fe I(C), then $^ is either multiply superharmonic
or identically + Qo-

This is a result of the following two lemmas and Proposi-
tion 2.2.

LEMMA 4.2.2. — ^ is lower semicontinuous.

Proof. — Let X^eU^(C). X^ is Brownian motion until it
leaves some ball B relatively compact in D. Consider
g^(X) = {Xs, x^^B} and let g(x) == E^X^))}. Now
if V is Brownian motion from yeB, let y = Y^(Z^;8^(X^)).
Then X^ U,(C) and

E^X^o))} = E{E{/l(X^D))|X^(TB)}}.

The distribution of X^(TB) is u^ == harmonic measure on ^B
relative to z so this is just j^ g{x) [f-y{x) = h{y). h(y) is
either identically + <x> or else harmonic, and therefore
continuous, in B. By definition ^(y) ^> h{y), y^B. If
a < ^(^)? we can choose X to make h(z) > a, hence ^
must be lower semicontinuous at z. Q.E.D.

For the notation in the following lemma, see Section 2.

LEMMA 4.2.3. — Let B == B(z; p) be a polycylinder such
that B c D and let B* be its distinguished boundary. If X^p
is the uniform measure on B*, then for any f^ I(C),

^(z)>J;.^(^p(^).

Proof. — There are T^ processes which hit B* before
leaving D. One such process X* can be described as follows :

Let z == (z1, . . ., ^) and B == Bi X • • • X B^, where
BycQ^. is a ball centered at z7. Let V be Brownian motion
from 73 which is stopped the first time it hits ^)By. Then let
X* == (Z1, . . ., V). It is easily seen that X*eT,. Further,
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if N is a neighborhood of z such that N c B, X is Brownian
motion until it leaves N. Finally, since for each /, V hits bB^
and is stopped there in finite time, X hits

B* = bBi X • • • X bBfc
in a finite time.

Let {<?„} be a sequence of continuous functions increasing to
^c. For fixed n and ^<=B*, there is X^e-U^C) such that
E{/*(X?(TD))} > yn(a;). By Theorem 4.1.4, there is a coherent
family V^ == {X^, ^e=B*} satisfying the same conditions.
Let XI = Y,,(X*; VJ. Xf,eU,(C) and

W > E{/*(X;(Tn))} = E{E{/>(X^n))|Xra(TB)}}
= J E{f{X^))} d\ {x) > J;, y, dX

where X is the uniform measure on B*. Since n was arbi-
trary, ^(z)>^(^dX. Q.E.D.

PROPOSITION 4.2.4. ~ Let D c Q be a domain and C a
V-boundary for D. If /*, /i, /g, . . . are such that f;e= I(C),
i = 1, 2, . . . and /•„ f /*, (Aen ^ f $;.

Proo/'. — Clearly ^ < ̂ ; for all n. If a < ^(rr), there
is X6U,(C) such that E{f{X(^))} > a. Then

^) > E{/',(X(Tn))} f E{AX(m))} > a. Q.E.D.

PROPOSITION 4.2.5. -- (Minimality Property). Let D c Q
be a bounded domain and C a V-boundary for D. Suppose
jfe I(C). If h is multiply superharmonic and bounded below
in D and satisfies lim inf h{x) :> f{z), z e = C , (/^M /i ̂  ^9.

a;->z •

Note. — The theorem remains true if C is not closed.

Proof. — Let ^<=D, X e U^(C). By Lemma 4.1.1,
lim /i(X((, co)) = /^(co) exists and E^{/i} < h(x). But
X(^)-> X(TD) e C as ( , f T D and for z eC , lim inf h(y) > /'(2;),
so E{^} > E{/'(X(Tn))}. Thus

h(x)^ sup E^X^n))} = ̂ (x). Q.E.D.
xeu^(C)
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4.3. Regularity of boundary points.

It is customary to characterize regularity properties of
boundary points in terms of barriers, but, in keeping with
our probabilistic approach, we will define them in terms of
the functions .̂ We will show that under suitable restric-
tions on the domain, these probabilistic definitions coincide
with the usual definitions.

DEFINITION. — Let C be a V-boundary for the domain
D c Q and let XQ e= C. XQ is C-semiregular if for each neigh-
borhood N of XQ, if g == Ic_^ Hm inf ^{x) = 0, and is

x->xo
strongly C-regular if lim ^(x) = 0 for each neighborhood N
of x,.

THEOREM 4.3.1. — Suppose D satisfies (Hi) and (H2).
Then for any V-boundary C there exists at least one C-semi-
regular point,

Proof. — We first show that if D has no semiregular
points there exist T^, processes which fail to converge, and
then show this violates the separation hypothesis.

If .re^D is not C-semiregular there are neighborhoods
N3. jmd N^ of x, such that, if g^ is the indicator function
of N^:

(a) ̂  > £, on N^.
If the boundary of D has no semiregular points we can

find such N,., N;, and ^ for each rce^D. Since 6D is
n

compact, there is a set {x^ . . . ,^} such that bD c U N^.
i

Let N,=N,,, N^N^-N^, . . . , N, = N^ - U N;,
Then the N, are disjoint and cover ^)D. Write N^ instead
of N^. and let £ = min s .̂.

i
By (a), the definition of ^c, and Theorem 4.1.4, there is a

n

coherent family V = {X7, z e D n U N;} such that X2 e LL(C)
and 1

(b) ze D n N; =^ P{XJ(TI,) «NS} > e.
We construct a sequence of processes by induction. Let
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^ e D, Xi e U^ and let Ai be a neighborhood of ^)D not
n

containing ^ with Ai c f J N;. Suppose we have defined a
i

sequence Xi, . . . , X^ of U^-processes and a decreasing
sequence Ai, . . . , A^ of neighborhoods of ^)D such that for
/ = 1, . . . , m- 1;

(c) X^ - Y,/X, V). ^
(d) There is an exceptional co-set of probability less than —

outside of which •

P{X,(T^) e N. and X(TA,J e N;| X/TA,)} < 1 - t.

Now choose a neighborhood A^i of bD such that
^m-ML c A^ and such that (d) holds for / == m. This we can do
since by (6) and (c) the conditional probability that
X^TA^N, and X^^^N; given X^TAJ is less than
1 — £, so the probability is greater than £ that Xn»(() will
eventually leave N^. Thus by making A^i small enough
we can assure (cZ). Then let

X^+i == '̂T^+^m? v)-

By Theorem 1.4.2 there is a process X«=T^ such that
^C ~ (^.)X^, / == 1, 2, . . . Notice that since XyeL^(C), Xy
(and hence JC) hits 6Aj w. p. 1. We will show that for arbi-
trarily large n the sequence X(TA -)? 7 == n, TZ + I? • • • moves
from some N, to (N^.

1 . •Choose n such that — < £ and let i,((o) be that index i
n

for which }C(co, TA .(<*>)) e N;. Consider

P |? t (TAj^N, , , /==n ,n+ l , . . . ^

By (d) and the fact that the behavior of ^ before and after
TA« are conditionally independent given X(TA ) this is

<^(l+-}-£)=o•
n \ / /

The proof is now readily completed. By there mark follow-
ing Proposition 4.1.2, w. p. 1 there can be at most one point
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of ^)D in the closure of {^.((), ( < Tn}. But w. p. 1 for some i,
X(TA^.) e N, for infinitely many values of / and X(TA^) <E (NS)°
for infinitely many values of /c, so there must be at least two
points of ()D in the closure, which is a contradiction.

Q.E.D.
The following proposition is connected to Theorem 4.3.1

primarily through its proof. We will state it now for future
reference.

PROPOSITION 4.3.2. — If C is a V-boundary and x^C is
not C-semiregular, there is a neighborhood N of x such that
C — N is a U-boundary.

The proof involves a simpler version of the above construc-
tion, so we only outline it here. One finds a neighborhood N
of x such that for some £ > 0, 0^ > £ on N, and a cohe-
rent family V = {X\ zeN} of U(C) processes with the
property that P{X2(TD) €=N} < 1 — £. If zeD, one defines
by induction a sequence of U^(C) processes and a decreasing
sequence Ai, Ag, . . . of neighborhoods of N n ^)D, such
that Xy+i ==Y^.(X^,V) and such that P{X^+i hits bAy+iX^.
Then the process X satisfying X — (TA )Xy for all / is
in IL(C) but does nothit ^)D n N, and hence is in L^(C — N).

In the classical theory, the regularity properties of a boundary
point are local properties. In our case in particular we would
like the definition of semiregularity to be independant of
the U-boundary. In order for this to be true it is necessary to
introduce slight further restrictions on the region. We will say
a region is normal if its boundary points can be strongly sepa-
rated from closed sets. More precisely, a point x^D is said
to be normal in D if for any closed set K c D not containing
x there is a function /, positive and multiply superharmonic
on D satisfying f{x) > 1 and f <: 1 on K. A region D is
normal if all points of ^)D are normal in D. In analogy with
accepted topological terminology we should call such regions
« regular )), but this word is already sorely overused in this
paper.

If D is bounded and D is the closure of D in Q, D is
normal, for in this case the separating functions can be taken
to be lower envelopes of finitely many positive linear functions.



PROBABILITY AND A DIRICHLET PROBLEM FOR MULTIPLY 255

LEMMA 4.3.3. — Let D c Q be a domain and let x be a
normal point in ^)D, and N a neighborhood of x. Then there
exists a neighborhood N' of x such that y e= D — N and
X e Ty imply that

P { X ( T D ) ^ N ' } < ! - £ .

proof. — By normality of x let h be a positive multiply
superharmonic function such that for some £ > 0, /i <; 1 — £
on D — N and lim inf h{y} > 1. Let N' be a neighborhood

y->x
of x such that N' n D == { y : fc(y) > 1}, and let fc' = h/\ 1.
If y < = D — N , X e = T y , by Lemma 4.1.1:

1 - £ > /i'(i/) > E{lim /i'(X(())} > P{X(Tn) ^ N'} Q.E.D.
t^

THEOREM 4.3.4. — Let D c Q be a normal region and let
Ci and Cg be U-boundaries. Suppose x is C^-semiregular
(Ci-regular). Then r ceCg and x is C^-semiregular (C^-
regular).

Proof. — Let N be a neighborhood of x and choose
N' c N in such a way that for some m > 0, if g == I&D-N')
^(y) :> m if y e= D — N, which we can do by Lemma 4.3.3.
Then, if g = I&D-N, we have

lim inf -1- ̂ {y) > g{z) if z ̂  ̂ )D.
y->z m

Therefore, by the minimality property,

^ < ̂ - ̂ 'l.9 ' m '

In particular, since x is Ci-semiregular, (Ci-regular) this
implies that the limit inferior (limit) of <t>^2 at x is zero,
hence x must be Cg-semiregular (Cg-regular). Q.E.D.

Since strongly C-regular and C-semiregular points are inde-
pendent of the U-boundary C we shall call them strongly
regular and semiregular points respectively from now on.
Notice that if C is a U-boundary, C contains the set of all
semiregular points.

There is an important class of boundary points not included
among the strongly regular and semiregular points.
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DEFINITION. — Let C be a V-boundary and suppose x^C.
x is weakly ^-regular if for any neighborhood N of x,
lim ^{y) = 1.
y->x

Equivalently, x is weakly C-regular iff for any neighborhood
N of x,

sup P{X(Tn) <E N} -> 1 as y-> XQ.
xeu/c)

Unlike the strong and semiregular points, the set of weakly
C-regular points depends upon the U-boundary C. When
C = ^)D, we say a weakly C-regular point is weakly regular.
We reserve « regular » for points regular for the classical
Dirichlet problem.

a) Strong regularity implies semiregularity, regularity and
weak C-regularity for any U-boundary C.

b) If Ci c Cg are U-boundaries, then weak Ci-regularity
implies weak Cg-regularity.

c) Regularity implies weak regularity, but regularity does
not imply weak C-regularity for all U-boundaries C.

The above implications are all obvious, but none of the
reverse implications are true. Semiregularity does not in
general imply weak regularity.

PROPOSITION 4.3.5. — rre^D is semiregular iff there exists
a sequence x^ x^ . . ., eD such that x^—>x and for any
neighborhood N of x,

(*) sup P{X(Tn) « N} -> 0 as n -> oo.
xe=u^

Proof. — This is slightly stronger than the definition but
follows directly from it. Let N\, N3, . . . \ {x} be a sequence
of neighborhoods of x. For each n we can find X^ e B^

1
such that sup P { X ( T D ) < = B } < — • Then x^ —> x and (*) is

xeu,, n
satisfied for this sequence. The converse is obvious.

Q.E.D.

COROLLARY 4.3.6. — Let D** be the set of all semiregular
points of bD. Then D** is closed.

The regularity properties defined above are local properties,
i.e., if rce()D is strongly regular, semiregular or weakly
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regular, and N is a neighborhood of x, then a: is a strongly
regular, semiregular or weakly regular point of N n D respec-
tively, and conversely. We will postpone the proof of this
until Section 4.5.

4,4. Boundary behavior of the Dirichlet solution.

THEOREM 4.4.1. — Let D c Q be a normal domain and C
a V-boundary for D. Let fe I(C) be bounded and continuous
at XQ. Then

a) If XQ is weakly C-regular and f is bounded below^

(*) liminf^)>/^o).X-^-XQ

b) If XQ is semiregular and f is bounded above,

H liminf^^X^o).x->xo

Hence if XQ is both weakly C'regular and semiregular
and f is bounded there is equality in (**).

c) If XQ is strongly regular and f is bounded,

(***) lim ^{x) = f(xo).
x-^-xy

d) XQ is weakly C-regular, semiregular or strongly regular
^ff (*)? (**). or (***) respectively holds for all f^ C(C).

Proof. — Let

m = inf {f{x) : x^C} and M = sup {f{x) : XG C}.

(We may have m = — oo and/or M = + °o.) f is conti-
nuous at XQ, so for & > 0 there is a neighborhood N of XQ
such that \f{x) — f{y)\ < £ for x, ye. N. Let h == ly and
g = IC-N* Then, whenever the terms are well-defined we have :

(4.4.2)
[m + f{x»}]h - ^ - £ < y < [ M - f{x,)]g + f{x») + e

so that:

(4.4.3)
[m + f(^W - m - £ < ̂  < [M - f(x,W + /^o) + e.

9
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a) f is bounded below so the left-hand inequalities in (4.4.2)
and (4.4.3) make sense. XQ is weakly regular, hence
lim ^{x) = 1. By (4.4.3), lim inf ^(x) > f(x^) - £. £ is
a^a'0 X->XQ
arbitrary, which proves (a).

b) f is bounded above so M << oo and the right-hand
inequalities of (4.4.2) and (4.4.3) make sense. XQ is semiregular
so lim inf ^{x) == 0, hence by (4.4.3) lim inf (̂  < f{xo) + £.

X->XQ X->XQ
£ is arbitrary, which proves (&).

c) f is bounded so both M and m are finite, hence (4.4.2)
and (4.4.3) make sense. Strong regularity implies weak C-
regularity so

lim ^{x) = 1 and lim ^{x) = 0
X->XQ X->XQ

so (4.4.3) becomes :

f(xo) — £ < lim inf ^{x) < lim sup ̂ {x) < f{xo) + £.
x->xo x->xo

d) If XQ is not weakly C-regular, there is a neighborhood N
of XQ such that lim inf ^(x) < 1. Choose a continuous f

x->xo
on C satisfying f{xy) = 1 and /*<; IN. Then

lim inf ^f{x) < lim inf ^{x) < f{x^.
X->XQ X->XQ

If XQ is not semiregular (strongly regular) there is a
neighborhood N of Xy such that if g = I^D-N then
lim inf ^{x) > 0 (lim sup ̂ {x) > 0). Choose a continuous f

X^-XQ x-^-xo
on 5D such that f{xo) = 0 and /'>g. Then ^D > <^°, so
lim inf ^°{x) > f{x») (lim sup ̂ (x) > f(xo)). Q.E.D.

X-^-XQ X->XQ

4.5. Regularity and barriers.

DEFINITION. — Let N fee a neighborhood of XQ e ^)D. A
function / ' e S ( N n D ) is a barrier at XQ if

a)/>0.
b) lim inf f{x) = 0.

x->xo
c) If N' is any neighborhood of XQ, f is bounded away from

zero on N n D — N'.
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We can characterize strongly regular and semiregular
points in terms of barriers. One can show as usual that if f
is a barrier at XQ, it can be extended to a barrier on all of D.

PROPOSITION 4.5.1. — Let D c Q be a normal domain, and
let ^<=()D. Then:

a) x is semiregular iff there is a barrier at x.
b) x is strongly regular iff there is a barrier at x which

has a limit there.

Proof. — We will just prove (a), (b) is similar. Define
/*e C(^)D) such that f(x) == 0 and x is the unique minimum
of f. By Theorem 4.4.1 (b), lim inf ^{y) = 0 and by

y->x
Lemma 4.3.3 0?15 is bounded away from zero outside any
neighborhood of x.

Conversely, suppose g is a barrier at x, and let
f(z) == lim inf g(x) for ze^D. Then f(x) = 0 and f is

X->2

bounded away from zero outside of any neighborhood of x.
Let N be a neighborhood of x. There is a constant n such
that nf ̂  LD-N == h. By the minimality property, ng ̂  $^
But lim inf g(y) == 0, so lim inf ^{y) = 0. Q.E.D.

y->x y->x
Using this and the fact that barriers are defined locally we

have :

COROLLARY 4.5.2. — Let D c Q be a normal domain. If x
is a semiregular (strongly regular) boundary point of D and N
is a neighborhood of x, then x is a semiregular (strongly
regular) boundary point of N n D and conversely.

One can show similarly that weak regularity is a local
property, but as we shall have no use for this we omit it.

4.6. Examples.
It D c Q is a domain, let D** be the set of semiregular

points of ^)D.
4.6.1. D == unit ball in Q. Then all boundary points are

strongly regular, hence D** == bD. To see this, just note
that since D is strictly convex, there is a linear function
which takes on its unique minimum in D at a given boundary
point x. This function is continuous and multiply harmonic,
so x is strongly regular.
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4.6.2. D === B(a?; p), a polycylinder (see Section 2.) Then
D** = B*, the distinguished boundary, and all points of
B* are strongly regular.

4.6.3. Let Q = R X R and let D be the unit disc minus
a sector of central angle less than 180°, where the sector is
contained in the left half-plane. A function is multiply super-
harmonic in D if it is concave in each coordinate. Then
D** = bD, and all boundary points except (0,0) are strongly
regular. (0,0) is semiregular, being in the closure of strongly
regular points, but is not strongly regular. To see this last,
let N be any small neighborhood of (0,0) and define f on
^)D by: f(x) = LD-N^), x^^D.

Consider the behavior of ^^{z) as z —> (0,0) along the
positive real axis. From any point (^,0) ^ D the process
X(() .== (Z^t), 0), where Z37 is 1-dimensional Brownian
motion from x, is in T^ and will hit ^)D at either
(re, \/i — a?2) or (re, — \/i — x2). At both these points f = 1,
so ^>f(x, 0) == 1, and hence lim sup $/z) == 1 > 0.

Z •>. (0,0)

4.6.4 Let k == 1 and Q == R3. In this case the notions of
harmonic and multiply harmonic functions coincide, and the
concepts of regular, strongly regular, and weakly regular
boundary points are identical. Let D be a region with a
Lebesgue thorn, and let x be the tip of that thorn. As is
will-known, x is semiregular but not regular — and therefore
is semiregular but not weakly regular.

5. Behavior in the interior.

5.1. Continuity of 0̂ .
In comparing our multiply superharmonic Dirichlet solu-

tions with classical Dirichlet solutions one is led to remark
that while the classical solutions « smooth out » the boundary
function in that the Dirichlet solution of a badly discontin-
uous boundary function is always infinitely differentiable
in the interior, the multiply superharmonic solutions retain
much of the boundary function's roughness. The multiply
superharmonic solution can be + oo at interior points, for
instance, without being identically + °^-
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In this section we will give sufficient conditions for conti-
nuity of a Dirichlet solution, and give examples to show the
Dirichlet solution of an arbitrary boundary function may not
be continuous, even if the function is continuous.

As in the previous section, D is a domain in Q and D
is a metrizable compactification of D in which D is an
everywhere-dense subspace. All topological notions are relative
to D unless it is specifically stated otherwise. If x, y ^ D ,
|| re — y\\ will denote their distance in the D metric. If A c Q
and x €= Q, we will use x .+ A to denote the set
{z: z = x + ?/? y ^ ^ } - K f ls multiply superharmonic on
D, f will mean the greatest lower semicontinuous extension
of f to D.

THEOREM 5.1.1. — Let C be a V-boundary for D, and let
ge= I(C). If ^ is continuous at all points of bD and is greater
than or equal to g on C, then ^ is continuous on D.

Proof. — Since ^ is multiply superharmonic, hence lower
semicontinuous on D, it is enough to show it is upper semi-
continuous as well.

By Lemma 4.1.1 and the fact that ^g ̂  g on C, if xe D
and XeT^ is such that it hits C w. p. 1, then

a) <D^)>E{g(X(Tn))}.
By continuity of ^ on bD and Theorem 4.1.4, given

£ > 0 we can find a d > 0, a compact set K c D, and a
coherent family V = {Xs, z < = D — K} such that

b) If z, w e D — K and \\z — w \ < d, then

l^)-^)l<y
c) X^U^C), z e D - K.

d) E{g(X^))} > <^(z) - y, ze D - K.

Choose a further compact subset K' of D such that K
is contained in the interior of K'. Using the fact that on D
the metric |[ || is equivalent to the Euclidean metric, which
is homogeneous, we can see that there is a number rf' > 0
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such that for any rceK, y ^ D and zebK', that
\\x — y\\ < df implies that both z -{- x — y^D — K and
\\{z+x-y)-z\\<d.

Now let rp be any point of D; we can assume without
loss of generality that x e K. Choose y such that
|| y — |̂| < d' and choose X^eU^C) such that

.) E{g{X^))} >^(y) -^-.

Let X^ == X^ + x — t/. Then Xy e Ty. Let T be the first
time X^ hits the set x — y + ^K/. Then

X-(T)-^-2/+X^K');

This is in D — K by assumption.
Now let X"=Y^(X";V) . Then X^e IL,(C) and, by (^)

^(.r) > E{g(X-(To))} > E{^(X-(-))} - y

By (&) and (a) applied to the family ^TK'(^) we have :

> E{^(X^(TK.))} - t > E{g(X^(Tn))} - t.

By (e) this is
> W - £•

Since y was any element satisfying \\x — y\\ < rf', this
shows <^ is upper semicontinuous at x. Q.E.D.

Using Theorem 4.4.1 (c) we immediately have :

COROLLARY 5.1.2. — Let D be a normal region. If every
boundary point of bD is strongly regular and g is continuous
on bD, ̂ D is continuous on D.

5.2. Examples.
Let Q = C X C where C is the complex plane, and let v

be superharmonic in C. Define u by: u(z^y Zg) == ^(^i),
Zi, Zge C. Then u is multiply superharmonic in Q, and is
even plurisuperharmonic. Let D be a bounded domain in Q,
and D its closure in Q. We now show that ^^D = u in D.

u is bounded below in D and satisfies lim inf u{x) ̂  u(xo)^
x-> 0*0
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XQ e OD, so by the minimality property, ^^D <; u in D.
Conversely, for z e D and a < u(z) there is a neighborhood
N c D of z such that u > a on N.

Consider the process X e U^ which is Brownian motion
on Q from z until it hits ^)N, and is the process (2:1, Z^(())
from then on if it hits ON at (^i, ^2)5 where Z22 is plane
Brownian motion from z^ (X can be defined rigorously
using 1\.) Then u(X(rn)) > a w. p. 1, hence ^(z) > a;
thus (^D = u in D.

We can use this to get examples of discontinuous Dirichlet
solutions and of lower envelopes of plurisuperharmonic func-
tions of the kind studied by Bremermann and others (see
Bremermann [10], Gorski [21], Kimura [26] and Kusonoki [28]).
Observe that if f is plurisuperharmonic and therefore mul-
tiply superharmonic and lim inf /*^ u[xo) for XQ<=^D, then

x->xo
the minimality property implies u = ̂ ^ <; /*. u itself is
plurisuperharmonic, and therefore equal to the lower envelope
of functions plurisuperharmonic in D with limit inferior
greater or equal to ^ on ^)D.

(a) Let D be the unit ball and u(zi, z^) == — log|^i|.
The Dirichlet solution of u is infinite at interior points of D
without being ^ + °°- This is a counter example to a
conjecture of Bremermann (Bremermann [10] 9.2).

(&) Let ^ be a superharmonic function with infinities dense
in the plane, and let u{z^ Zg) = ̂ i)- Then ^^ has a set
of infinites dense in D.

(c) Let u be as above and set u === u A M for a constant
M > u(0, 0). Then ^^D has discontinuities on a set of positive
Lebesgue measure in D, although the boundary function is
bounded and lower semicontinuous and the boundary is
strongly regular. This also shows that envelopes ofBremermann's
type need not be continuous, even if they are bounded. This
has been an open question (see Siciak [35]).

It is somewhat more complicated to find a region D and
continuous boundary function g such that ^D is not conti-
nuous. This can be done as follows.

Let B be the open unit ball in R3 and let A be the unit
ball in R3 with a Lebesgue thorn; suppose the tip of this
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thorn is the origin. Let Q = Qi X (^2 where Qi = R,
Qg === R3. Denote points of Q by z = (z1, z2), ^eQ^.. Let
D c Q be the region :

D == (Ii X A) u (Ii/2 X B), where for r > 0,

Ir is the interval (— r, r). Let g be the function

g{z)= 2(1 -M) (l-M).
We claim ^^D is not continuous $ in fact lim sup ^^{z) = 1

while ^(0) < 1. ^°
To see the former, let z2 be an interior point of B — A and

let ZQ = (0, z2) e D. By considering U^ processes which
are four dimensional Brownian motion until leaving some small
neighborhood of ZQ, and are of the form (Z((), *(2) from then
on, where Z(() is linear Brownian motion, we see there are U^
processes which hit ^)D in arbitrarily small neighborhoods

of f - 1 ^ and (^--^ Thus ^(^^l-l^l. Since\ 2 / \ 1 /
|g| < 1 on ^)D, this implies lim sup $^(z) == 1.

2->Q

Now if Y is a process on Qg, let T' be the natural stop-
ping time T' = inf {( > 0 : Y(() e^A}, and undefined if
there is no such (. Since the tip of the Lebesgue thorn is
irregular for A, if Z(() is Brownian motion from 0, T' > 0
w. p. 1 for Z, so there is a neighborhood N2 of 0 such that
P{Z(r ' )eN2} = a > 1. Now consider any Xe=Uo. X can
hit 6D in the set Qi X N2 only if (IlgX) (r') e N2, where
tig is the projection of Q onto Q2. By Theorem 3.1.1,
TIgX is a time change of Brownian motion, hence
P^ngX^T') e N2} <; a < 1. Since g is bounded away from
one outside of Qi X N, this implies ^(O) < 1.

One can use a device of Kusunoki [28] to modify this example
and get a region D in which $-* is not continuous. One does
this by covering the boundary of D with a countable number
of balls {ByJ which are small enough so that the set

( 00 \

D == D u L J B^ j is a domain and ^D is approximately
i /

equal to ^D near the origin, and so is not continuous. Now
any point in ^)D which is a boundary point of exactly one of
the B^ will be strongly regular, for the definition of strong
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regularity depends only on the local behavior of bD. Since
we can choose the balls B^ in such a way that ^)D is the
closure of these points, bD == 6*.

6. Minimal U-boundaries and the Silov boundary.

The concept of the Silov boundary with respect to a class of
functions was introduced in connection with algebras of
continuous functions and has been extended to cover semi-
groups of continuous and semi-continuous functions by
Arens and Singer [I], and by Siciak [34].

Certain Silov boundaries turn out to be very natural sets
on which to specify the boundary function of the Dirichlet
problem; they play a fundamental role in Bauer's theory
(Bauer [3]). Bremermann [10] introduced them to the extended
Dirichlet problem for plurisubharmonic functions.

As before, D is a metrizable compactification of D $ all
topological notions in the following are relative to D. Let
D c Q be a bounded domain and let S(D) be the set of
extended real-valued functions f defined on D which are
multiply superharmonic and bounded below on D, and
satisfy f{x) = lim inf f(y) if x^^D.

y->x

DEFINITION. If D c Q is a domain, the Silo^ boundary D*
of D with respect to S(D) is any set K c D satisfying:

(51) K is closed and if /*<= S(D), then f takes on its mini-
mum on K.

(52) If C satisfies (Sl), then C => K.
The existence of D* for a bounded domain D can be

immediately deduced from a theorem of Siciak [34]; we shall
get its existence for arbitrary normal regions as a by-product
of the following theorem on U-boundaries.

THEOREM 6.1.1. — Let D c Q be a normal domain. There
exists a smallest U-boundary D**, and D** is the set of
semiregular points of bD.

Proof. — The proof is in two parts : First, we use Zorn's
lemma to show that a minimal U-boundary exists, then we
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show that this minimal boundary is unique by identifying
it with the set of semiregular points.

I. Let {Cojaei he a linearly ordered (by set inclusion) set of

U-boundaries. We claim that C == | | Ca is a U-boundary.
ael

C is closed since each Ca is. Q has a countable base, so
there is a countable subset C^ => C^ => • • • such that

n c,, = n c,,^a.i — | | ^a,"
i==i ael

Let {N^} be a decreasing sequence of open sets such that
00

N^ is a hoodneighbor of C^ and f | N; == C.
i=l_

Let ^e=D. For some TZ, x^D — N^. By renumbering if
necessary, assume n = 1. We will show that there exists
X e U, such that P{X(Tn) e V} = 1.

Let Xi e Ua.(Ca,). Then with probability one, Xi hits ^)D.
We define Xi, Xg, . . . by induction as follows : Xi = Xi.
Suppose X« has been defined such that X^eU,p(CaJ, so
that P{X^ hits ^ before ?)D} === 1.

Since Ca^, is a U-boundary, there exists a coherent family
V = {X\ y ^ D } such that for each y , X^eU^C^J. Then
let X^+i == Y^(X^, U^), where T^ is the first time X hits
?)N,. Then X,+i^U,(C^J and X,+i ~ (rJX,. Using
Theorem 1.4.2, let X be the process which is equivalent to
each X^ until time T^. Then X<=U,c(C), hence Ua;(C)=/=y;
C must be a U-boundary. By Zorn's Lemma, there exists a
minimal U-boundary.

Uniqueness is now immediate. All U boundaries contain
D**, the set of semiregular points. This set is closed. If C
is a minimal U-boundary such that C ^=- D*, let x e C — D**.
Then x is not semiregular, hence by Proposition 4.3.2, there
is a neighborhood N of x such that C — N is a U-boundary,
contradicting the minimality of C. Q.E.D.

COROLLARY 6.1.2. — Suppose D is a normal domain.

Then the Silo^ boundary D* of D with respect to S(D)
exists and is D**.
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Proof. — Let ^eS(D) and suppose that P ^ O on D^
D** is a U-boundary by 6.1.1 so by the minimality property,,
v ,> ̂ ' = 0 in D, hence v ̂  0 in D; moreover, D*""
is closed, so it satisfies (Sl). Conversely, if a;eD**, x is
semiregular, so there is a barrier at x. Therefore any set
satisfying (Sl) contains D**. Q.E.D.

We now have the following characterizations of the Silov
boundary.

THEOREM 6.1.3. — Suppose D is a normal domain, and D*
its Silov boundary. Then

(a) xf=y iff x is semiregular
(b) x<= D* iff there exists a barrier at x
(c) D* is the smallest V-boundary.
We remark that it is now clear that a set C c ^)D is a

U-boundary iff it is closed and contains D*.

7. Other Dirichlet problems.

7.1. Bremermann's Dirichlet problem,

Let D c Q be a domain and let D be a metrizable compac-
tification of D. Suppose D is a normal domain and let K
be a closed subset of ^)D. Recall that functions of S(D) are
defined on D. If /^(K), let ¥/,(/') = { u : ue §(D), u > f
on K}. Let Uy == inf {u: u e V^/*)}.

When is it true that:
(DPI) For each / 'eC(K), Uf satisfies
1. ^eS(D)

2. Uf == f on K.
This is the analogue for multiply superharmonic functions

of a Dirichlet problem for plurisubharmonic functions inves-
tigated by Bremermann [10]. We will call it Bremermann's
Dirichlet problem, and will say that K is resolutive for
Bremermann's Dirichlet problem if (DPI) obtains. Bremermann
showed in his case that if D was pseudo-convex then K is
resolutive iff it is a certain Silov boundary.

The following theorem contains the analogous result for
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multiply superharmonic functions in arbitrary normal domains
and shows that under mild restrictions on the boundary the
multiply superharmonic Dirichlet solution solves Bremer-
mann's Dirichlet problem.

If D D Q is a normal domain with Silov boundary D*,
we will write <^* and UJ" instead of (^ and U^D*)
respectively. We will speak of weak* regular points instead
of weakly D* regular points.

^ THEOREM 7.1.1. — Let D c Q be a normal domain, D* its
Silov boundary^ and K c bD a closed set. Then

(a) A necessary condition that K be resolutive for Bremer-
manns Dirichlet problem is that K = D*.

(b) A sufficient condition that D* be resolutwe for Bremer-
manns Dirichlet problem is that all points of D* be weak^
regular,

(c) Let /*eC(D*), and let <I>* be the lower semicontinuous
extension of (J)* to D. Then a necessary and sufficient condition
that <I>* solves Bremermanns Dirichlet problem for all /'eC(D*)
is that all points of D* be weak^ regular.

Proof. - (a) If D* - K ̂  9, let x^ <= D* - K. K is
closed so there is a neighborhood N of XQ such that
N n K = y. By 6.1.5 (b) there is a function ^e §(D) such that
P > 0 on D — N and ^(xo) < 0. Let f = 0 on K and
consider ^K(/*). For all constants M > 0, M^eV^/*). If
x e D is such that v{x) < 0, then, by letting M ~> oo we
see in f{u(^ ) ; ueV^/*)} = — oo, so Bremermann's Dirichlet
problem is not solvable.

Suppose now D* c K but D* =7^ K, and let XQ e= K — D.
If f^C(K) satisfies f=0 on D*, f(x^ < 0, then ueV^)
implies u ̂  0 on D*, hence u ̂  0 on D. Thus Uy ;> 0;
in particular, Uj{xo) ;> 0 > f(xo). Therefore K is not reso-
lutive.

(c) Points of D* are semiregular by Theorem 6.1.3, so by
Theorem 4.4.1 (b) and (d), if XQ e D*: XQ is weak* regular
iff liminf^) = f{x^, all /^C(D*), and this is true iff

^;eV^(/'), /•eC(D*). On the other hand, if ueVn. then



PROBABILITY AND A DIRICHLET PROBLEM FOR MULTIPLY 269

lim inf u(x) > f(xo), XQ e D*. Thus inf u{x) > inf f{x) > — oo
X->XQ a?eD a?eD*

so by the minimality property u ̂  ̂ . Therefore $j? == Uy.
Part (b) is now immediate from (c). Q.E.D.

7.2. Multiply harmonic Dirichlet solutions.

<&} is not in general multiply harmonic, and the question
naturally arises as to when <!>} is multiply harmonic for all
/*eC(K). It is, for instance, when D is a product region
and K its distinguished boundary (we will treat this case
in the next section) or when D is some subregion of a product
region D' such that all semiregular points of D are contained
in the distinguished boundary of D', but these appear to
be nearly the only cases. It is never true, for instance, if D
is non-void and K = ̂ )D.

We keep the notation of 7.1. If for each /*eC(K), u/ is
multiply harmonic and (DPI) obtains, we say K is /i-resolutive.
The question of /^-resolutivity is closely connected with a
general Dirichlet problem formulated by Bauer [3]; as we
have stated it, it does not quite fall under Bauer9 s theory,
for the Silov boundary D11 of D with respect to the class of
functions bounded and multiply harmonic in D, which is
the boundary relevant to Bauer5 s formulation, may be strictly
smaller than D*. Bremermann [8], [9], and Kusunoki [28]
have given examples showing that the Silov boundaries for
pluriharmonic and plurisuperharmonic functions need not be
identical; using a result of Avanissian we can give an example
in the present case (the construction follows that of Kusu-
noki). Let Q == Qi + Qg where dim Q, > 3, i = 1, 2, and
let A and B be bounded domains in Q with S c B. Let
C = B — S. Points of C* are characterized by the local
behavior of bC, so we can choose A to make C* n ^)A -=^ (p.
If h is harmonic in C, by a theorem of Avanissian [2], it
can be extended to be multiply harmonic in B; and therefore
must have its infimum in C as a limiting value at some point
of bB — hence C11 == B11; in particular C11 n ^)A = <p so C11 is
strictly smaller than C*.

In spite of these differences, the following two results of
Bauer [3] carry over; we state them in our setting.
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(a) K is A-resolutive only if K == D*.
(6) A necessary condition for D* to be A-resolutive is

that for each x e D* there is a multiply harmonic barrier
which has a limit there.

It is an immediate consequence of Lemma 4.2.5 that if
Uy is multiply harmonic in D, continuous on D u K, where
K is a U-boundary, and equal to f on K, that Uy == <!>?.

THEOREM 7.2.1. — Consider the following conditions.
(a) ^ is an additive function of f for /*€=C(D*).
(b) For all .reD the distribution of X(Tn) is independent

of X for Xe=U;.
(c) D* is h-resolutwe.
Then (a) and (V) are equivalent, and if D* is weakly regular,

(a), (&), and (c) are equivalent.

Proof. — Obviously (b) ===^ (a). If ^ is an additive func-
tion of /, for fixed x e D, ^{x) is a linear functional of
norm one on C(D*), hence there is a Borel measure p, on D*
such that

W=f^f(^W.
Suppose that for some X e U^ the distribution of X(Tn)

is not equal to (JL. Then for some function geC(D*) we
have either E{g(X(m))} > W or E{- g(X(^))} > <^).
By the definition of $^ and $1 ,̂ this is impossible. Thus
(&) ̂  (a).

To show (a) => (c), let /•<=C(D*). Then $; + 0^ = 0
or $j? == — <I>*.y, so ^ is both multiply super- and subhar-
monic, hence multiply harmonic. D* is weakly regular so if
x e D* we have both

lim inf ^{z) > f{x) and lim inf $*./z) > - f(x).
2->X Z->X

Since <t>*.y = — ^, this implies f(x) = lim <^(z).
^•>a;

Finally, if (c) holds and x^D, let Xi and Xg be in U^.
Let p4 and pia be the distributions of Xi(Tn) and X2(Tn)
respectively. Then for each fe C(D*)

^f^) = u/^) = ff{z)^ {dz) = ff(z)^ {dz)
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where the first equality follows from the remarks preceding
this theorem and the other equalities are applications of the
minimality property. This being true for all /*eC(D*) implies
^ - ̂ . Q.E.D.

8. Product regions.
8.1. Dirichlet solutions.
If Q = C^, and Q,• = C, i = 1, . . ., k, and D is a poly-

cylinder, the Dirichlet problem with boundary values specified
on the distinguished boundary of D becomes a special case
of one discussed by Bergman [4], for then the Bergman
extended class coincides with the class of multiply harmonic
functions. In this section we consider the Dirichlet problem
for a more general product domain. Product domains are of
special interest as they provide the primary examples of do-
mains in which Dirichlet solutions are multiply harmonic.

The most useful compactification of such a domain is
derived from the Martin boundary. For simplicity of notation
we will assume the degree of decomposition k of Q is two;
extensions to k > 2 will all be trivial. Let Q == Qi X Q2?
where dim Q; ^> 2, i = 1, 2, and let D^ be a domain in
Q; which has a positive boundary. Let bD; be its Martin
boundary and set D^ == D^ u bD,, with the Martin topology,
which is metrizable ([32] and [7]).

We will use the following facts about the Martin boundary
([i8], [32]).

(8.1.1) If z^D^ there is a harmonic measure pL,(z, d'Q
on bD; if f is a bounded Borel function on
^)D, then g(z) = j ^(jz, d'Q f{'Q is harmonic.

(8.1.2) If J S ^ D ^ and V is Brownian motion from
z, Z^) converges to a point of the Martin
boundary as ( f T D ; the distribution of this
point is p4(z, dQ.

Let D = DI X Dg and D = Di X Da. The distinguished
boundary of D is SD = bD^ X ^Dg. All topological concepts
in the following are relative to D unless specifically stated
otherwise.
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Given any point z = (!;, Y)) e= D, we can easily construct
processes in U^SD). One way of doing this is as follows.
Choose domains Df c D2 c ... f D,, where D? c D?4-1, i = 1, 2
and where ^e D^, Y) e D^. Let Zi and Zg be independent
Brownian motions on Qi and Q2 from E; and Y) respecti-
vely. Let T? be the first time Z, hits 6D?, ^ == 1, 2 and set
T° === 0. For each i == 1, 2, we define a second process Z;
by
Z,((, (o) = Z,(( - n, (D) if T?((O) < ( < rW, n == 0, 1, . . .

and Z;(", (ji>) is constant from T?(co) + ^ — 1 to ^(co) + n;
that is, Z, is stationary for one unit of time after hitting any
bD? for the first time, and then proceeds as Brownian motion.

Then let X{t, co) = (Zi(t, co), Z^t, co)). This is the desired
process; it converges to §D as (-> oo since each Z;(<)
converges to the boundary of D^ as t —>• oo ; the distribution
of X(To) is then pi(z, -) == ^(S;, •) X ^(^i? •) independent
of the regions D?. We will call y.{z, -) m-harmonic measure
relative to z.

A boundary point XQ of bD, for which there exists a
superharmonic barrier which has the limit zero at ZQ is called
regular. A point z = (i;, Y)) of SD is called m-regular if both ^
and Y) are regular. The set of all non-regular points of ^D;
is negligible; that is, there is a positive superharmonic func-
tion Ui which has the limit + °° at every non-regular point
of ^)Di [7]. It is no restriction to assume u; is finite in D;
for if x is a point at which Ui{x) == oo, we can replace u,
in a small ball centered at x by the Dirichlet solution of the
restriction of ^ to the boundary of the ball. The resulting
function is superharmonic and has the same boundary limits
as u^ Thus there exists a finite positive multiply function
u in D which has the limit -{-oo at all non-m-regular
points of SD, namely the function defined by

u(z1, z2) = Ui(z1) + Ua(z2) where ^e D,, i = 1, 2.

PROPOSITION 8.1. — (a) Let x^B and Xe:U^(SD).
Then if G is the set of all non-m-regular points of SD,
P{X(To)^G} =0.

(b) X.(t) has the limit X(Tn) w. p. 1 as t^ TD.
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Proof. — Let u be the function of the preceding paragraph
and F the set on which it has infinite limits. Then G c F
and if f is the indicator function of F, by the minimality
property, for any £ > 0 :

P{X(Tn) e G} < ̂ f{x) < £U(^),

which implies (a).
To prove (b), let x == (S;, r\) and consider the processes

n^X, i = 1, 2, which are the projections of X on Q;,
i = 1, 2. These processes are time changes of Brownian
motion by Theorem 3.1.1, hence by the fact that Brownian
motion has limits at ^)D(, i = 1, 2, [1,X has the limit r^X(TD),
i •= 1, 2; this implies (b).

Let f be a bounded Borel function on SD. Define a func-
tion ¥/ on D by

W^n/TO^, ^).

T/ is easily seen to be multiply harmonic; if / is of the form
f[z) = /i^i)/^) this follows from (8.1.1), and the class of
functions for which ^Fy is multiply harmonic is linear and
closed under bounded monotone convergence.

PROPOSITION 8.2. — Let /'eqSD). Then Yy has the
boundary limit f at all m-regular points.

Proof. — If z = {z1, z2) is m- finely regular, z1 and z2

are finely regular in bDi and ^)Da respectively, hence for
each i = 1, 2, given £ > 0 and a neighborhood N, of z1

there exists a fine neighborhood F, such that for ^ e F^,
P-iCC, N,) > 1 — £/2. Thus if x e=D is a point such that
^<=Fi X Fa, (JL(rr, N1 X N3) > 1 — £. The conclusion now
follows from the continuity of f and the fact that sets of the
form Pi X Fg form a base the topology at z. Q.E.D.

The following corollary will be strengthened later:

COROLLARY 8.3. — Let ^eC^D), x^D and XeU.,(SD).
Then w. p. 1, lim ¥/X(t)) = f(X{^)).

( ^ T D
THEOREM 8.4. — If XeUa;(SD), the distribution of X(Tn)

is m-harmonic measure relative to x.
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Proof. — For each jfeC(SD), ¥y is multiply harmonic and
bounded, hence by Lemma 4.1.1,

ff{Wx, dQ = W = E{lim ¥/X^))}.

By Corollary 8.3 this is

= E{^(X(TB))} = f/•CQv W

where v is the distribution of X(Tn). This being true for all
/'eC(SD) implies v = u(z, .). Q.E.D.

THEOREM 8.5. — The Silov boundary of D with respect to
S(D) is equal to the set of semiregular points of SD, which is
in turn equal to the support of the m-harmonic measure u(z, •),
where z is an arbitrary point of D.

Proof. — This would be an immediate consequence of
Theorem 6.1.1 if we had verified the separation hypothesis;
since we have not, we prove it directly.

By Theorem 8.4, it is clear that the set of all semiregular
points is contained in the support of m-harmonic measure;
on the other hand, m-regularity implies semiregularity, hence
the semiregular points are dense in the support of harmonic
measure. Both sets are closed, so they must be equal.

If K is any closed set on which all functions in S(D)
take on their minimum, K must contain all m-regular points,
for these have barriers, and so contains the support of m-
harmonic measure. But /*eS(D) and /*,>() on the support
of harmonic measure implies (by the minimality property
and Theorem 8.4)

f^^=Q on D. Q.E.D.

An immediate consequence of this corollary is that if f
is a bounded Borel function on SD, integrable with respect
to m-harmonic measure for one (and therefore all) z <= D, that
(^ = (j)^ ̂  Y^ This last equality shows :

THEOREM 8.6. — ^ is multiply harmonic.
The following theorem is now an immediate consequence

of Theorem 8.4 and the characterization of regular points of
^)Di and ^Da in terms of harmonic measure.
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THEOREM 8.7. — Let z == (^, Y]) be a point of SD. Then
(a) z is strongly regular iff ^ and Y) are both regular in

^)DI and ^D^.
(b) z is semiregular iff both S; and Y) are semiregular in

()DI and bD2.
(c) VFea/c* regularity and strong regularity are equivalent;

a point is weakly regular (that is, weakly ^-regular) iff at
least one of ^, Y], is regular in the corresponding bDi.

Since <]?J? is multiply harmonic instead of only multiply
superharmonic, many of the techniques of the ordinary Diri-
chlet problem can be adapted. The following generalization
of Corollary 8.3 is due to Doob in case k = 1 [15]; the proof
we give is just an adaptation of his.

THEOREM 8.8 — Let f be a Baire function on 8D and
suppose ^ exists and is finite. Then for any z e D and
X e U^, $j? has the limit f on almost every X-pat/i to the
boundary.

Proof. — Extend the function ^ to D u SD by defining
it to be equal to f on SD. Let JC be the X process stopped
on the boundary, i.e., X(() == X((ATD). Let V be the class
of functions f such that

a) the family {^(5C(()), 0<« 00} is uniformly inte-
grable and

b) lim $;(X(()) = /•(X(Tn)) w. p. 1.
(•>00

i) V contains the continuous functions by Corollary 8.3.
ii) V is linear since ^ is linear in /*.

iii) Let /^<= V, n = 1, 2, . . . and let fn f /*. Suppose <&}< oo
in D. We claim /*<= V.

We suppose X is canonically defined relative to the fields

%((), and % == V ^(()- ^fn ls multiply harmonic so for each
teR4-

M, {<&^(X(t)), 35(t), teR+} is a martingale which converges to
/^(X(TD)) with probability one. It is uniformly integrable
since /*e V, so

^(JC(()) = E{/»(X(TD))W)} w. p. 1.
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As M — O O , / * ^ / * and $}„ f ^} so

^(X(<))=E{^(X(Tn)|^))}.

This implies /* satisfies (a). We must show that <I>^ has
continuous sample paths, which we shall do by showing that
w.p.l . , $^(X(<)) converges uniformly in ( to ^(X(()).

For fixed m and n, n > m, ^(X(^)) - ̂ (X(()) is a
positive martingale, so by the maximal inequality :

P{ ^sup K(X(t)) - ̂ (X(t))] > X}
0«^»

<^E{^(X(TB)-^(X(Tn)^

= {- [<D*^) - r^(z)].
Since the r.h.s. goes to zero as m, n — oo, this implies uniform
convergence w. p. 1, which was to be shown. Thus /*e= V.
But this implies that V contains all Baire functions whose
Dirichlet solutions exist. Q.E.D.

8.2. Plurisuperharmonic Dirichlet solutions.

We have discussed only the multiply superharmonic func-
tions in this paper, but the same methods can be applied
with little or no change to other subclasses of the superhar-
monic functions. In particular, many of our results carry over
directly to the classically important case of plurisuperhar-
monic functions.

Let Q = C71 and define Ta; to be the set of continuous
processes which have the supermartingale property relative
to the class of plurisuperharmonic functions. The class Ua;(C)
is defined by substituting Ta, for T .̂ in the definition of
Ua.(C). The classes Tp and Ua;(C) enjoy substantially the
same properties as their counterparts Ta; and Ua;(C); in
particular the analogues of Theorems 3.3.1, 3.4.1, 3.4.2 and
4.1.4 remain valid, as do Propositions 3.3.3 and 4.1.2; the
proofs go through with little change other than to substitute
« plurisuperharmonic » for « multiply superharmonic » throu-
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ghout. The plurisuperharmonic Dirichlet solution <^ is
defined as in 4.2 by substituting U^(C) for Ua.(C). The proof
that ^ is plurisuperharmonic is superficially different from
the proof of Theorem 4.2.1 in that plurisuperharmonic func-
tions satisfy a different average property than multiply
harmonic functions [30]; in verifying this property one makes
use of the fact that if Z(() is Brownian motion from the
origin of C, and rr, y e C", that x + 2/Z(() e= T .̂.

Once the analogous characterizations of the regularity
properties of boundary points have been made, the main
results and proofs of Sections 4 through 7 carry over with the
usual changes, that is, by substitution of « plurisuperhar-
monic » for « multiply superharmonic » and replacing T^,
U^(C), and <S>f by t^, U^(C) and ^ respectively. Of
these, the results numbered 4.2.5, 4.4.1, 4.5.1, 5.1.1, 5.1.2,
6.1.3 and 7.1.1 are perhaps of the most interest. Theorem 7.1.1
gives an identification of lower envelopes which leads to
new results for the latter. Theorem 4.4.1 for instance is only a
slight extension of known results, while Theorems 5.1.1 and
5.1.2 yield results on the continuity of lower envelopes and
the non-probabilistic part of Theorem 6.1.3 gives a charac-
terization of the Silov boundary, which are new even when
the region is bounded and has a smooth boundary. The
results in Section 8 depend on specific properties of multiply
harmonic functions and so don't carry over to the plurihar-
monic case.
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