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IN SINGULAR PERTURBATIONS
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Introduction.

In a singular perturbation problem one is concerned with
a differential equation of the form

(1) L(e)u, = /•„

with initial or boundary conditions

(2) B(£)U, - g,

where £ is a small parameter. The distinguishing feature of
this problem is that the orders of L(s) and B(e) for £ ^= 0
are higher than the orders of L(0) and B(0) respectively.
The differential problem (1), (2) is referred to as a perturbed
problem when s ^=f=. 0 and a degenerate problem when £ = 0.
The singular perturbation problem consists of studying the
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behavior of solutions or eigenvalues of (1), (2) as £ -> 0.
Such problems can also be considered with more than one
parameter.

Singular perturbation problems arise frequently in applied
mathematics and have been considered at least as far back
in history as Lord Rayleigh's treatise, Theory of Sound [5'j (1),
first published in 1877. Rayleigh considered the effect of a
small amount of stiffness on the modes of vibration of a
violin string. A discussion of the role of singular perturbation
phenomena in mathematical physics can be found in Frie-
drichs [!'].

Some difficulties are inherent in singular perturbation
problems. Solutions of the degenerate problem will not in
general be as smooth as solutions of the perturbed problem.
Moreover, solutions of the degenerate problem usually will
not satisfy as many initial or boundary conditions as do
solutions of the perturbed problem. Hence, if solutions of the
perturbed problem are to converge to solutions of the dege-
nerate problem, the notion of convergence will probably
have to be rather weak. Due to the « loss » of initial or boun-
dary data it may also happen that solutions of the perturbed
problem converge in a stronger sense in the interior of the
underlying domain, than in the vicinity of the boundary.
This as known as the boundary layer phenomenon.

There is by now a vast amount of literature on singular
perturbation problems for ordinary differential equations,
both linear and non-linear. An extensive bibliography of this
literature is contained in Wasow [9']. In Chapter 10 of [9'j,
Wasow also presents a lucid discussion of the boundary layer
phenomenon. Moser [4'] has obtained asymptotic expansions
for eigenvalues and eigenfunctions of the perturbed problem
in the case of linear equations of even order.

There is also a considerable amount of literature on singular
perturbation problems for partial differential equations. Visik
and Lyusternik [8'] have obtained asymptotic expressions
for solutions of the perturbed problem for linear equations

(1) Numbers in brackets refer to the bibliography; primed numbers in brackets
denote references mentioned only in the introduction. The references mentioned
only in the introduction are listed separately as supplementary references after
the bibliography.
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using boundary layer techniques. [8'] also contains a sizable
bibliography.

In 1960, Huet [8] published several theorems on convergence
in singular perturbation problems for linear elliptic and para-
bolic partial differential equations. One particular feature
distinguishes this paper from those previously mentioned.
This is that convergence theorems are first proven in a Hilbert
space setting and then applied to the differential problems as
opposed to starting directly with the differential equations.
In the elliptic case, theorems on local convergence and conver-
gence of tangential derivatives at the boundary are also
proven. In [6'], Ton has extended some of the results of [8] to
nonlinear elliptic and parabolic boundary value problems.
Ton has also obtained results on singular perturbation with
application to non-linear parabolic boundary value problems
in [7'J.

The work of Huet [8] is fundamental to the considerations
in this paper even though the results of f8] are not specifically
used here.

The principal aim of the present paper is to obtain rate of
convergence estimates for solutions of singular perturbations
of linear elliptic boundary value problems. The problem can
be described as follows. Let D be a domain in R" and let £
be a positive real parameter. Consider two boundary value
problems on D,

(3) (di + ̂  = A %u = f,

where U and % are elliptic differential operators with the
order of °U greater than the order of S>. The problem is.
to determine in what sense Wg converges to u on D as.
£ ^ 0 and to estimate the rate of convergence. This problem
is investigated in the present work within the L2 theory
of elliptic partial differential problems.

To approach this problem, rate of convergence theorems:
are first proven in an abstract Hilbert space setting. A brief
sketch of the method will now be given.

Consider two Hilbert spaces V c Vo with V dense in Vo.
Let a(p, w), 6(^, w) be Hermitian bilinear (sesquilinear)
forms on V and Vo respectively such that 6(^, w) and
£a(^, w} + &(^? w) are coercive. Define the operator (Sl by
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a(^, w) •==• fc(0L^, w) and consider the spaces obtained by
quadratic interpolation between the domain of OL, provided
with the graph norm, and Vo. Denoting the domain of 0L
hy ^i the basic rate of convergence criterion is the following.
(£(5l+ I)'"1^ converges to u in Vo as £ ^ 0 with rate
o(^) if u e V^, 0 < T < 1, and rate 0(&) if u e Vi. Moreo-
ver, if the domain of €i contains the domain of the adjoint
of 0L in Vo, and u e V^ where (X^l, then (sB+I)-^
converges to u in V^ with rate o{^~^) tor all y e (0, r],

This estimates the rate of convergence in Theorem 1.4, p. 76,
Huet [8], and also provides conditions for convergence in a
stronger norm. The use of fractional powers of positive self
adjoint operators (quadratic interpolation) to estimate the
rate of convergence has some relation to work of Kato [2'],
[12], [3']. Kato uses a square root condition in his work on
asymptotic perturbation theory for eigenvalues.

In the case of the differential problem (3) observe that,
formally, Wg = (e%-1 U + I)"^. Let a(^, w) and &(^, w)
be the Hermitian bilinear forms corresponding to U and %
respectively. The rate of convergence criterion is then to be
applied by noting that £<9L + I is an extension of the Hilbert
space realization of the formal operator s^""10^ + I and
proving that the solution u of S>u == f is in V^ for some
T>0.

This investigation has been divided into six chapters.
Chapter 1 consists of preliminary material. The operator QL

is defined by a simple variant of a standard Hilbert space
framework for boundary value problems (cf. Lions [i6],
Chap. n, § 1).

The main rate of convergence theorems (theorems 2.1 and
2.3) are proven in Chapter 2. The basic setting is similar to
that used by Huet [8], Chapter 1, n. 2. The chapter concludes
with some simple examples which show that the rate of
convergence theorems are sharp.

In Chapter 3 it is proven that if CL is positive self adjoint,
then a classical asymptotic expansion can be obtained by
use of the so-called « negative norms ».

Chapter 4 deals with reformulating the results of Chapter 2
in the framework to be used in the applications to differential
problems in Chapter 6. In particular, the aforementioned
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relation between the operator (9L and the Hilbert space
realizations of the differential operators is established.

The terminology and several of the results from the theory
of Bessel potentials are used in Chapter 5 (cf. Adams, Aronszajn
and Smith [2], Aronszajn [5]). An outline of the relevant
facts about Bessel potentials is included. The interpolation
spaces by quadratic interpolation between P^(D) and L^D)
are characterized for D a Lipschitzian graph domain. In
the case of a bounded domain for which one has regularity
at the boundary for weak solutions of elliptic boundary value
problems, the spaces obtained by quadratic interpolation
between P^D) n P?(D) and P^D) are also characterized.
Some of the methods of proof are related to methods used by
Lions and Magenes [19].

In Chapter 6 the results of the preceding chapters are applied
to singular perturbations of the Dirichlet problem with homo-
geneous boundary conditions. In particular, if ^)D, u, and Ug
are smooth, the problems considered are of the form

^U+^u^/.eL^D),
^s y"-1^ /. ^Ug = —- = . • • == ——— = 0 on bD,
^n b^-1 ?

S>u=feL2{D),
^u y1-1^ /, ,-.u==^=•••==^=oon&D '

where U and % are elliptic partial differential operators^

U is of order 2m', S> is of order 2m, m' > m, and -̂ - denotes
^n

differentiation in the direction normal to ^)D. It is proven
that if D is bounded, ^)D is smooth enough that u is regular
at the boundary, and |/g — /*|o,D == o{^) as £ ^ 0 for all
T < l/4(m' — m), then |Mg — u\^ = o{^) as £ ^ 0 for all
T < l/4(m' — m) (Theorem 6.1).' If, in addition, €)D is
smooth enough that the solution ^g of (di + %)wg = f is
regular at the boundary and ^B is positive self adjoint, then
Wg -> u in P^D) for all a such that m < a < m + 1/2.
A theorem is then given in which the perturbed operator is of
the form £% + I- This theorem supplements rate of conver-
gence results of Huet [9] and Ton [22]. The chapter concludes
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with some elementary examples and a brief comment on
singular perturbations of Neumann problems.

As this paper was in the final stages of preparation, recent
results of Grisvard [7] came to the attention of the author.
Grisvard has characterized the interpolation spaces associated
with spaces of potentials satisfying quite general homogeneous
boundary conditions. These results make the methods of this
paper applicable to a much larger class of elliptic boundary
value problems.

The results of Chapter 5 were obtained independently and
characterize these spaces, in the case of homogeneous Dirichlet
boundary conditions, for a larger class of domains. In
particular, the results of Chapter 5 enable one to estimate
the rate of convergence when the domain is bounded convex
and the degenerate problem is of second order via the results
Df Kadlec [11].

This paper was prepared as the author's doctoral thesis
ut the University of Kansas. The author wishes to acknowledge
his indebtedness to Professor P. Szeptycki for his guidance in
the preparation of this paper and to Professor N. Aronszajn
for his constructive criticism of this work. The paper was
sponsored by the Office of Naval Research Contract Nonr
583(13) and the National Science Foundation Grant GP-3460.

1. Preliminaries.

Notation,
In this section some notations and results are given which

;are used in the sequel. The results are minor variants of those
given in Lions [16], pp. 9-13.

Let Vo be a complex Hilbert space with norm denoted by
j|u|o and scalar product by (u, ^)o. Let V\ be a complex
Hilbert space which is continuously contained in Vo, written

V,cVo

i.e., V\ is a vector subspace of Vo and the injection of Vi
into Vo is continuous. Further assume that Vi is dense
in Vo and let |u|i, (u, p)i denote the norm and scalar product
in Vi, respectively.
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Let 6(u, v) be a continuous Hermitian bilinear (sesquilinear)
form on Vo, i.e., 6(u, v) is a mapping of Vo X Vo into C
(the complex field) which is linear in the left hand variable
and anti-(semi, conjugate, skew) linear in the right hand
variable, with

|&(u, v)\ <; c|u|oHo? c = constant,

for all u, ^ < = V o . Prescribing fc(u, v) is equivalent to giving
an operator B e ^(Vo, Vo) (the space of continuous linear
operators of Vo into Vo) with

(1.1) fc(u, v) = (Bu, ^)o.

PROPOSITION 1.1. — Suppose in addition that

(1.2) |6(u, u)| > p|u|o, p > 0, for all ueVo.

Then:
i) the operator B is a linear homeomorphism of Vo onto Vo,
ii) for every continuous linear functional F on Vo t/ier^

exists a unique element fe Vo 5uc/i t/iat

F(u) == fc(u,/'), ueVo,

iii) for every continuous anti-linear functional G on Vo
there exists a unique element g e Vo such that

G(u)=6(g,u),ueVo.

This proposition is essentially the Lax-Milgram Lemma,
Lax and Milgram [14], p. 169. It follows from (1.1) and (1.2)
that |Bu|o>P|u|o. When (1.2) is satisfied, fc(u, v) will be
said to be ^f^coercwe.

The adjoint form to &(u, ^), fc*(u, ^), is defined by

fc*(u, v) = b{v, u) for all u, v e Vo

and is likewise a continuous Hermitian bilinear form on Vo.
One has

&*(u, v) = (B*u, ^)o

where B* is the (Hilbert space) adjoint of B. Under hypo-
thesis (1.2), |B*ujo > PHo.

Now let a(u, v) be a continuous Hermitian bilinear form
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on Vi and assume that (1.2) holds for the remainder of this
section. Denote by N the set of all u e V\ such that the
anti-linear functional

(1.3) v -> a(u, v)

is continuous on Vi in the topology induced by Vo. Then N
is a linear set and since V\ is dense in Vo, the functional
(1.3) may be extended by continuity to a continuous anti-
linear functional on Vo. Hence by Proposition 1.1, iii),

a(u, v) = b(€iu, v), CilueVo, ^eVi, u <= N.

This defines a linear operator (ft, in general unbounded, with
domain D(CX) = N and range R((9L) c Vo. The operator (fl
will be referred to as the operator in Vo associated with a(u, v)
relative to fc(u, v). The operator in Vo associated with
a(u, v) relative to (u, v)o will be denoted by A and referred
to simply as the operator in Vo associated with a(u, v). Note
that B(3L = A.

Consider the following two problems.

PROBLEM 1.1. — Given fe Vo, does there exist u e= D(CX)
such that CLu == f?

PROBLEM 1.2. — Given fe Vo, does there exist u e Vi
5McA that

(1.4) a(u, ^) == &(/*, P) /or aH p e Vi?

PROPOSITION 1.2. — Problems 1.1 and 1.2 are equivalent.

Proof. — If u satisfies (9Lu == /, then for any ^ e Vi,

a(u, (.) = b(OLu, v) = &(/•, <.).

Conversely, let u e V^ satisfy (1.4). Then the functional
v—>a(u,v) is continuous on Vi in the topology induced by Vo.
Hence, by the definition of (Sl, u e D((fl) and a(u, ?) == b{0iu, v).
Consequently, &(<9Lu, ^) === &(/*, v) for all peVi . Since Vi
is dense in Vo, it follows from (1.2) that (Slu = /*.

PROPOSITION 1.3. — Let a(u, ^) fc^ Vi-coercive, i.e.

(1.5) |a(^, ^)| > al^, a > 0, /br aM ^ <= Vi.
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Then for every fe Vo there exists a unique u e D((9L) satisfying
0iu=f.

Proof. — Given fe Vo, let B/^ g. The equation Au = g,
where A is the operator in Vo associated with a(u, ^),
is uniquely solvable (cf. [16], pp. 11-12). Hence u is the
unique solution of (Slu = B-^Au == B^g == /*. (Recall that B
is a linear homeomorphism of Vo onto Vo).

Now assume for the remainder of this section that (1.5)
holds. Then the following facts about the operator A are
given in Lions [16], p. 12. A is closed and D(A) is dense in
Vo. D(A) is also dense in Vi. The operator A* associated
with a*(u, v) == a(^, u) in Vo is the (Hilbert space) adjoint
of A and has all the properties mentioned above for A
including the unique solvability of A*u == /, fe Vo.

PROPOSITION 1.4. — The operator d in Vo associated
with a "V^-coercive form a(u, v) relative to a ^Q-coercive form
6(u, ^) has the following properties :

i) CX is closed,
ii) D(CX) is dense in Vo,
iii) D(<^t), is dense in Vi,
iv) D((Sl), provided with the graph norm

\u\^={\u\l+\0iu\l}1'2,

is a Hilbert space and 0L is a linear homeomorphism of D((9L)
(provided with this topology) onto Vo.

Proof. — i), ii), and iii) are obvious since B0L == A. iv)
follows from i), Proposition 1.3, and the closed graph theorem.

Quadratic Interpolation,
Let A be the operator in Vo associated with the Vi-coer-

cive form (u, ^)i, i.e.,

(u, ^)i == (Au, ^)o, Au e Vo, ^ e Vi.

It follows from the preceding that A is self adjoint, and that
(AP, (^)o >y|^|^ ^eD(A) , where y > 0 is such that

K>TK ^^i-
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For p real, denote by A10 the positive p111 power of A as
defined by use of the spectral theorem; A.^ is a positive
definite self adjoint operator in Vo. Furthermore, D(A1/2) = Vi
and

(u, ^)i = (A^u, A^o for all u, ^e Vi.

(cf. Kato [12], pp. 26-27).

DEFINITION 1.1. — L e t S = A^2. For 0 < T < 1, the
T111 interpolation space by quadratic interpolation between V\
and Vo, V^, is defined as the Hilbert space

V. = 0(8^
with inner product

(u, ̂  - (S^, S^)o.

Now let Hi and Ho be another couple of Hilbert spaces
with the same properties as Vi and Vo, i.e., Hi c Ho
with Hi dense in Ho, and consider the corresponding qua-
dratic interpolation spaces. Then the following theorem of
quadratic interpolation holds (cf. Lions [15], pp. 431-432
and Adams, Aronszajn and Hanna [I], App. I).

PROPOSITION 1.5. — Let T be a continuous linear mapping
of Vo into Ho with bound Mo which is also continuous from
Vi into Hi with bound Mi. Then for each T e (0,1), T is a
continuous linear mapping of V^ into H-c with bound
M^ < M^M^.

2. Singular Perturbation.
Rate of Convergence Theorems.

Let V and Vo be complex Hilbert spaces with

(2.1) V c Vo and V dense in Vo.

Denote by |^|v, (u, ^)v, Ho? and (u, ^)o the norms and inner
products in V and Vo respectively. Let a(u, ^) be a conti-
nuous Hermitian bilinear form on V and let &(u, ^) be a
continuous Hermitian bilinear form on Vo with upper bound
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c. Further assume that:

(2.2) 5(u, P) is Vo-coercive, i.e. there exists (3>0 such that

1&(^)1>M for all ^ e V o ;
and

(2.3) for 0 < £ <; £o, there exist a(e) > 0, a(e) —>- 0 as
£ ^ 0, and § > 0 such that

J£a(^ ^) + &(^, ^)| > a^)]^ + §Ho for all ^ e V.

In particular, £a(u, ^) 4- ^(^5 ^) is V-coercive for 0<£^£o .

PROPOSITION 2.1. — Assume hypotheses (2.1), (2.2), and (2.3),
and let d be the operator in Vo associated with a(u, ^) relative
to fc(u, ^). Then:

i) (Sl 15 closed,
ii) D(CX) 15 den^e in Vo,
iii) D((9L) is dense in V,
iv) for 0 < £ ̂  £o, £<Sl + I (I 15 (Ae identity map on Vo)

15 a linear homeomorphism of D(<9L), provided with the graph
norm HD(CX) = (H§ + I^^IS)^2, o^o Vo.

Proof. — Since fc(u, v) is continuous on Vo it is easily
seen that £CX 4- I is the operator in Vo associated with
£a(u, v) + b(u, v) relative to fc(u, ^). Then by Proposition
1.4, i), ii) and iii) hold with CL replaced by £(9L + I. Since
D((Sl) = D(£(9L + I) and the identity map is bounded, i), ii)
and iii) follow.

Now for v e D(<9L),

(£(9^ + ̂  ̂  + p)o < 2(£2|(9Lp[o + |^lo)
<2max(£2 , 1) I^I^B), 0 < £ < £o.

Thus £<9L + I is a continuous linear mapping of D((9L) into
Vo. By Proposition 1.3, £(9L + I is also one-to-one and onto
Vo. Hence by the closed graph theorem e£i + I has a conti-
nuous linear inverse and iv) holds.

Let Vo be the anti-dual of Vo, i.e. the Hilbert space of
continuous anti-linear functionals on Vo, with the usual
norm, ||L|| = sup{[L(p)| : peVo and |^|o ̂  1}. Let L, Lg
be given in Vo, 0 < £ ̂  £o- Denote by u the unique solution
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in Vo of

(2.4) &(u, ^) = L(^) for all ^ e Vo.

For each £ such that 0 <; £ <;; £o, ^t ^ be the unique
solution in V of

(2.5) £o(^g, ^) + fc(wg, (/) = L(^) for all v e V,

and let Ug be the unique solution in V of

(2.6) £a(ug, ̂  + 6(ug, ̂  = Lg(^) for all ^ e V.

Recall that (2.4) is uniquely solvable by Proposition 1.1, iii)
(Lax-Milgram), while (2.5) and (2.6) are uniquely solvable
by Proposition 1.1, iii), Propositions 1.2, 1.3, and the density
of V in Vo.

Denote D(dl) by Vi, H^di) by Hi, and (w, ^(0) by
(w, p)i. Then the following rate of convergence theorem
describes the behavior of Ug (and Wg) as £ ^ 0.

THEOREM 2.1. — Assume hypotheses (2.1) through (2.6).
Let a be the operator in Vo associated with a(u, ^) relative
to b(u, (^). Consider the interpolation spaces V^, 0 <^ T ̂  1,
obtained by quadratic interpolation between Vi === D(CX) and
Vo. TAen oMe /ia5:

i) if ueD((9L) ayic? ||Lg - LI| = 0(£) as £ ^ 0 , then

| Ug — u\o = 0(t) as £ ^ 0;

ii) if, for fixed re [0,1), u e Vc and ||Lg — L|| = o(£T) as
£ >!, o, ^M

I ^e — U\Q = o{^) as £ ^ 0.

Remark. — The proof of Theorem 2.1 will be carried out
in three steps. In the first step an easy reduction is performed
which estimates |ug — u|o in terms of |wg — u|o. In the
second section of the proof, |wg — u|o is estimated ((2.17)
below) by jrpg — u|o where Xs, is the solution of a problem
with a self adjoint operator ((2.8) below). The proof is then
completed in the third section where conclusion ii) is obtained
by estimating |rCg — u\o.
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Proof. — a) Elimination of Lg. Subtracting (2.5) from
(2.6) yields

£a(ug — Wg, ^) + ^(^e — ^e? ^) == (Lg — L)(^) for all ^ e= V.

In particular, letting v = Ug — Wg,

|£a(Ug — Wg, Ug — Wg)

+ 6(Ug — Wg, Ug — Wg)| < [I Lg — L|| .|Ug — Wg|o.

Thus by (2.3),

a(£)|Ug — Wg|^r + S|^£ — Wg|§ < || Lg — L|| .|Ug — Wg|o,

and so,
I ug - -wg |o< (1/8)11 L g - L U .

Hence,

(2.7) |ug - u|o < (l/S)||Lg - L|| + l^s - 4.

From the hypotheses it is now sufficient to prove that i) and ii)
hold with Ug replaced by Wg.

b) Reduction to an associated problem with a self adjoint
operator. Let A be the operator in Vo associated with (w, ?)i
and let S = A^2. Then it is easily seen that A = €^(3L + I,
where (ft* is the adjoint of (9L in Vo, and that D(S) = D(Ct).
Consider the Hermitian symmetric bilinear form (S^w, S^2^
defined on D(S1/2). Let rcg be the unique solution in
D(S1/2) of

£(S1^, S^o + (rrg, ̂  = (u, (.)o for all v e D(S^2).

Since (w, ^)o is bounded on Vo, ^g is the unique solution
in D(S) of

(2.8) sS^g + x^ = u.

According to (2.4) and (2.5),

£a(wg, P) + b(w^ v) = &(u, ^) for all ^ e V.

Then since 6(w, ^) is bounded on Vo, Wg is the unique solution
in D(CX) of

(2.9) £<Xwg + Wg = u.

l^e — ^lo w1!! now be estimated in terms of {.Tg — u|o.
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From (2.8),

(2.10) x, = (sS + I)-^, x, - u == - £S(eS + I)-1^

while from (2.9),

(2.11) W, = (£(9L + 1)- ,̂ We — U = — £(X(£a + 1)- .̂

Furthermore, (2.10) and (2.11) yield,
(2.12) w, - u = a(£(Sl + I^sS + ̂ S-^ - u).

It will now be proven that <5L{t0L + I^sS + I)S-1 is a
bounded operator on Vg with bound independant of £.

Let y e Vo. Then
(2.13) ci(£a + l)-l(£S + i^y == iffi^d + I)-1!/

+ C^CI + I)-^-^ == y - y , + (eCl + I^S-^
since S~1!/ e D(('l) and where i/e is the unique solution in
D(dl) of t0.y, + y, = y (cf. (2.9) and (2.11)). Now

ia{y,, P) + 6(i/e, P) = fc(i/, p) for all v e V
and letting p == t/e,

'"(^l1/^ + ̂ W < |£a(</o yc) 4- b(y,, t/<)|
^ 1^(2/» !/£)1 < clylolydo.

So,
(2.14) \(t0L + I)-^ = ly.lo < M\y\, for all t /eVo.

Similarly, letting CiS^y == z e Vo and letting Zg be the
unique solution in D((t) of e,€izs + Zg = z, one has

(2.15) |(£(X + Î S-̂ lo = |z.|o < (c/§)|z|o = (c/8)|aS-ii/|,
< (c/^ldlUS-^li < (c/S)|S-i||i/|o = (c/g)|y|,

where |(t| is the norm of Cl in ^(Vi, Vo) and |S-1! is the
norm of S-1 in '£(\, Vi). (2.13), (2.14), (2.15) and the
triangle inequality yield

(2.16) \0L(tOL + I)-i(eS + I)S-1! < 1 + 2(c/5)

where the operator norm is that of ^(Vg, Vo). (2.12) and
(2.16) give

(2.17) \w, - u|o < [1 + 2(c/S)]K - ujo,
the desired estimate.



BATE OF CONVERGENCE IN SINGULAR PERTURBATIONS 149

c) Completion of the proof. When u e D((t), (2.11) gives
We, — u == — t{'£.€L + I)'"1^^ and so,

(2.18) |ws — u|o < £(c/S)|au|o = 0(s) as s ^ 0
as in (2.14). Thus i) follows from (2.7) and (2.18)

Now let ueV-c for fixed re [0,1). Then letting E be the
resolution of the identity for the self adjoint operator S,
the spectral theorem for functions of a self adjoint operator
gives,

(2.19) \x, - ujo2'
=|[(£S+I)-^-I]u|o2

1- r 1 - 1 1 2
Jo ^+1 I

- 1 (E(dX)u, u)o; X + 1

=^w^{Ewufu)o
/ff'>\2--2T

•(/^•wtw^^^r°° (e^^^T 1
•),2T (.£A^______ 1

, . ' l,\ -L 1 ^-2T • /c)i J-
v' 0

(sX)2-2
(E(rfX)u, u)o.'̂ sa-t \^

^ £ Jo (eX + i)2-2'

But U6D(ST) = V^ if and only if J^\^(E(d^}u, u)o < oo,

converges monotonicallyand since for each fixed X
•' £X + 1

(sX)2-^to zero as e ^ 0, one has X^ • , ' ' A\^,-c ^ ^2T and
/ T,\2-2T (£A + i )

y^. -——' _ ^ converges in (E(c?X)u, u)o measure to zero
(eA +1)

as s ^ 0. Thus by the dominated convergence theorem,

(2.20) ^"^—^^(EW^U^^O as ^0.

(2.19) and (2.20) give
(2.21) \x, — u|2 = o{s.^) as £ ^ 0

and ii) now follows from (2.7), (2.17) and (2.21).

COROLLARY 2.1. — Assume the hypotheses of Theorem 2.1.
Let (Sl>0, i.e. (Bp, p)o > 0 for all veD{0L). Then if for
fixed T e [0, 1), u <= D^) and \\L, — L|| = o(£T) as £ ^ 0,
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one has
\u, — u\o = o(^) as £ ^ Q .

Proof. — (£<t + I)-1 is a bounded self adjoint operator
on Vo, hence £d + I and €L are self adjoint operators in
Vo. The proof now consists of applying the spectral theorem
to 0L as applied to S in part c) of the proof of Theorem 2.1.

COROLLARY 2.2. — Assume hypotheses (2.1) through (2.3).
Let 0L be one-to-one and onto Vo. Let Wg, ^ &e ̂  unique
solutions of iffiw, + Wg == u and £((9L*(9L)1/2^ + ̂  = u respec-
tively where ueVo. Then the ratio \w, — u\o : \t, — u\o is
bounded both from above and below by positive constants inde-
pendent of £ and u.

Proof. — Both (9L and ((9L*CZ)1/2 have bounded inverses
on Vo. So apply the methods used in part b) of the proof of
Theorem 2.1 twice, using (<9L*(9L)1/2 instead of S.

The last corollary shows that when CL is one-to-one and
onto Vo, the rate of convergence of w^ to u in Vo is the
same as the rate of convergence of (g to u in Vo. In turn
|(e — u|o may be estimated in terms of powers of £ by
applying the spectral theorem to (^CL)112 as applied to S
in part c) of the proof of theorem 2.1.

COROLLARY 2.3. — Assume hypotheses (2.1) through (2.3).
Let €i ;> 0 and let Wg be the unique solution of £(Xwg + Wg = u
where u e Vo. Then one has :

i) if ueD((9L), then

K — u|o = £|<^io.^(£, u)

where 0 < a(£, u) < 1 and cr(£, u) -> 1 as £ ^ 0;
ii) if for fixed T e [0,1), ueD^), then

\W^ — U\Q == ^[(a^ulo.O-^, T, U)

where 0 < a(£, T, u) < 1 anJ cr(£, T, u) — 0 05 £ ^ 0.

Proo/*. — (ft is self adjoint (cf. the proof of Corollary (2.1)).
So apply the spectral theorem to (X as applied to S in part c)
of the proof of Theorem 2.1. Note in particular that the
estimate corresponding to (2.19) gives |wg — u|o < ^l^uL
when u e D^), 0 < T < 1.
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The next theorem gives an improvement of the estimates
obtained in the proof of case ii) of Theorem 2.1.

THEOREM 2.2. — Assume the hypotheses of Theorem 2.1. Let
C = c/§. Then one has:

i) if ue D((9L) and ||Lg — L|| < K£ for 0 < £ < &o, then

l^s - 4) < [(K/S) + C|au|o]£ /or 0 < £ < £o$

ii) if for fixed T e= [0,1), u e V^, amf /or 0 < £ <; £o,
|| Ls - L|| < K^Yj^), 0 < Y](£) < 1, Y](£) -> 0 OS £ ^ 0, (/ien

for 0 < £ < £ o

|Ue - U|o < [(K/S)Y)(£) + C^C + l̂ M ,̂ T, u)]^

where 0 <; v(£, T, u) ̂  1 and v(£, T, u) -> 0 a^ £ ^ 0.

Remark. — An examination of the proof of part ii) of Theo-
rem 2.1. gives

|u, - u|o < [(K/8)ri(£) + (2C + l̂ ulo ,̂ T, u)].\

However, it is easily verified that 2C + 1 > C^C + l)1-^
So the bound obtained in Theorem 2.2 is sharper than that
obtained from the proof of Theorem 2.1 alone.

Proof. — i) follows from (2.7) and (2.18) of the proof of
Theorem 2.1. Under the hypotheses ofii), it follows from (2.7)
that

(2.22) K - 4) < (K/8)^) + K - ^lo.
The appropriate bound for |wg — u\o will now be obtained
by use of Proposition 1.5, the quadratic interpolation theorem.

First consider (£(9L + I)-1 — I as a mapping of Vi = D((9L)
into Vo. Then

1[(£(9L + I)"1 — I]u|o = K£^ + I)-^^ < £C|0Lu|o < £C|u|i

as in the derivation of (2.14). So (£<9L + I)"1 — I is continuous
from Vi into Vo with bound ^ £C.

Now consider (£<9L + I)~1 — I as a mapping of Vo into
Vo. Then

|[(£0L + I)-i - I]u|o < |(£a + I^ujo + |u|o < (C + l)|u|o
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again as in the derivation of (2.14). Thus the bound of
(£(Sl 4- I)~1 — I as an operator in Vo is <; C + 1- So by
quadratic interpolation (£<9L + I)"1 — I is a continuous
mapping of V, into Vo with bound < (sC^C + I)1-^
Hence, for u e V^,

(2.23) |^-.u[o=[[(£a+ I)-1- lJulo^C^C+l)1-^;

ii) now follows from (2.22), (2.23) and the fact that by Theorem
2.1, |we — u|o = o(^).

THEOREM 2.3. — Assume hypotheses (2.1) through (2.5.).
Let D((9L) D D(CZ*) where (ft* is the adjoint of 0L in Vo. Then
one has : if for fixed T e (0,1], u e V^, (AeM for any y ^uc/i t/ia(
0 < T < T,

|Wg — uL == O^"^) 05 £ ^ 0.

Remark. —- Theorem 2.3 will be proven by a technique
similar to that used in proving Theorem 2.1, i.e. by looking
at an associated problem with a self adjoint operator and then
employing the spectral theorem. Theorem 4.3 below give&
conditions under which the conclusion of Theorem 2.3 holds
for |ug — u[<p

Proof. — As in part fc) of the proof of Theorem 2.1, let A
be the operator in Vo associated with (w, ^)i, i.e.
(^ ^ == (Aw, ^)o for all ^eVi and let S = A^2. Letting
rpg be the unique solution of s.Sx^ -}- x^ = u, one has,

X, = (£S + I)-^, X, - U = [(£S + I)-1 -1]U=- £S(£S + I)-1^

and since Wg satisfies £<Stwg + ^s == u?

^ == (£(9L + I)-^, Wg — u = [(£0L + I)-1 — I]u
= — e0i{e0i + l)-1^

Then since S has a bounded inverse on Vo,

w, — u = (5L^OL + I)-1^ + I)S-1^ — u).

In part b) of the proof of Theorem 2.1 it was proven that

(2.24) a(£dL + I)-^ + I)S-1 e ^(Vo, Vo)
with bound < 1 + 2(c/S) (cf. (2.16)). In order to estimate
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jwg — u|y in terms of |a;e — u[y it is sufficient to prove that

(2.25) a(sa + I^eS + I)S-1 e ^(Vi, Vi)

with bound independent of £. For, if (2.25) is proven, then
it follows from (2.24) and the quadratic interpolation theorem
(Proposition 1.5) that for any y e (0,1)

^(ea + I^eS + I)S-1 e ̂ , V^)

with bound independent of e. Hence for u e Vp 0 <; y <; 1,
(2.26) |wg — u\y <; MJa;e — uL.

For this purpose, let y e Vi = D((9L) and Sy = p. Then,
S-1!/ = S-2? -= ((X*a + I)-^. Hence S-1^ e D(a*Ct) which
implies that etS-^e D(CX*). By hypothesis D(Ct) 3 D(c1*),
so (9LS-1!/ e D(a). Therefore,

^(sa + I)-i(eS + I)S-1!/
== £a(£ci + l)-^^ + (ea + i)-^^-^
= [I - (sCX + I)-1]^ + (ea + Î WS-1!/

and hence (2.14) yields,
(2.27) la^a + l)-^^ + l)S-^l,

< l^ylo + (c/§)|ay|, + (c/S)|^s-^]o
< [l + (c/§)]|y|i + (c/S)|as-iyl,.

Now, clS~1 is a closed operator on V\, for, suppose {!/„}
is a sequence of elements of Vi such that y,, —>-1/ in V^
and cXS-^^z in Vi. Then y e D(OS-1) and since
CXe^V,, Vo) and S-^^Vo, Vi), CXS-1^ ̂  OS-^ m Vo.
Necessarily (tS"1!/ == z since Vi c Vo. So 0iS~1 is a closed
operator on V\ and the closed graph theorem gives
dS^e^Vi, Vi). Hence,

(2.28) |a2(£a + I)-i(eS + I)S-i</|o < M|y|i
for all y e V^.

Since Hi == |p|o + |̂ §, (2.24) and (2.27) give
ia(£dl + I)-i(eS + I)S-12/|l < M'lt/li for all y e V^,

which proves (2.25) and thus (2.26).
Now let Te(0,l], M eV^= D(S T ) , and ye(0 ,T] . By (2.26)

it remains to show that [a-s — u^ = o(£(T-T)) as £ ^ 0. Let E
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be the resolution of the identity for the self adjoint operator S.
Then

(2.29) \x, - u|?
= |ST[(eS + I)-1 - Wo-r^b^i-1]2^1^0

/^00 c2')i2+2Y

-Xc^i^""^= ••''-''r '̂-t.i'̂ ^-tAT '̂'1'̂ '-'- •>)-
Since 0 < y < T < 1 implies that 0 > y — T > — 1, (2.29)
and an application of the dominated convergence theorem
as in part c) of the proof of Theorem 2.1 yield

(2.30) \x, - u|2 = o{s.2^) as £ ^ 0.

The theorem now follows from (2.26) and (2.30).

THEOREM 2.4. — Assume hypotheses (2.1) through (2.5). Let
€i be a normal operator in Vo and let C = c/S. TAen on^ /ia$:
if for fixed T e (0,1], u e V^, (Aen /or 0 < £ <; £o and
0 < T < T,

|̂  - ^|^ ̂  2<^)(1 4- 2C)|U|,£<T-^)(D(£, T - Y, U)

wAere 0 < co(£, T —- y, u) < 1 anrf <o(£, T — y, u) -> 0 6M? £ ^ 0.

Proof. — Referring to the proof of Theorem 2.3,

^ - u = (9L(£(9L + I)-1(£S + ^S-^ - u)

where S == (<9L*<9L + I)^2 and x, satisfies eSx, + ^g == u.
Recall (2.24), i.e. that
a(£(9L + I)-i(£S + I)S-1 e^(Vo, Vo) with bound < 1 + 2C.

Since Oi is normal, D((9L) = D(B*), and so (2.27) of the
proof of Theorem 2.3 holds, i.e. for y e Vi = D((9L),

]0L2(,a + i)-i(£S + ^s-^lo < (i + C)|y|i + Clas-^ii.
Furthermore, (9L(5L*(5l = (9L*(St2, which implies that

as-^ == s^ay,
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and since \y\^ = |Sy|o,

|<a^a + i)-i(es + i)S-ii/| < (i + C)Mi
+ C|ay|, < (i + 2C)|z/|x.

But |(^ = |p|g + |<t^ and so,

a^d + i)-i(es + i)S-16 ̂ (Vi, Vi)
with bound < 21/2(l + 2C).
Thus by the quadratic interpolation theorem (Proposition 1.5)
it follows that for any y e (0,1),

<9L(£dl + I^eS + I)S-1 e ^(V^, V^)

with bound < 2^(1 + 2C).
Hence for u e V.,, 0 ̂  y -^ 1,

K - u\^ < 2T/»(1 + 2C)|a;, - u|̂ .

The theorem now follows from (2.29) of the proof of Theorem
2.3.

Example 2.1. — Let Vo = P and let V be the Hilbert
space of all sequences v = {v,} of complex numbers such

00 00

that S ^"Kl2 < °o with {w, ?)v = 2 ^"^n^n where w = {(D,}.
n=l n=l a>

Let a(w, P) = (w, c)v and 6(w, p) = (w, ?)„ == ^ ^n- Then
n=l

(St == A is the operator given by Civ = {M"V,J on
D(B) = { p = {vj : {n»vj e P},

00

i.e. ^eD(dl) if and only if ^ ^"l^l2 < oo. Now, for fixed
T e [0,1], let u = {V be such that u e 0(0^) but u d D((9LP)
for any (3 > T (e.g. u = {l/n^1}). The solution Wg of
£<9LWg+We=u is given by Wg == {^/(s^ + 1)}. Let ye[0 ,T] ,
a > T — y, and consider

1 1 °° p2^2"^2^^la^.-^^^sjs.!.^-^.

Let £^ == l/m771 and assume that this series, with £ replaced
by £„, is bounded, by M say, as m -> oo. Then from the
m^ term one has

|^|2^2(a+T)^/4 ̂  M.
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Multiplying by m^"01"^", one gets

lEJW^4-^ ̂  4Mm<T-a-^m

so

5 m^+ l̂̂  ̂  4M S m^-^ < oo.
m=i m=l

But this is a contradiction since T + a + T > 2r and by
00

hypothesis u ̂  D^-^+T)^ i.e. S ̂ ^^ml2 == °o. Thus
m=l

for every a > T — "y, (l^^lCSt^Wg — u)|o is unbounded as
£ ^ 0. Since l^^jo and [S^lo === |^L are equivalent norms on
D((SU) = D(S^) = VY this shows that, under the assumed
hypotheses, the powers of £ cannot be improved on in the
preceding theorems and corollaries.

The next two examples show that if 0 < ? ̂  1, u e V ^
for all T < P, but u « Vp, then it may or may not be true
that |wg— u|-y = 0(£^) where O^y^T and £dlwg + ^e == u.

Example 2.2. — Let V, Vo and (9L be the same as in
Example 2.1. Choices of u and ?, 0 < ^ ̂  1, will be made
such that ueD^) for all T < (3, u^D^), and for all
ye [0, r], (l/^^lwg — u\^ is unbounded as £ ^ 0 where
£(9Lwe + Wg == u. Let u == {yi/n^2}. Then

]^,,]2_ y^2^2 J < 0 0 , T < 1 / 2
lc 'l0"^"^ ;-00,T>1/2.

So let P = 1/2 and 0 < y < 1/2. Then

1 ,—— M2 _ 1 ^ ^2 ^W _ ^ , £l4-2T^l+2^
^l^1^ - ^10 -£l-2T^^(^n + 1)2-^ (£^ + 1)2 -

For £„» = l/m7", the m111 term of this series is m2^. Thus
(l/£d-2T)/2)]^ _ u [ ^ is unbounded as £ ^ 0 .

Example 2.3. — Let Vo = I2 and let V be the Hilbert
space of all sequences v = {v^} of complex numbers such

00 '30

that ^ ^Kl2 < °° ^h (^9 ^)v = 5 ^Vn where w == {(On}.
n=l ra=l

Let a(w, ^) == (w, ^)v and fc(w, ^) == (w, ^)o. Then Cl is the
operator given by Civ == {nv^} on D((9L) = { p = = {^^} :
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00

{nvJeP | , i.e. p6D(Ct) ifandonlyif 2 ^H2 < oo. Choices
n=l

of u and (3, 0 < P < 1, will be made such that u «s D^)
for all T < P, u < D(0LP), and for all y e [0, r],

\W, - U\^ == 0(£?-T)

where e<twe + We == u. Let u = {1/n}. Then

l ^uP-V^ j < o o , T < l / 2
l"ulo-„l»2 i==0),T<l/2.

So let P = 1/2 and 0 < y < 1/2. Then

|^.-u)|§=|^^.

Now, for Y = 0,

v—^—< r £2 ^
^(en+l)2^^ (^+1)2

while for 0 <C y < 1/2 an elementary calculus argument
shows that for 0 <C e <^ y(l — y)"1?

- e2^^ / ^ r ° ° t^ ,
^(mTT^'Jx (^TI)2^-

Thus for 0 < Y < 1/2 and 0 < £ < y(l - y)-1,
/i'» eS-r^T]a^.-u)|S<2^ ^-^.d..

Under the transformation ix = y the right hand side becomes

^-.f^^.
Hence K - ^IT = 0(£(1-2T)/2) as £ ^ °-

3. An Asymptotic Expansion.

Assume hypotheses (2.1) through (2.3). Let CX be the
operator in Vo associated with a(u, ^) relative to b(u, ^)
and denote the Hilbert space D((9L), provided with the graph
norm (H§ + la^)^2, by Vi. Then (u, ^)i = (Su, Sv)o
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where S = (a*(9L + I)1/2. For any T e [ 0 , o o ) let \\ be the
Hilbert space D(ST) with inner product (u, P)^ = (S'^u, S^o.
For ^ e Vo and T e [0, oo) let

H^ = sup {|(^, w)o| : w e V^ and |w|^ < 1}.

Then |p|_^ = IS-'^lo. Let V_c be the completion of Vo
in the norm H-r. This defines the Hilbert space V^ for all
real T and for cr < T, V\ c V<y with V^ dense in V<j. Fur-
thermore, employing extension by continuity, for all real
y, T, S^ is an isometric isomorphism of V^ onto V^_y.

Now assume

(3.1) ((9L^, ^)o > 0 for all v e Vi = D((Sl).

Then as noted in the proof of Corollary 2.1, (9L is a self adjoint
operator in Vo and so S == (0L2 + I)^2. It now follows
that CL can also be extended by continuity so that for any
real T, (9L is a continuous linear mapping of V^ into V^_i.
Furthermore, for any o- ̂ . 0 and any real y, T,

(3.2) SW7 = (91^

is a continuous linear mapping of V^ into V^_(y_^.
The « negative norms » defined above will now be used to

obtain an asymptotic expansion for Wg, the solution of (2.5),
in terms of u, the solution of (2.4). Extension by continuity
will be understood wherever necessary in the statement and
proof of Theorem 3.1.

THEOREM 3.1. — Assume hypotheses (2.1) through (2.5) and
(3.1). Let n be a non-negative integer and let u e V^ where
0 < T < n. Then for 0 < £ < £o,

n

w, — S (- l)'£Wu = o(£») as £ ^ 0.
fc=o T—n

Proof. — For yi == 0, (2.11) gives

^ == u — £a(£<aL + I)-̂ .
If for n = m,

m

we == s (— i^sWu + (— i)^^^1^^ + i)-1 '̂"^
fc=0
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then

w, — S (— l^W^
=°(_ l^+i^+i^el + I^a^u
= (_ i)^+i^+i(^ ̂  i __ £a)(£<si + I^OL^U
= (— l)^^^^^^ + (— i)m^m+2(5L^0L-{- I^CX^u.

Thus for any non-negative integer n,

Ws == S (— I^SW^ + (— l)"4-1^1^^ + ^-Wu,
fc=0

Since uesV^, (3.2) gives S^^^eVo. So, letting
z == S^^"^ and letting Zg be the unique solution in
V\ == D((9L) of £(9Lj3g + ^ := z? conclusion ii) of Theorem 2.1
yields

|z, — z\e == |£a(£(fl + I)-^^ = o(l) as £ ^ 0.
Thus

\w, — S (— l)^^^!^^ = £n4-l|ST-raa(£a + l)-Wu|o
=== £»|£a(£<9L + ^-^-Wulo
= o(£") as £ ^ 0.

Example 3.1. — Let V, Vo and €L be as in Example 2.1.
Then for any real T, V-c = {p == {vj : {yi^vj e ^2}? 1^. ^ e V^

30

if and only if S ^"IVnl2 < °o. The same method as employed
n==l

in Example 2.1 shows that the estimate obtained in Theorem
3.1 is sharp.

4. Hilbert Space Framework for Singular Perturbation
of Elliptic Boundary Value Problems.

Let V, Vo and H be Hilbert spaces with

(4.1) V c Vo c H, V dense in Vo, and V dense in H.

Denote the norms and inner products in V and Vo as before
and let |^|H) (^5 w)n be the norm and inner product in H
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respectively. As previously let o(p, w) be a continuous Her-
mitian bilinear form on V and let &(?, w) be a continuous
Hermitian bilinear form on Vo with upper bound c. Further
assume the coerciveness inequalities (2.2) and (2.3), i.e. there
exists (3 > 0 such that |&(P, v}\ > [3|̂  for all ^e Vo, and
for 0 <; £ <; £o there exist a(e) > 0, a(e) -> 0 as £ ^ 0,
and S > 0 such that

|£O(P, P) + b{^ P)| > a^l^y + M

for all ^ <= V, respectively.
For /'e H, the anti-linear functional ^ — > ( / , ^ ) H ? ^ ^ H , is

continuous from H to C and thus its restriction to Vo
is in V^. So let /, /g be given in H, 0 <; s <; £o. Let u be
the unique solution in Vo of

(4.2) &(u, ̂  == (/•, P)H tor all ^eVo

and for each £ e (0, £o], let Mg be the unique solution in V
of

(4.3) £a(ue, P) + 6(ug, ^) = (/g, ^)n for all P e V.

Theorem 2.1 will now be reformulated in the present context.

THEOREM 4.1. — Assume hypotheses (4.1) through (4.3), (2.2)
and (2.3). Let Ct be the operator in Vo associated with a(^», w)
relative to b(^y w}. Consider the interpolation spaces V^,
0 ̂  T <^ 1, obtained by quadratic interpolation between
Vi == D((9L) and Vo. TAen OTZ^ has:

i) if u e= D((9L) and ]/, — /'IH == 0(£) as t \ 0, then

i^e — ^lo ::== 0(£) 05 £ ^ 0;

ii) i/*, for fixed T e [0,1), u e= V^ and |/g — /'IH :=== o(£T) 05
£ ^ 0, (Aen

l^e — ^lo := 0(£T) a5 £ ^ 0.

Proof. — It is sufficient to carry out the reduction corres-
ponding to part o) of the proof of Theorem 2.1. The rest of
the proof then follows word for word as in parts b) and c)
of the proof of Theorem 2.1. So let L(^) === (/, ^)n for all
9 es H and Lg(^) = (/g, ^)n for all v e H. Then the restric-
tions of L and Lg to Vo are in Vo. By (4.1) there exists
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K > 0 such that |(/|H < K|(/|o for all v e Vo, and Vo is
dense in H. Thus for the norm of L( — L in Vo one has

||L. - L|| == sup{|(L, - L)((.)| : v e Vo and Ho < 1}
^ K sup{|(U - L)(P)| : P e Vo and HH < 1}
= m - /"in.

Therefore, letting Wg be the unique solution in V of
£a(wg, ̂  + 6(^g, ^) = (A ^)H = L(^) for all ^e V, (2.7) gives,

K - 4) < (K/8)|/g - /In + K - 4).

The theorem follows.
It is now obvious that Theorem 2.2 can also be reformulated

in the present context. One merely replaces ||Lg — L|[ by
I/E — f\n and 1/S by K/S in the statement of Theorem 2.2.

The elliptic boundary value problems to be considered in
Chapter 6 will be of the form given by (4.2) and (4.3). To
apply the results of Chapters 2 and 3 to these problems it is
necessary to relate the operator equation in H corresponding
to (4.3) to the operator equation £(Stwg + Wg == u in Vo. The
operator forms of equations (4.2) and (4.3) will now be consi-
dered.

So assume hypotheses (4.1), (2.2) and (2.3). Let Ag be the
operator in H associated with &a(^, w) + 6(^, w) and let %
be the operator in H associated with &(?, w). Then, given
/*e H, there exists a unique u e Vo such that

(4.4) fc(u, ^) = (^Bu, ^)H - (A ^)n tor all peVo,

and for 0 <; £ <^ £o there exists a unique Wg e V such that

(4.5) £a(wg, v) + fc(wg, P) === (AgWg, (^H == (/, ^)H

for all v e V. Clearly, if the anti-linear functional
v —> £a(w, y} + b(w, v} is continuous on V in the topology
induced by H it is also continuous on V in the topology
induced by Vo. Then since by Proposition 1.4, iv), % has an
inverse on H,

£a(wg, v} + 6(wg, ^) == (AgWg, ^)H == (/, ^)n ̂  ^(^^AgWg, ^)
== b(u, P) = &((£(9L + I)̂ g, P)

for all v e V, where <9L is the operator in Vo associated with
6
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a(P, w} relative to 6(^, w). Hence for each £ e (0, £o],

(4.6) ^Ag c £<St + I,

i.e., ^"^Ag is a restriction of £0L + I.
The relation (4.6) holds even though D^^Ag) = D(Ag)

may depend on £ while D(£(SI + I) = D((9L) is independent
of £. In the applications to differential problems to be consi-
dered in Chapter 6, it will be easier to determine Ag and ^
than to determine 0L. The following lemma will be helpful
in the determination of D((9L).

LEMMA 4.1. — For any £ e (0, £o], D(Ag) is dense
in D((St), where D((St) is provided with the graph norm,
|̂ |, = (|^g + |(9Lp|§) .̂

Proof. — Let £ e (0, £o]. By the proof of Proposition 2.1,
iv) and a consequence of the closed graph theorem,
{Ml + Wl)112 and (H§ + |(£(9L + I)^2 are equivalent
norms on D((Sl). The proof will be carried out with the latter
norm.

Let v e D((9L) and let g be the unique element of Vo
such that (£<^+ 1)^ = g. Let {gn} be a sequence of elements
of D(%) for which \gn — g\o —> 0 as n —> co. Such a
sequence exists according to Proposition 1.4, iii). For each
n let ^ be the unique element of D(Ag) such that
^B-lAg^ = g^ (cf. Proposition 1.4, iv)). (s.0L + I)-1 is a
continuous operator on Vo and so by (4.6), (S^Ag)"1 = Ag"^
is continuous on its domain in the norm of Vo. Therefore,

^ = Ag^n = (£(9L + I)-lgn -> (^ + 1)-^ = ^

in Vo as n—><x) and

^B^Ag^ - (£B + I)^ == gn -> g == (S<9L + 1)^

in Vo as n -> oo.
Hence,

(K - ^1§ + I^A^n - (e<9L + I)^!^^2

-d^-^+K^+^^-^l^-^O as n-^oo,

the desired conclusion.
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In order to apply Theorem 2.3 to differential problems, cri-
teria will be needed to establish the hypothesis D((9L) 3 D((9L*).
In the present work this will be accomplished by examining
the adjoint problems to (4.4) and (4.5) (cf. (4.10) and (4.11)
below).

So consider the adjoint forms to a(^, w) and b(v, w), i.e.,
the Hermitian bilinear forms ^*(^? w) = a(w, v) and
fc*(p, w) = fc(w, "̂). Then |fc*(^ w)| == |&(P, w)| for all
^, w e Vo, so 6*(^, w) has upper bound c and fc*(^, ^)
satisfies (2.2). Thus by Proposition 1.1, iii) one can define
OJ as the operator in Vo associated with a*(^, w} relative
to fc*(^, w), i.e.,

a*((., w) = &*(a'^, w), weV,

with D((9L') == {^ e V : w -> a*(^, w} is continuous on V in
the topology induced by Vo}. Thensince a*(^, w) is conti-
nuous on V and by (2.3), for 0 < £ <; £o,

|ea*(p, ̂  + 6*(^, P)| > ̂ E)!?]^ + §|^|g

tor all P e V, one obtains the following proposition by the
same proof as used for Proposition 2.1.

PROPOSITION 4.1. — Assume hypotheses (2.1), (2.2) and (2.3),
and let CL' be the operator in Vo associated with a*(p, w)
relative to fc*(^, w). Then:

i) CL' is closed^
ii) D((Sl') 15 deM$e in Vo,
iii) D((9L') 15 dense in V,
iv) /or 0 < £ <^ £o? £(^L/ + I l5 a linear homeomorphism of

D((9L/), provided with the graph norm Hi)(<a/) = (H§ + I^'^IS)1^?
onto Vo.

Now let B be the operator in Vo associated with &(?, w).
Then by Proposition 1.1, i) B is a linear homeormorphism
of Vo onto Vo. Furthermore the operator B* in Vo asso-
ciated with fe*(^, w) is the adjoint of B in Vo and is also
a linear homeomorphism of Vo onto Vo. Then for pe D((St)
and w € D(B'),

((̂ , B*w)o == (B(9Lp, w)o == b{0L^ w} = a(p, w),
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and,
(BWw, P)o == &*((9L'w, ^)o = a*(w, ^) = a(^ w).

Thus (0L^, B*w)o = (^, BWw)o and letting w == B*-̂  one
has that for peD((9L) and z e D^'B^1),

(4.7) (<^, z)o == (P, BWB*^z)o.

PROPOSITION 4.2. ~ a* == BWB*-1.

Proof. — Let w e D((Sl*). Then the functional v -> (<$LP, w)o
is continuous on D((9L) in the topology induced by Vo, and
((Sip, w)o == (^, (St*w)o. Let £ e (0, £o] and let z be the unique
solution in D((9L'B*-1) of

B*(£(SI' + ^B*-̂  = (£B*a'B*-1 + I)z = (£<9L* + I)w.

Then by (4.7), for ^eD((9L),

(^, (£(Sl* + I)^)o = (P, (£BWB*^ + I)^)o == ((e^ + I)^,^)o.

Since £<9L + I maps D((9L) onto Vo, z == w, and since D((9L)
is dense in Vo, (£(9.* + I)w = (£B*B'B*-1 + I)w, which
implies that (9L*w == B*(9L'B*-1 w. Thus B*a'B*-1 D <9L* and
since (4.7) clearly implies the reverse inclusion, the proposi-
tion follows.

From Proposition 4.2. it follows that

(4.8) (ft' = B^WB*.

Note that it (2.2) is strengthened to

(4.9) b(^ ^ > i3H§ for all v e Vo, ? > 0,

then fc(^, w) is an equivalent inner product to (^, w\ on Vo
and dt' is the adjoint of 0L as an operator on VQ with
&(c, w) as inner product. It will now be proven that €L9

satisfies relations corresponding to (4.6) and Lemma 4.1.
Assume hypotheses (4.1), (2.2) and (2.3). Let A^ be the

operator in H associated with £a*(^, w) + ^*(^? w} ^d let
%* be the operator in H associated with 6*(^, w). Then,
as noted in Chapter 1, St* is the adjoint of % in H and for
0 << £ ̂  £o, A^ is the adjoint of Ag in H. Furthermore,
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given fe H, there exists a unique ze Vo such that

(4.10) 6*(z, ^ = (^, <.)H == (/; ^)H tor all (. e Vo,

and for 0 < £ <^ £o there exists a unique Zg e V such that

(4.11) £a*(z,, (.) + &*(^ ^) = (A:z,, p)n = (A ^)H

for all v e V. Then by the method used to derive (4.6), one
has for £ e (0, £o]

(4.12) ar^A^eX' + I.

Also, the argument used to obtain Lemma 4.1 yields the
following lemma.

Lemma 4.2. For any £ e (0, £o], D(A^) is dense in
D((9L') where D(dl') is provided with the graph norm,
l^kao^d^+l^^l^2.

In view of (4.12) and Lemma 4.2 it would be convenient to
replace the hypothesis D(dl) D 0(̂ 1*) in Theorem 2.3 by a
hypothesis relating D(dl) and D(<9L') in order to apply the
theorem to differential problems. This is readily accomplished
if one assumes (4.9) in place of (2.2) for then <9L' is the adjoint
of €L in Vo with inner product 6(^, w).

So assume (4.9) for the remainder of this chapter and let

(4.13) [^ w\ = b(^ ^),Mo = \/b(^) for ^ w e V o .

Then M < M§ < c|^|§ for all ^eVo and, letting
Mi = (M§ + [^W12 tor ^e Vi == D(0L) an application of
Proposition 1.5 to the identity mapping yields

M<M^cH2,
for the corresponding interpolation norms on V^, 0 <; T ̂  1.
Furthermore (2.3) implies

(4.14) for 0 < £ ̂  £o, there exist a(£) > 0, a(?) -> 0, as
£ ^ 0, and a > 0 such that

]£a(^ ^ + [^ ^]ol > a^H^ + ^[^]§ tor all v e V.

Now the method of proof used to obtain Theorem 2.3 gives
the following theorem.
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THEOREM 4.2. — Assume hypotheses (2.1), (4.9), (4.14), (2.4)
and (2.5). Let D((9L) 3 D((9L') one? suppose that for some T e (0,1],
u e V^. Then for any y e= (0, r],

[Wg — u]^ == o(£T-T) 05 £ ^ 0.

It is also obvious that if one assumes that dU9L' = d/(9L,
then an estimate corresponding to Theorem 2.4 is obtained.
A theorem corresponding to Theorems 2.3 and 2.4 will now be
proven for the rate of convergence of Ug, the solution of (2.6),
to u, the solution of (2.4).

THEOREM 4.3. — Assume hypotheses (2.1), (4.9), (4.14) and
(2.4) through (2.6). Assume that a(^y w) is Hermitian symmetric
so that CL === 0L\ Further suppose that for fixed T e (0,1] and
y e (0, r], L and Lg for £ e (0, £o] are extendable by continuity
to V_T; and ||Lg — L|l_^ = o(^~^) as £ ^ 0 where the norm is
that of V * ) . Then ueV-c and

[Ug — uL == 0(6'^) 05 £ ^ 0.

Proof. — Since L is extendable by continuity to V_^,
it follows from (2.4), (4.9), and the procedure used by Lax [13],
p. 623, that u e V^. Similarly, letting gg be the unique solution
in Vo of

(4.15) &(gg, ^ = Lg(^) for all ^eVo,

gg^V,. Now (2.5), (2.6) and (4.15) yield

(4.16) £a(ug — Wg, ^) + b{u,, — Wg, ^) == 6(gg — u, ^)

for all v e V, and so

(4.17) (£LZ + I)(ug - ̂ g) == gg - u.

Note that since gg, u e V^, Ug, Wg e Vi^.
Now let r be the operator in Vo associated with [(^, w]i

relative to [^, w]o, i.e. [IV, w]o == [^, w]i, weVi . Then
r == (Stdl' + I == 0L2 + I and, letting T be the positive square
root of r (relative to [^, w]o), one has [^L == [T^^]o for
v e V... Furthermore, since gg, u e V^, Ug, Wg e V^^, and
Y <; T, (4.17) implies

(4.18) (£(9L + I)TT(ug - ̂ g) = TT^gg ~ u).
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Hence, by (4.16) and (4.18),

(4.19) £O(TT(U, - w,), ^ + 6(TT(u, - w,), P)
== &(TT(g, — u,) (.) for all (. e V.

Letting v = T^(^ - w,), (4.14) and (4.19) give,

a(£)|TT(u, - 01^ + pi[TT(u, - ̂ )]§
<[T^--u)]o.[TT(u,-^)]o.

Thus, [ug — w^ < (l/a)[gg — u]^, and so,

[Ue - U]^ < (l/^)[g£ - U]^ + [W, - U\.

Now (cf. [13], p. 623),

[^ — ^T == ^Pn^ge — u? ^)1 : ^e ̂  and [̂  < I j
= sup||(L, - L)(^)| : ̂  Vo and [̂  < I j
== o(£T~^) as s \ 0

by hypothesis. The theorem now follows by estimating
[wg — u]^ in the same fashion as |wg — u^ was estimated
in the proof of Theorem 2.3, using T in place of S.

It is now apparent that under the hypotheses of Theorem
4.3 one may obtain an explicit estimate for [ug — uL analo-
gous to the evaluations obtained in Theorems 2.2 and 2.4.
It is also obvious that if one assumes (4.9) and that a(^, v) ,> 0
for ^ e V, Theorem 3.1 follows by using the norms [ .̂
A reformulation of Theorem 4.3 will now be proven in the
context of hypotheses (4.1) through (4.3). Again, it is possible
to give an explicit estimate in this theorem.

THEOREM 4.4. — Assume hypotheses (4.1) through (4.3),
(4.9), and (4.14). Further assume that a((^, w) is Hermitian
symmetric and that for fixed T e (0,1] and v e (0, r], V_-c c H
and |/g — /*|H == 0(6^') as £ ^ 0. Then u e V-c and

[ug — u]^ = o^^) as £ ^ 0.

Proof. — Let L(^) == (/; ^)n for all ^ e H and Lg(p) === (/g, p)n
for all P e H. Then the restrictions of L and Lg to V_^
are in V*^. Moreover there exists M > 0 such that
HH ̂  M[^|_Y for all ^6 V_Y and V_^ is dense in H. Thus
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for the norm of Lg — L in V* one has

|| L, ~ L||_^ = sup{|(L, - L)(^)| : v 6 V_^ and H^ < 1}
< M sup{|(Lg - L)(P)| : ^e V_^ and HH < 1}
- M|/, - ̂ |H.

The theorem now follows from Theorem 4.3.

5. Quadratic Interpolation Theorems.

In order to apply the results of the preceding chapters to
singular perturbations of elliptic boundary value problems,
it is necessary to know when the solution of degenerate problem
is in a space obtained by quadratic interpolation from the
perturbed problem. It is thus essential to have concrete
characterizations of the interpolation spaces by quadratic
interpolation between spaces of Bessel potentials satisfying
homogeneous boundary conditions. Such a characterization
will be obtained in the present chapter for the spaces appro-
priate to the Dirichlet problem with homogeneous boundary
data.

The results of this chapter supplement the p == 2 case of
some theorems of Lions and Magenes [19], [20]. The termino-
logy and a number of the results of Aronszajn and Smith [5],
[6], Adams, Aronszajn and Smith [2], and Adams, Aronszajn
and Hanna [1] will be used. For the sake of completeness
some of the relevant definitions and theorems will now be
recalled.

The Bessel kernel of order a > 0 on R" is the function
given by

G^x) = GW = ̂ -^r(«/2) ̂ -^(N)!̂ 01-'0'2

where Ky is the modified Bessel function of the third kind.
For 0 < a < 1, let

— 2-2a+l '̂'+2)/2
L(n, a) - ̂  _^ ̂ ^ _^_ ̂ ^ ̂ •

Now let D be a domain in R" and let u: R" —> C be in
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C^D). The standard a-norm over D, |u|a,D, is defined as
follows,

KD == /Ju(^)|2 dx,
and for 0 < a < 1,

MS.D = M§.D

+ r7na^—^ f f ̂ t^a^ 1^) - ̂ l2 ̂  <^L(n, a)br2»+2aW JDJD |̂  — yl^201

For arbitrary a ̂  0, let m == [a] be the greatest integer
<^ a and ? == a — m. Then

KD== S (^) S |D.u|pV
A=o \ n- / |i|0

The space Pa(D) is the perfect functional completion in the
sense of Aronszajn and Smith [5] of the functions in C°°(D)
for which |u|a,D < oo. For D = R", P^D) is denoted simply
by P01 and \u\^n by ||u|[a. Henceforth, f stands for L^
L2 for L^R"), etc. Pa(D) is defined as the space of all
restrictions to D of functions in P01 with norm

|H^D==inf||u||a,

the infimum being taken over all u e P01 such that u = u
except on a subset of D of2a-capacity 0. Pa(D) is the perfect
functional completion of the class of restrictions to D of
functions in Co°.

Throughout the rest of this paper it will (at least) be assumed,
unless explicit mention is made to the contrary, that

(5.1) D is a Lipschitzian graph (LG) domain in R"

(cf. [2], §11). For n = 1 it is understood that a LG domain
is simply an open interval. For LG domains P^D) = P^D)
with equivalent norms (cf. [2], § 7 and § 11). It should be
noted that P^D) is the class of corrections (cf. [2], § 0) of
functions in the more familiar class W^'^D) (cf. Lions and
Magenes [18], n. 2).

For a > 0 and ueP^D), let

JO.D(U)= S f^iU{x)Mx)^^ dx
lil^a* l/
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where a* is the greatest integer < a and, denoting the
exterior of D by Ext D, r(x) = dist {x, Ext D). For a == 0,
let Jo,n(u) = 0. The present J<x,D(^) was denoted by
J<x,D,ExtD(^) in [2], § 9. The more explicit notation will not
be needed in the present work.

Recall now that a LG domain admits a simultaneous exten-
sion mapping (cf. [2 ], § 11 or Aronszajn [4], § 5). From this
result it follows that (cf. [I], App. I) for 0 < T < 1, the T111

interpolation space by quadratic interpolation between P^D)
and PP(D) is P^-^+P^D) with an equivalent norm. Since
the spaces P^D) are not exactly subspaces of L.2(D), one
must apply the procedure given in [I], App. I to recover the
proper class of exceptional sets.

Now, denote the closure of Co°(D) in P^D) by PS(D).
Since the identity mapping is bounded from PS(D) into
P^D), it is apparent from the above considerations and
Proposition 1.5 that the T111 interpolation space by quadratic
interpolation between P(?(D) and P^(D) can be realized as a
(not necessarily closed) subspace of P^-^-H^D). A theorem
will now be proven characterizing the interpolation spaces
V^, 0 ̂  T ̂  1, obtained by quadratic interpolation between
V\ == P^D), m a positive integer, and Vo == Pg(D) == L^D).
The theorem refines the p = 2 case of a theorem of Lions
and Magenes [19], p. 322.

THEOREM 5.1. — Assume that D satisfies (5.1). Let m be a
v

positive integer, Vi = P?(D), and Vo = L^D). Furthermore,
let Eo : L^D) -> L2 be extension by 0, i.e.

T? I \ ^(^O? xe D

^^^JeR^D.

Denote the extension constant F[0, m] of D (cf. [2], § 7 and
§ 11) by K. Then:

i) for 0 < T < 1, u €E Y, if and only if u e P^D) and
EoUeP^;

ii) for 0 ̂  T ̂  1, u e V-c if and only if u e P^(D) and
Jmr,D(u) < 00 ;
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iii) (1/2) [K^IU^ + CJ^D(U)] < |u|2
< (1 + KTO1 + 2n(l - P)]|U|L,D + 2n(l - P)J^D(u)}

where (3 = mr — [m^] an(^ C depends only on n, [mr] and
D, and u e V^.

Proof. — i) Necessity. Eo : L2(D) —> L2 is continuous with
bound 1. Since m is a positive integer, it is apparent, from
the definition of the standard m-norm and the density of
Co°(D) in PS'(D), that Eo maps P^D) into P7" continu-
ously with bound 1. Moreover, the T111 interpolation space
by quadratic interpolation between P"1 and L2 is P^ with
the same norm (cf. [I], App. I or Lions and Magenes [i7],
pp. 300-301). Thus by quadratic interpolation (Proposition 1.5),
Eo is continuous from V^ into P^ with bound <; 1, i.e.
u e VT;, implies that EQU e P^ and

(5.2) ||Eou|L,<|u|,.

Now let I be the identity mapping on L^D). Then
I: I^(D) -> L^D) is continuous with bound 1 and I:
P^(D) -> P^D) is continuous with bound 1. As noted pre-
viously the T111 interpolation space by quadratic interpolation
between P^D) and IJ^D) is P^D) with an equivalent
norm. Furthermore (cf. [I], App. I), K'^IUI^D <; the T111

interpolated norm of u between Pm{D) and L^D) ̂  K[u|^^.
By quadratic interpolation I is continuous from V^ into
P^D) with bound < 1. So, u e V ^ implies that ueP^D)
and

(5.3) K-i|u|̂ <M,.

i) Sufficiency. Since D is LG, D is the interior of its
closure and so ^)D = b(Ext D). Furthermore, Ext D is LG
and the extension constant K == F[0, m] is the same for
Ext D as for D. So let E be the associated simultaneous
extension mapping for Ext D. In particular

E^fExt D) n P^Ext D)) c C°°

and for every ae [0, m], E is a continuous linear mapping
of P^Ext D) into P" with bound < K.

Let R: L2 -> L^D) be restriction to D and let
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S: I^-^L^Ext D) be restriction to Ext D. For peL 2 ,
define

Q'p = ̂  - ES(.
and ^ = RQ'(. = (R - RES)^.

Then since R: L2 -> L^D) is continuous with bound 1,
S: L2 —^ L^Ext D) is continuous with bound 1, and
E: L^Ext D) -> L2 is continuous with bound <: K, it
follows that Q maps L2 into L^D) with bound < 1 + K.
Moreover, Q maps L2 onto L^D) and QEo =1 on
L^D). For, if ueL^D), then EoueL 2 and, since SEoU = 0
and RE()U = u, QEpU = u.

Similarly, Q maps P771 into P^D) continuously with
bound <; 1 + K. Suppose that it has been proven that

(5.4) (^cP^D).
Sufficiency follows then readily from (5.4). For now Q maps
P7" into P?(D) continuously with bound < 1 + K. Fur-
thermore, Q maps Pm onto P?(D) and QEg = I on
P?(D). For if u e Pg'(D), then EoU e P"1 and QEoU == u
as in the L2 case. Thus by quadratic interpolation, if
u 6 P^D) is such that EoU es P^, then QEoU = u e V^.
Also the bound of Q : P^ ~> V^ is < 1 + K. Thus

(5.5) |(M<(I+K)|ML,
To complete the proof of i) it remains to verify (5.4). For

this purpose, let v e= C°° n P7". Then since E is a simultaneous
extension mapping, Q'^ e C°° n P7" and so Q^ e Cao(D) n P^D).
Moreover, since ES^(a;) == v{x} for all rr e Ext D, Q^ and
all partial derivatives of QP vanish at every point of
oD=b(Ext D). Since Q: Pm -> ^(D) is continuous and
C°° n P7" is dense in P7", the proof will be finished by showing
that if w e C^D) n P"(D) is such that w and all partial
derivatives of w vanish on ^D, then wePy(D).

So let w be such a function. Since D is LG there exists
a 8-loose open cover of bD and a C°° partition of unity
subordinate to the cover. Furthermore the functions in P^(D)

v

with bounded support are dense in P^(D). It is therefore
sufficient to consider D to be of the following form. Letting
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B be a bounded rectangle in R""1, D = {(a/, x^) : x <= B
and 0 <; Xn < A^')} where /* is Lipschitzian on B with
a positive lower bound. Now, for sufficiently small positive £,
define

/, /^ „ W^ (1 - £)-1^ 0 < ̂  < (1 - £)/^')
^"fo, (I-£)A^X^<A^).

Then ^eC^D). Wg-> w in P^D) as £ ^ 0, and the
support of Wg is bounded away from x^ = f{x'Y The proof
of i) is now complete.

ii) R" is obviously L-convex and since Ext D is LG,
Ext D is a (C)-domain (cf. [2], § 5, § 9 and § 11, and [4], § 5).
Thus by Theorem 1, § 9, [2], if u^P^D), then EoueP^
if and only if Jm^^W < °°- So ii) follows from i).

iii) In the proof of part i) it has been shown that (cf. (5.2),
(5.3) and (5.5)) if u e V^ and v e P^, then

(5.6) ||Eou|L, < |u|,, |Q^ < (1 + K)ML,,
QEoU == u, and K^U^D ̂  \u\^.

Thus

(5.7) ||Eou|L, < |u|, = |QEou|, < (1 + K)||Eou||^.

Now by Theorem 1, § 9, [2].

(5.8) ||Eou[|L < M^ + 2n(l - W^{u) + \u\2^}
< [1 + 2n(l - P)]|U|^.D + 2n(l - P)J^n(u)

and
(5.9) J^(u)<c||Eou]|^

where c depends only on n, [mr], and D. Therefore,
letting C = (1/c), (5.6) through (5.9) give

(1/2) [K-^l;^ + CJ^n(u)] < \u\^
< (1 + K)^{[1 + 2n(l - P)]|U|^B + 2^(1 - P)J^n(u)},

and ii) is proven.

COROLLARY 5.1. — Assume that D is a LG domain. Let
v

m be a positive integer, V\ = PS*(D), amf Vo = L^D).
Then for 0 < T < 1, u e V^ implies u e Pr(D) anc? V^ is
dense in Pr(D).
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Proof. — By definition, Co°(D) is dense in P?(D) and since
for any T e= [0,1), Vi = P?(D) is dense in V,, Co°(D) is also
dense in Y,. By Theorem 5.1, \u\2: is equivalent to
M;Src,D + JmT,D(^). Since the norm in P^(D) is just |u|^D,
the conclusion follows.

Though Theorem 5.1 characterizes the functional spaces V^
obtained by quadratic interpolation between P^D) and
L^D) some more information about these spaces will be
required to apply the Hilbert space perturbation theory to
the Dirichlet problem. The additional information which will
be needed is to know that in « most » cases the inclusion
relation in Corollary 5.1 is an equality, i.e. V^ == P^(D) with
an equivalent norm. For m = 1 and for bounded domains D
with smooth boundary this result was obtained for the spaces
W^D) in the aforementioned theorem of Lions and Magenes
[19], p. 322. The functional Hilbert space case of the corres-
ponding theorem for general m and Lipschitzian graph
domains will be derived here by virtually the same techniques
as those used in Lions and Magenes [19]. A few more prelimi-
naries are in order before the statement of the theorem.

For ue PP(D), 0 < j3 < 1, the Dirichlet integral of order
P, rfp,n(u), is defined by

do^{u) = |u|̂ D,

di^{u) = |u|^D — M§,D = S F ̂  dx^
1=1 JD ̂ |

and for 0 < (3 < 1,

j i \ 1 C C 1^) — u(u)\2 , ,
^•'''Ctn^^ilL-yr^'^^

The approximate a-norm, |u1a,n, tor ueP^D) is

|U"1^D = do^(u) = |U|̂ D,

and for 0 < a < 1,

|U"Î D == H§,D + d^{u).

For arbitrary a > 0, let m = [a], (3 == a — m, and

KB == 2 ( m ) S |D,u1|,n.
fc=o \ K / !i|==fc
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Then for an arbitrary domain D

S- l̂ula^ Ma,D< |^a,D

(̂ . [2], § 2).
The following lemma is a particular case of the results of

[19], N. 1. Its proof is included here to accomodate the reader.

LEMMA 5.1. — For 0 < a < 1/2, Co°(0, oo) is dense in
P^O, oo), i.e.

p§(0, oo) =-- P^O, oo) for 0 < a < 1/2.

Proof. — By density it is sufficient to prove that if u is
the restriction of a function in Co°(R1) to (0, oo), then
uesPg(0, oo). Let

0, 0 < x < 1/yi
(f^x) = nx — 1, I/TZ <; x ̂  2/n

1, 2/n < x.

Assume for the present that there exists M > 0 such that
for all n and all a e [0,1/2],

(5.10) ^(o.oo)(y^)<M.
The lemma follows readily from (5.10). For, obviously y^u -> u
in L^O, oo) as n -> oo. Thus (5.10) implies that |<pn^|a,(o,a>)
is bounded uniformly in n for 0 <; a <; 1/2. Hence there
exists a subsequence which converges weakly in P^O, oo),
for which, the corresponding sequence of arithmetic means,
{^J, converges strongly in P^O, oo). Since ^ -> u in
L^O, oo), ̂  -> u in P^O, oo). By regularization of the ^n's
one obtains a sequence of functions in Co°(0, oo) converging
to u in P^O, oo).

To prove (5.10), write

<fn{x)u{x) - 9n(t/)u(y) == ̂ {x) [u(x) - u(t/)] + [(fn{x) - ?n(l/)]u(y).

Then it is sufficient to show that

r r w -^w^w dx dy
is bounded uniformly in n. But since u is the restriction of
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a function in Co°(R1) to (0, oo), u is bounded. Thus a direct
computation of

HT^^
proves the lemma.

The following lemma gives explicit bounds in the p == 2
case of a proposition of [19], N. 2.

LEMMA 5.2. — i) For 1/2 < a < 1 and ueP^O, oo),

Ja,(0,.)(") = ̂  \U{X)\^X-^ dx < v <(0.»)(U).

ii) For 0 < a < 1/2 and ue P^O, oo) = P?(0, oo),

J«.(o,«)(u) == J^ |u(a;)|̂ -̂  ̂  < _5^ d,,(,.«)(u).

Proo/'. — For a > 1/2 the functions in P?(0, oo) are
continuous with limit 0 at x = 0. Thus i) is a special case
of Lemma 3, § 9, [2] and ii) will now be proven by a simple
modification of the proof of this lemma.

Since for 0 < a < 1/2, P^O, oo) = PS(O, oo), it is sufficient
to prove ii) for MeCo°(0 ,oo) . For ( > 1,

[^ \u{x) - u^x^x-^ dx]1'2

< 51 [Jo" K )̂ - u^x^x-^ dx]112

= "S <'c(a-l/2) [f^ \u(x} - u^x-^ dx}1'2,

and letting n —> oo, the dominated convergence theorem
gives

(1 - t"-^2)2 f^ |u(a;)|2a;-2a dx < f^ \u{x) - u(te)|i!a;-2a dx.

Since
A l \ 1 r F \u(x) - u(to)|2 j ,
,̂(0.«)(U) = ̂ ^ ̂  J^ |̂1 - ̂ 2, ̂  ̂

1 /^00 (\ _ /a-l/2\2 /^l

coToJ, '(. - i).«. '"1 l"MI'̂ -<to «<..<...)(»).
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Now,

r° (1 — t^112)2 , r1 s2^! — s1/2-01)2 ,
1 (t-^l)^^-^- (i^)^^

> (a - 1/2)2 J^ ̂ ^(l - .s)1-201 ̂
== (a - l/2)T(2a)r(2 - 2a).

By use of F(a)r(l — a) = -———, Legendre's duplication
sin TIOC

formula, and tabulated values of the F function (cf. Jahnke
and Emde [10]), one obtains

(a - l/^I^a)!^ - 2a) (a ~ 1/2)2

C(l, a) > 5^

which yields the inequality.

THEOREM 5.2. — Assume that D is a LG domain. Let m
be a positive integer, Vi = P?(D), and Vo == L^D). Let
T e [0,1] be such that mr — [mr] =7^= 1/2, i.e. mr =/= f + 1/2,
Z == 0,1, . . . , m — 1. Then u <= V^ if and onZz/ i/1 u e ̂ (D).
Moreover if 0 < mr — [mr] < 1/2, Pr(D) = P^D) n ^(D).

Proof. — By Theorem 5.1 and Corollary 5.1 it must
be proven that: if 0 <; mr — [mr] < 1/2 and

u e Pg^D) n P^D)

then EoUeP^ (Eo : L^D) -> L2 is extension by 0); and,
if 1/2 < mr — [mr] < 1 and u e= Pr(D) then EoU e= P^.
Since u and E()U have the same exceptional set, E()U e PmT

if and only if (|Eou||^ < oo.
Now for any multi-index i it follows from the density

of Co°(D) in P^'(D) that D.EoU = EoHu for all ueP^D).
Thus if mr is an integer, i.e. mr == [mr], it follows trivially
from the density of Co°(D) in P^D) and the definition of
the approximate norm that l^jmr.D === ||Eou||^ <; oo. Hence
it is sufficient to prove that if

|i| < mr and 0 < ? == mr — [wr] < 1
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with P^l/2, then

// fv n \ 1 /" r |EoD;u(a;)—EoD,u(y)|2 , .
<WEoD..u) = ̂  j^ j^ ————^_y|n^^' ^ ̂  < 00.

for u e Po^D) n P^D) if 0 < (3 < 1/2 and for u <= Pr(D)
if 1/2 <; P <C 1. Since a O-01^ homeomorphism preserves
potential classes of order <: 1 (cf. [2], § 2), by use of partition
of a unity it is sufficient to prove that rfa RI.(E()D,M) <; oo with
D == R^_ = {(a;i, ..., ;»„) e R": a;, > 0}. Moreover Theorem 5.1
yields ^R»(EoD,i() < oo if Jp^(D;u) < oo.

Letting p == D,u it now suffices to prove that Jaii^P) << oo
if 0 < P < 1/2 and v e PP(R^) and that Jp.R^P) < oo if
1/2 < p < 1 and v e P^(R^). For this purpose let v be the
restriction of a Co° function to R^. if 0 < (S < 1/2 and let
ve Co°(R^) if 1/2 < p < 1. Then Lemma 5.2 yields

J^)=f^Wx^dx

^U^-^y^^^
where K(?) = 57c(P - 1/2)-2 if 0 < p < 1/2 and

K(p) == ir(p - 1/2)-2 if 1 / 2 < P < 1 .

Now let E be a simultaneous extension mapping for R .̂
and EP == w. Then

r n^)-p(^, ...,x^,y^
LJ. l^n-Z/nl1^ dl/n^

< C r K^)-^i> •••»^- i ,yJ1 2 ,., ,„
^JnJ-, l^-y,!1^ dt/nd;r

- r r K^)-^i» ...,^_i,^4-tn)i2./,,,_-' JM" J-» N1^——— "
=M(.,p)f rw-^»,^^

JR" JR" |q '""P
where

[M(», p)]-i =^_.|1 + ^ + ... + zt^»+^ dz
^ TEC'-1)/2?^ + 1/2)

r(P + n/2) •
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NOW

r r r \w{x}-w{x^ ...,x^,x^+t^ -i1/2
LUpn————————————————IT^———————————————— J<rr r î ) - ̂ i + fi/2, ̂  + ̂ /2,..., ̂  + ̂ i2 i^2
^URnjR" M^ J

\w(x, + (i/2, .ra + 4/2, ..., ̂  + tj2) - 1/2

+ f f——————————-^. . . ,^^+^ | 2^^
JI^JR" H •=2^rr ri^-^r^^r

URnjR" |^-2/|ra+213 "J

< L|^|p.R^.

since E is a simultaneous extension mapping. By density of
the class of v ' s considered, the proof is complete.

Remark. — Corollary 5.1 shows that for Lipschitzian graph
domains V^ c Pg^D) and Theorem 5.2 gives the opposite
inclusion for mr — [mr] •=f=^ 1/2. The p = 2 case of Theorem
5.2. p. 322, [19] states that for m == 1, T = 1/2, and D a
bounded domain with smooth boundary, Vi/g is strictly
contained in PS^D) with a stronger topology. An example
will now be given which shows that for D == (0,1), m any
positive integer, and mr = I + 1/2 where I = 0,1, ..., m — 1,
V^ is strictly contained in Po4'172^,!) with a stronger topology.

Example 5.1. — Let ^ e C°°(0,l) be such that 0 < ̂ {x) < 1,
^{x) = 1 for x < 1/3, and ^(x) =0 for x > 2/3. Let
u(x) = x^{x) where I is a non-negative integer. Then

J<+1/2,(0.1)(^) > l}jmx~l dx= 00-

It will now be verified that u e Po+^O,!).
For ee (0,1/4] let '/e = y, e C^R1) be such that

0 < yjrr) < 1, ^(x) ==0 for x < 0, y^) ==1 for x > £,
and ly^^)! <^ C^s'^" where C^ is a constant depending only
on k (cf. [2], § 1, Lemma 1). Denote by 9 the restriction
of y^ to (0,1). Then by a simple version of the argument used
to verify (5.4) in the proof of Theorem 5.1, yueP^O,!)
for any positive integer m and so <pu e P^^O,!). Then,



180 W. M. GREENLEE

by the same method as employed in the proof of Lemma 5.1,
it is sufficient to prove that \fu\ ̂ +1/2,(0,1) is bounded uni-
formly in £ in order to conclude that u e P^^2^,!)- More-
over, since for a < (i, PP(0,1) c P^O,!), l9^+i/2,(o.i) is boun-
ded uniformly in £ if

(B.ii) r r ip'̂ '-y'y'i' & *, < M
Jo Jo 1^ — y\

and

(5.12) r11 D^u)^)]2 Ar < M,, 0 < k < I,
<^o

where M, M^ are independent of £.
To obtain (5.12) it is sufficient to note that

r\D^u){x^dx= r sf^T,—l—^^xl~k^dx
J Q J Q i==0 \ v / ^ — "'T"1/1

k r/ k \ J ^ ^2

<" 2 v I / ^ ' I r2?^-2*
^ .2 '.HJ(^-/c+0!JC•£

and I ^> /c. To verify (5.11), first observe that

^^|D^u)(^^u)(y)|^,^

<^ i1'f ^ 'î i8 r8 r'^y-^f^'2^ ̂^.LUAuJoJo 1^-yl2 '
and that for each /c the integral on the right does not exceed

2 qe-2" f f6 -l '̂̂ i2 ̂  ̂  + 2C^ < 2/c2C2, + 2C^i.
'̂ 1/0 i-^ — y\

It remains only to observe that

ft
•i |D^u)(rr) - D'(^)(y)|2

k - 2/12 'J 0 ^ 6

,, ', / l\l\
< J———<-»

^'-stn^yY^)nl/3 •" ^J I », » iL ( » T W
J———^A^/^—————dxdy

•^ -y 2/o Je \x - y|2

+ K r f1 [|D'(yu)(a^ + [^(y)!^ dx dy
Jo Jlf3
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and the last integral is appropriately bounded by (5.12).
Finally,

I [ ] \ ̂  |2I / ] \ -/c 21 _ y ( i \lL^w \nl/3 J- Zj \ 7, / L 1 T \U)

———Ic^k/k,————dxdy\^-y\2 .

^ / v \lLmW,,\\

^r^-^y^-y)-1^<2 ll-^)]2^
\^' 0

+ S \(l )-T f6 W^)]2^ - y)-1 ̂
fc=l L\ K / K .J JQ

< 2 Sc;t^J"(t-»)(<</

+A[(^TC^+l•"'-'X'</''(•-y)A'i
which is obviously bounded and the example is complete.

A domain D c R" will be said to be V^-bounded convex if :
(5.13) to each point xe. D there corresponds a neighborhood
% of re and a homeomorphism T of class C1'1 of % onto
a neighborhood ^VH = T(U) c R" of the point y =r!x such
that % n D == T-^K n W) where K is a fixed bounded
convex domain.

Note in particular that if D is C1'1-bounded convex, then
D is a bounded Lipschitzian graph domain.

THEOREM 5.3. — Let m be a positive integer and if m == 1,
assume that D is a C111-bounded convex domain while if
m > 1, assume that D is a bounded domain of class C2"1.
Let Vi = P^D) n P?(D) and Vo == P?(D). Then for
0 < T < 1,

V, = P'+^D) n P?(D)

with an equivalent norm.
v

Proof. — Letting I be the identity mapping on P^D)
one has that I : P?(D) -> P^D) is continuous and I:
P^D) n P?(D) -> P^D) is continuous. Thus by quadratic
interpolation,

V.cP^^nP^D).

Let P be the orthogonal projection of P^D) onto P?(D).
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Then P : P^D) —^ P?(D) is continuous and onto. Now let
u e= P2m(D) and Pu == Uo. Then

(u - uo, ^),,D = 0 for all p e P?(D).

Thus UQ is a weak solution of the equation
m / -m\ m / -m\s(- l )m(m)AC Tuo=s(-^)m(^)A m M e L 2(D) '

k=o V K / fc==o ^ \ /c /
A == Laplacian.

According to the regularity results of Nirenberg [21], Agmon
[3], Ch. 9, for m > 1, and Kadlec [11] for m = 1, UQ e P^D).
Hence P maps P^D) onto P^D) n P?(D) continuously
(by the closed graph theorem). So by quadratic interpolation,
P : I^+^D) -> V^ is continuous. Since PI = I on P?(D),
u e ̂ +^(0) n Py(D) implies PIu = u e V^.

6. Singular Perturbation of Dirichlet Problems.

Let D be a domain in R" and let m\ m be positive
integers with m7 ̂  m. If m = 1, D is assumed to be C1'1""
bounded convex (cf. 5.13) while if m > 1, D is assumed to
be a bounded domain of class C2"1. For ^ weP^D), let

a(^, w) = S L^jW^j^i^ dx

iii.iyi^m'17"
where a^eC^D) and for ^weP^D) , let

b{^ w)= S f &^)D^D^ ̂
lihl^l^m"1 '

where fc^eC l i l(D). Further assume
(6.1) there exists ? > 0 such that

|6(^)|>PKD tor all ^P^D);
and

(6.2) for 0 < £ < £o, there exist a(e) > 0, a(s) -> 0 as
£ ^ 0, and S > 0 such that

|£a(^ (/) + 6(^, ^)| > a(£)|^|^,n + S|^|^D for all ^ e P?'(D).
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Consider the formal differential operators

and

<u = s (- ly'DKa.A-)
iii.iyi^'"'

% = S (- ly'D.^.D,.).
lil.lJl^ff*

Let Ag be the operator in L^D) associated with
£a(^, w) + fc(^, w). i.e. £a(^, w) + &(^, w) == (A^, w)o,D.
Then for weCo°(D),

(6.3) £a(^, w) + 6(^, w) == < (£^1 + %)^, w >

where < (^ + %)^, w > denotes the value of the distri-
bution (^U + %)? at w. Now, if ^ < = D ( A g ) , the functional
w -> < ̂  + %)^, w > is continuous on Co°(D) in the
topology of L^D). So (^ + %)^ e L^D). Moreover,
^ e D(Ag) implies that

(Ag^, w)o,D == £^(^, W) + &((/, W) = ((^ + %)^, w)o,D

for all weCo°(D) and hence for all weP^'(D). Conversely,
if ^eP^'(D) is such that (eU + %)^ e L^D), then (6.3)
gives (/eD(AJ. Thus D(Ag) ={^eP^(D) : (£°U+3S)^e L^D)}
and for ^ e D(Ag),

Ag^ = (^ + %)?.

Now [Ag^jo.D is equivalent to (|^|S,D + lAg^l^n)1^ on
D(Ag), so let |^D(AO == |A.g^|o.D. Then since a^, &^eC l l l (D),
it is apparent that ^'(D) n ^'(D) c D(Ag). Thus |Ag^|o,D
is not stronger than 1^2m',D on ^'(D) n Py'(D) which will
be written

(6.4) |Ag^[o,D ^ |^|2^,D on P^'(D) n P?'(D).

Similarly, the operator in L^D) associated with &(^, w)
is given by % with domain equal to [v e= P?(D) : ^(^ e L^D)}.
Henceforth S> will denote the operator in L^D) associated
with 6(^, w) rather than the corresponding formal differential
operator. Furthermore the regularity results of [21], [3],
Chapter 9, for m > 1, and [11] for m === 1 state that
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DQ8) == P^D) n P^D) and

(6.5) |ap|o.D ~ H2m,D on P^D) n Pg^D)

where ~ is read « is equivalent to ».
Now for I a positive integer, let P^D) be the completion

of L^D) in

H-f,D == sup{[(p, w)o,D| : w e Po(D) and \w\^ < 1}.

P^^D) can be realized as a space of distributions on D and
is topologically isomorphic to the dual of Po(D). Then,
using (6.2,) it is easy to verify that for £ e (0, e^] there exists
K(e) > 0 such that

a(s)H.,D < |A^l_^n < K(£)H^ for all ^ e D(A,).

Thus Ag may be extended by continuity to a topological
isomorphism of Py'(D) onto P^^D). Denoting this exten-
sion by Ag,

(6.6) lA^n-H^D on Po^D).

Similarly % may be extended by continuity to a topological
isomorphism of P^(D) onto P'^D). Denoting this extension
by %,

(6.7) Î I-..D~|̂ |..D on Po^D).

Now let 0L be the operator in P^D) associated with
a(^, w) relative to b(y^ w), i.e. a(^, w) === 6((St^, w).

PROPOSITION 6.1. — Assume hypotheses (6.1) and (6.2.).
Then

PiS^D) c D((9L).

Proo/*: (6.4), (6.6), Theorem 5.2 and duality give,

(6.8) |A^D -? Ha^D on Pr-^D),

by quadratic interpolation.
Now, (6.7) yields

Î ^LD ~ |w|̂ D on P^(D)
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and for w e P-'»(D), 'Sr^w e P?(D). Hence, letting w == A;p
in (6.8),

(6.9) I^A^n-IA^n^H^.D on P§'»'-'»(D).

By (4.6), ^Ag c £<9L + I and by Lemma 4.1,

D(A,) = D^A,)
is dense in D(<9L). Moreover the norm on D((t) is equivalent
to (H^n + KsCt + IM^.n)1'2. The proposition follows.

Let f, /g be given in L^D), 0 < £ < go. Let u be the
unique solution in PS"(D) of

(6.10) b{u, ̂  = (/•, ^0,1, for all v e P?(D).

Equivalently, u is the unique solution in

D(%) = P^D) n P?(D)
of

%u = /".
For each s e (0, Eg], denote by We the unique solution in
Pii''(D) of

(6.11) £o(w,, P) + &(w., P) = (/•, ^)o,D tor all v 6 P?'(D).

Then We is the unique solution in D(A() of

AgWe = (ell + %)w, = /'.

Further, for each £ s (0, 6o], let Ue be the unique solution
in PiT(D) of

(6.12) £O(M., v} + &(u,, (/) = (/•„ (/)o,n for all p 6 Py'(D),

i.e., Ue is the unique solution in D(Ag) of

A,u, = {&U + %)u, = /•,.

THEOHEM 6.1. Assuwe hypotheses (6.1), (6.2), (6.10), anrf
(6.12). Then one has:

i) i/' TO' = TO anrf |/e — f\^ = 0(e) as e 4. 0, then

\Ut — u\^o = 0(e) as e ^ O ;
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ii) if m' > m and |/g — f\o,D = 0(£T) /or a^ T < l/4(m' — m)
05 £ ^ 0, (Aeyi

l^ — ^Im.D == ̂ ^ /or a^ T <^ l/4(m' — m) a$ £ ^ 0.
v

Proof. — Let (9L be the operator in PS'(D) associated with
a(^, w) relative to &(^, w). Then if m = m^d is a bounded
operator on P{?(D), and i) follows from Theorem 4.1, i).

So let m' > m, Hi == P^-^D), Vi == D(CZ), and

Ho = Vo = Pi?(D).

Then by Proposition 6.1, Hi c Vi, and so by quadratic
interpolation, H^ c V^ for all re [0,1]. Since u, the solution
of (6.10), is in P^D) n Pj?(D), Theorem 5.2 gives both that
u e P§(D) and PS(D) is an interpolation space by quadratic
interpolation between Hi and Ho for all a such that
m ̂  a < m + 1/2. Thus u e H^ c V^ for all T such that
2(m' — w)r < 1/2, i.e., T < l/4(w' — w). ii) now follows
from Theorem 4.1, ii).

THEOREM 6.2. — Let m' > m and assume that D is a
bounded domain of class C2"*'. Let fc(^, w) be Hermitian
symmetric with &(?, ^) > PH^D, jS > 0, for all (^eP^D),
anrf let aij, hij^C^^^^D). Further assume hypotheses
(6.2), (6.10), and (6.11). Then for any y, T such that
0 < T < T < l/4(w' — w),

|We — u|^+2T(m-m),D ̂  o(^) OS £ ^ 0.

Jyz particular, w^—>u in P^D) for all a such that
m < a < m + 1/2.

Proof. — Since D is a bounded domain of class C2"*, the
regularity results of [21], [3], Chapter 9, state that for each
£ e (0, £o], D(A,) - D(A?) = ̂ '(D) n P?'(D) and

(6.13) |A^|o,D ~ |A^|o.D - Ha^D on ^'(D) n ^(D).

Then (6.6), (6.13), Theorems 5.2, 5.3, and duality yield,

|A^|_,,D ~ |^|2m-.,D on ^——(D) n P^(D).
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Hence the argument used in the proof of Proposition 6.1 gives
D((9L) == P^-^D) n PS^D).

Now let 0J be the operator in Po"(D) associated with
O*(P, w} relative to 6*(^, w) == &(^, w), i.e., o*(^, w) = 6((9L'^ w).
Then by using (4.12), Lemma 4.2 and the method of the
preceding paragraph, one obtains D(Cl') = P^'-^D) n P^YD).
Thus Theorem 4.2 is applicable.

It now follows from Theorems 5.2 and 5.3 that for
0 ̂  ^ < l/4(m' — m), the interpolation spaces by quadratic
interpolation between Vi = D((9L) and Vo == P;?(D) are the
spaces P^^-^D) n P^D). Since u e p2-(D) n P?(D), ^ e V,
for all T < l/4(m' — m). The theorem now follows from
Theorem 4.2.

The following theorem is readily proven by the methods
of this chapter. It supplements the results of Huet [9] and
Ton [22] with p = 2 and homogeneous Dirichlet boundary
conditions. The assumptions on D and the right hand side
of the equation are, for the most part, weaker here.

THEOREM 6.3. — Let D be a bounded Lipschitzian graph
domain and assume that for 0 < £ <; £o, there exist Y)(£) > 0,
Y](£) -> 0 as £ ^ 0 and ^ > 0 such that

|£&(P, ^ + (^ ^)o,D| > Yi(£)H^,D + î H^D for all p e P^(D).

Let f, f, e L^D), 0 < £ < £o. Let Ug fee ̂  unique solution in
D(%) = {^ P^(D): ^eL^D)} o/"

£^Ug + ^6 == /£

and ̂  Wg ^ ^Ae unique solution in D(%) o/*

£%^s 4- Wg ===/'.
TAen one has:

i) i/"/or 5ome a e [0, 2m), /•e P^(D), JaD^) < oo, and
I/E - yio^ == o(£a/2w) as £ .̂  0, t^n

1^ - yio.D == O^2") 05 £ ^ 0 ;

ii) i/ yeP^D) and \f, - f\^ == 0(£) 05 £ ^ 0 , ^en

|^6—/' |o,D=0(£) OS £ ^ 0 ;
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iii) if b{y, w} is Hermitian symmetric and for some a e (0,2m],
/^P^D) and Ja.D^) < oo, then for any Y € ( 0 , a ] ,

|^e — fl^D = o{^) as £ ^ 0 wAere (3 == (a •— y)/2m;

iv) i/* D i5 o/* <Am C2"1, &,, e C^^^D) anrf /or some
a 6 (0, m], /*€£ P^D) anrf Ja.D )̂ < oo, (Aen /or aw/ 7 e (0, a],

|wg — /'|^D == o(£?) a,? e ^ O where (3 == (a — y)/2m;

v) if D is of class C2"*, 6^ e C"1"^1 )̂ and for some
ae[m, 2m], /•e ̂ (D) n P?(D), then for any Ye(0 , a],

Iwg — /*|^D == o{^) as £ ^ 0 where (i == (a — y)/2m.

J/* m === 1, iv) anrf v) remain true for D a C^-bounded convex
domain.

Some examples will now be given to indicate the degree
of precision of the methods of this paper. The calculations
are elementary but tedious and are omitted.

Example 6.1. — Let D == (0,1), let Wg be the unique
solution in ^(D) n P§(D) of

(£ £4 - ̂ ) wt = 1? w£(o) = w£(o) = w£(l) = w£(l) = °

and let u be the unique solution in p2(D) n Pj(D) of

- u" = 1, u(0) == u(l) == 0.

Direct calculation gives

^^t^ — u|i,D == 1/2 + o(l) as £ ^ 0

while Theorem 6.1 gives

l^s — ^|i,D = o^) for all T < 1/4 as £ s), 0.

Example 6.2. —- Let D = (0,1) and let Wg be the unique
solution in p2(D) n P^(D) of

~ w: + w, == 1, w,(0) = w,(l) === 0.

Theorem 6.3. gives w, -> 1 in P^D) for all a < 1/2. By
calculating the solution and using the inequality, x <; sinh x
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for x ̂  0, one obtains,

C(l,l/2)^(^ - 1) > K(£) where K(s) ̂ 2 as £ ^ 0.

So Wg does not converge to 1 in P^D) even though the
norm of P^D) is strictly weaker than the interpolation
norm of ¥1,4. Thus Theorem 6.3 in fact gives the strongest
potential norm in which one can expect convergence of Wg
to f for f an arbitrary element of C°°(D).

Example 6.3. — Let D = (0,1) and consider the following
« intermediate » problem.

(£ £4 ~ f2)w£ == 1? w£(o) == w:(o) = ̂ 1) = w^ = 0)
- u" == 1, u(0) == u(l) == 0.

Direct calculation gives

e-3^ - ^|i,D == 2-1/2 + o(l) as £ ^ 0 ,
and

e-^lwg — u|2,D = 1 + o(l) as £ ^ 0.

It is not difficult to work the interpolation problem directly
in this case to obtain Vo == ?i(D), V^ ^ P^D) n P£(D),
and that Theorems 4.1 and 4.2 give,

[wg — UJ^D == o^) for all T < 3/4,
and

\w, — u|2,n == o(£T-l/2) for all T < 3/4.

In conclusion, a comment on singular perturbation of Neu-
mann problems (i.e. the coerciveness inequalities (6.1) and (6.2)
are assumed over P^D) and P^D) respectively) is in
order. If D is a bounded smooth domain, a(^, ^) >. 0 for
all p€5p"'(D), and there exists ? > 0 such that
b(v, v) > PH^D tor all pe P"(D), then the rates of conver-
gence in the problems corresponding to theorems 6.1 and 6.2
are faster than for the Dirichlet problems. This is easy to see,
even without having a characterization of the higher order
interpolation spaces. For, in this case, D(A^2) == Vi,a = P^D)
for any £ e ( 0 , £ o ] . Assuming that / and the coefficients of
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a(^, w) and fc(^, w) are smooth enough, the results of Gris-
vard [7] and the methods of this paper yield, \Wz—u\^=o(€-}
for all T <; (2m' — 2m + l)/4(m' — m), and Wg —^ u in
P^D) for all a such that m < a < m' + 1/2. Similar
results follow for problems in which V and Vo are obtained
by other homogeneous boundary conditions as in [3],
Chapter 10.
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