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A MAXIMAL REGULAR BOUNDARY
FOR SOLUTIONS

OF ELLIPTIC DIFFERENTIAL EQUATIONS

by Peter A. LOEB (1) and Bertram WALSH (2)

The object of this paper is the study of the behavior of solutions
of elliptic differential equations at ideal boundaries of their domains.
We employ the axiomatic approach of Brelot [I], i.e. we consider a
sheaf 96 of real-valued functions with open domains contained in a
locally compact, non-compact, connected and locally connected
Hausdorff space W, with the functions satisfying certain axioms.
Specifically, by a harmonic class of functions on W we mean a class 96
of real-valued continuous functions with open domains. For each open
ft C W, 96^ denotes the set of functions in 96 with domains equal to ft ;
it is assumed that 96^ is a real vector space. The three axioms of Brelot
which 96 is assumed to satisfy are (1) a function is in 96 if and only if it
is locally in 96 ; (2) there is a base for the topology ofW which consists
of regions regular for 96, i.e. connected open sets co such that any
continuous function / on 3co has a unique continuous extension in
96 ,̂ which is nonnegative if/is nonnegative ; (3) the upper envelope of
any increasing sequence of functions in 96^ where ft is a region (i.e.
open and connected) is either 4- oo or an element of 96^. In addition.
we shall often assume that: (4) 1 is 96-superharmonic in W.

In the first section below, we shall establish a criterion for a point
on an arbitrary ideal boundary to be a regular point with respect to the
Dirichlet problem for that boundary. In the second section we shall
define compactifying boundaries which contain compact subsets 1^
such that sublattices 6 of the Banach lattice tf396^ of bounded func-
tions in 96^ are isometrically isomorphic to the space of continuous
functions on 1^ . This yields a simplified version of the boundary theo-
ries of Wiener and Royden. The third section will consider two harmonic

(^Supported by National Science Foundation research grants (1) GP-5279,
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classes 9€ and 9C where the positive functions of 9€, restricted to the
complement of a fixed compact set A, are superharmonic with respect
t3^C. In particular, we shall reexamine the isometric isomorphism
(established in [5]) between (096^ andtf39<^ in terms of boundary
correspondences, i.e. the isomorphisms between (Q9€^ and G^Cr )and
between (BSC^ and (SR^).

The terminology and notation which we shall employ here are
the same as in [5] with a few exceptions : script rather than German
letters (9€ and3C) refer to harmonic classes. Instead of lim f(x),

xeA, x ->XQ

lim inf f(x) and lim sup f(x) we shall simply write limA/Oco),
xeA,x ->XQ X € A , X — > X Q

lim inf^/C\:o) and lim sup^ /(^o) respectively. In order that a harmonic
class 9€ be called hyperbolic or parabolic on W, 1 must be super-
harmonic. Therefore, if 9€ is described as a hyperbolic or parabolic
class it is understood that 1 is 9€ -superharmonic. Note that we use
bold face to denote constant functions.

The functions H(W), H(W - A), H(3A, W - A) and H(3W , W - A),
which are defined in Section 5 of [5], will be used throughout this
paper. We shall frequently make use of the fact that ifv G9£and u G9€
(where 96 and 3€ are the superharmonic and subharmonic classes asso-
ciated with 9C respectively) and v > u, then there is a function h eg€
such that v > h > u. The following fact will also be needed :

^PROPOSITION 0.1. - Let 9€ be a harmonic class on W with
1 € 3€^, and let H(u) denote the least 9€-harmonic majorant of an
upper-bounded function u E96. Then for every pair of upper-bounded
functions u^ and u^ in 9C, we have fl(u^ + u^) = H(^) + H(i^), and
for every upper-bounded u G9C and nonnegative a E R,

H(a . u) = a . H(u).

Proof. — Since

H(i^ 4- u^) > u^ 4- u^ , H(^ 4- u^) — u^ > H(^) > u^ ,

so H(^i 4- ^) - HO^) > H(Mi) > u^ .

Thus H(^i + u^) > H(Mi) 4- H(^).

The rest is clear. •
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Finally, we recall that a compact set A C W is outer-regular if it is
nonempty and if there exists a barrier for W ^ A at each point of 9A.
Although W ^ A need not be connected, it is possible to establish the
following fact:

THEOREM 0.2. - Given a harmonic class 9€ on W, let C be an
outer-regular compact subset o/W and ft an open neighborhood ofC.
Then there is an outer-regular compact set A with C C A c ft such that
W ̂  A has only a finite number of components.

Proof. — One may assume that ft is a compact subset ofW. Let{U^}
be the components of W ̂  C. Since W is locally connected, each U^ is
open, and since W is connected, each 8U^ == U^ ^ U^ is a nonempty
subset of 3C. Now the collection {ft} U {U^}^ is an open covering of ft,
and thus there is a finite collection { U ^ ,. . ., U^} of components of
W ̂  C which covers 3ft = ft ^ ft and must therefore cover W ̂  ft.

n
Setting A = W ̂  U U,., we see that A is compact, since it is a

subset of ft. Every point x in 3 A belongs to some 3U, and thus to 3C,
so there is a barrier for W ^ C at x ; that barrier is clearly also a barrier
for W - A at x. •

Section 1.

In this section we shall discuss the Dirichlet problem for open
subsets of W with respect to their boundaries in a Hausdorff space W
which properly contains W as a dense (and therefore open) subspace.
We shall fix W, and in the discussion below ft will mean the closure
of ft in W and 9ft will mean ft ^ ft.

Let 96 be a harmonic class on W. For a given open subset ft ofW,
Se^ will denote the set of lower-bounded functions in 9€^, and 96^
the set of upper-bounded functions in gCp . A function v € S^ will be
said to be nonnegative at 8ft, or positive at 3ft respectively, if

inf (lim info v(Xr.)) is nonnegative or positive respectively. With
XQ€Q^,

this nomenclature a definition due to Brelot [1, p. 98] takes the
following form :
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DEFINITION. -_Let ft be an open subset of W. We say that
3ft is associated-with 3?^ if every v^.3€^ which is nonnegative at 3ft is
nonnegative throughout ft.

It is a consequence of a result of Constantinescu and Cornea
[3, Thm. 4.1, p. 32] that 3ft is associated with 3€^ whenever ft is
compact and there exists a function VGfl^ with inf^ VQc) > 0.
The following proposition shows that the property of having a boun-
dary associated with 3^ is inherited by open subsets of W, and also
establishes a partial converse for open sets with compact complements.

PROPOSITION_ 1.1. - //ft is an open subset o/W and F = W - W
is associated with9€^, then 3ft is associated with 96^ . Conversely, if
le9e^ and W — ft is compact, then F is associated with SS^ whenever
3ft is associated with 3^ .

Proof. ̂  Suppose that F is associated with 5€^, and let v be a
function inS^ which is nonnegative at 3ft. If one defines a function V
by setting V = 0 in W - ft and V = v A 0 in ft, then V E^ and so
V > 0, whence v > 0 also.

On the other han^ assume that W ^ ft is compact, 1 €36^, and
3ft is associated with 36^ . Let v be a function in 96^ which is non-
negative at r. Let a==minfo , inf v(x)} ; then v - a is non-V ^ew-n /
negative at 9ft, whence v > QL in ft, and so v > a in W. But since

inf v(x) is attained at some point in the compact set W ^ ft and vxew-n
cannot take a nonpositive minimum in W, a must be zero and so
v > 0 in W. •

Motivated by the preceding proposition, we assume for the rest
of this section that F is associated with 3€^, and we consider a fixed
open Sl C W. Assume that there is a function VE9€^ with inf^ V > 0.
Given a bounded real-valued function/on 3ft , let V(f, ft) denote the
set{vG3^ : lim inf^v(x)>/(x) for all x C 3ft}. Let H<y,ft) or
simply H(/) denote the lower envelope of the functions in V(f}^ and
H(y, ft) or simply H(/) denote - H(- f). We call H(/) and H(/) the
upperS€extension offin ft and the lower-S^ex tension of fin ft res-
pectively. If H(f) = H(/), we say that / is resolutive on 3ft. Now
H(f) > H(f) and the functions H(/) and H(/) belong to 96 (same
proof as in [5, p. 179]). Moreover, the proof of Brelofs comparison
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theorem ([5], Th. 3.2) is valid in this case. Thus ifco is an open subset
of ft and F is the function on 3o? such that F == / on 3co Fl 3ft and
F = H(/, ft) on 3o; n ft, then H(/, ft) = H(F , a;) in co.

DEFINITION. - .4 point XQ on 3ft is said to be regular for ft
with respect to 9€or simply regular if for every bounded function f on
3ft the inequalities

lim inf^o f(Xo) < lim info H(/) (^) < lim supo H(/) (^)

<lim supgo/Oco) (1)

Ao/d. To show that XQ is regular, it is clearly sufficient to show that
lim sup H(f) (Xo) < lim sup f(Xo)for every bounded function fon 3ft.

We now establish a criterion for the regularity of points on 3ft.

^DEFINITION. - Let XQ be a point on 3ft. A positive function
b €96 defined in the intersection o/ft with an open neighborhood of
XQ and for which limo b(Xo) = 0 is called an 9€-barrier (or simply a
barrier) for ft at XQ . We say that there is a system of barriers for ft at
XQ if there is a base @ for the neighborhood system ofxo such that on
the intersection of ft with each a? € © there is defined a barrier b for
ft at Xa with - inf . (lim info b(x^)) > 0 (such a barrier is

x^e3(a;nn)-(cjn3n) - A

said to belong to ft and a;). By an ^'unit-barrier for ft at XQ we
mean a function b^ G ^C defined on the intersection of ft with a
neighborhood of XQ , having the property that linio &, (xo) = 1 ; an
S^unit barrier for ft at XQ is. a function b^ G9e satisfying the same
conditions.

The same proof as [5, Thm. 3.3] will show that ifjCoJ|3ftnW
and there exists a barrier b for ft at XQ and a function V € 3€^ which
is bounded in a neighborhood of XQ and positive at 3ft, then XQ is a
regular point for ft. To handle the points XQ € 3ft H r, we need the
following theorem.

THEOREM \_2. - Let XQ be a point on 3ft. Assume that there is
a function V^g^ which is bounded in a neighborhood of XQ and
positive at 3ft. Assume further that there is a system of barriers, an
^unit-barrier b^ and an 3^'unit-barrier b^ for ft at XQ . Then XQ is a
regular point for ft.
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Proof. — Let/be a bounded function on 3ft, and let

c = lim supa^/^o).

Let £ > 0 be given. If c + £ > (Uet V == (c + £) .6^ ; if c + £ < 0,
let V <= (c + £ ) . &i . Then V e3€ and lim^ V(Xo) == c + £. Let co be
an open neighborhood of XQ and co^ = (^ 0 ft. By taking a; smaller if
necessary, we may assume that it has the following properties :

(i)/<c 4-c on 3ft Ho; ;

(ii) V is defined on o?o and c -4- — < V on o?o ;

(iii) VQ is bounded on a;o ;
(iv) there is a barrier 6 for ft at ̂  defined on o?o for which

m = , inf , (lim inf,. b) (x,) > 0.
x^e (3^o -(^n 8^)] "'0 1

Let F = / on 3a^ n 9" and F = H(/, ft) on 3c^ n ft ; then (iii)
above implies that F is bounded. Setting M = \c\ -h sup |F[, we

xe^o

have —. & 4- V G ̂ (F , c^o) and lim(— . ̂  + v) (^o) = c + £. Con-
m "m '

sequently lim sup^ H(F , a)o) (x^) < c + £, and Brelot's comparison
theorem gives lim sup^ H(f, ft) (^) < c + £. Since e > 0 was arbi-
trary, XQ is a regular point for ft. •

If ft is compact, then ft is regular (in the sense that each conti-
nuous function / on 3ft can be continuously extended into ft by a
function H(f, ft) G 3€) if and only if inequality (1) is satisfied at
each point XQ E 3ft (see the proof of 1.3 in [5]). When ft is compact
and ft is regular, the SC-extension of 1 is clearly an 96- and an 3e-unit-
barrier for ft at each point XQ E 3ft ; moreover, we have the following
results :

PROPOSITION 1.3. - Let ft be a regular open set in W such
that ft is compact and each component has at least two boundary
points. Then there is a system of barriers at a point XQ € 3ft if ft has
only a finite number of components or ifxo is a Gg in 3ft.

Proof - Similar to Prop. 3.4 in [5]. I
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PROPOSITION 1.4. - Let Sl be a regular region_such that S2 is
compact and 9SI consists of a single point XQ . // 1G 3^ ~ 3€^ then
1— H(l, Sl) is a barrier at XQ and indeed there is a system of barriers
for ft at XQ .

Section 2.

This section will be concerned primarily with the construction of
ideal boundaries from lattices of bounded 9e-harmonic functions,
where 9€ is a harmonic class hyperbolic on W. Let us note briefly some
facts about the sets (fi!f€^ (called 9€00 by L. Lumer-Naim and others)
consisting of all bounded 96 -harmonic functions on Wand ^SO^W^A
consisting of all bounded SC-harmonic functions on W ^ A which
vanish at 3 A (where A is an outer-regular compact set-cf. [5, § 8]). It
is clear that these are ordered Banach spaces under the pointwise ope-
rations and order and the uniform norm. By agreeing to extend the
functions in <%o^w-A to ^e identically zero on A, we can think of
bothtfaSC^ and ^BO^W-A as ^aces of functions defined on W.
Moreover, assuming Axiom IV [5 ], as we shall henceforth, both these
spaces have order units, and their norms are the order norms. H(W) is
the order unit fortfSS^ and H(3W ,W ^ A) is the order unit for
^V^W-A (c^- ^so [5» Prop. 5.3]). Certain vector subspaces of these
spaces, containing the order unit, are vector lattices: the one-dimensional
subspace consisting of multiples of the order unit is a vector lattice;
so are the spaces (Q9€^ and ̂ o^w-A themselves, since given any/
and g in (fi9€^ or^o^C^^ respectively, their pointwise supremum is
bounded and subharmonic, and thus has a bounded least harmonic
majorant in W or W ^ A respectively, which is clearly the smallest
bounded harmonic function which simultaneously majorizes/and^.
(If ^o^w-A18 ^der consideration, then the fact that both / and g
are majorized by a suitable multiple ofH(3W , W ^ A) insures that the
least harmonic majorant of / v g vanishes at 3A). Here, however, the
lattice operations are not the pointwise ones. Since we will be inte-
rested in studying vector sublattices of^BSC^y and ^o^w-A' ^et us

make the convention that the symbols v^ , A^ , | |^, sup^ and
inf^e will denote the lattice operations in those spaces, while the
unmodified symbols v, A , | |, sup and inf will denote the ordinary
pointwise lattice operations.
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With 9€ a hyperbolic harmonic class on W, let a Banach sub-
lattice S ofdSSe^ or tf^o^w-A (A an outer-regular compact set) be
given. One may then form the Q-compactification [2, pp. 96-97 and
6] W* of W with Q = ^ ; this is a compact Hausdorff space containing
W as a dense (and therefore open) subspace, and is determined up to
homeomorphism by the property that each function /€ S has a
(necessarily unique) continuous extension to W*, which extension we
shall also denote by /, such that the family of all these extensions
separates the points of A^ = W* - W. (If ^ C ̂  9€^^, recall that
we agreed to extend all functions in (%o S^w-A to ̂ e zero ln A')

Given this compactification, our object is to determine a smaller,
more tractable associated border contained in A^. One such border
has been considered by Constantinescu and Cornea [3, § 4, p. 30] :
Define F C A ^ to be the intersection of all sets F ={t : / € A ^ ,
lim infp(t) = 0}, where p is an 3^-potential on W (if ® ^(S9€^) or
W ~ A (if« ^^o^w-A)* we take a different approach which is more
elementary and does not require the use of the Evans potentials of
[3] ; the equivalence of our boundary F^to the F of [3] will be shown
below.

For the sake of a unified treatment of the two cases Q C (BffC^ and
® C d3^ S^w-A ' ^et e denote the order unit of the given vector lattice 9
throughout the following. I.e., let e = H(W) if S Cdsge^, but
e = HOW , W - A) if « C ̂  ge^ .

DEFINITION.

r$={/eA^(r)= i}n H {rEA^:( / 'A^^)(o=(fA^)0)} .

PROPOSITION 2.1. - F^ is associated with 3€^, whence FQ is
nonempty.

Proof. - If 6 0%ge^, let ^ =1 ; i f « C ̂ 30^ _^ , let S2 be a
fixed regular inner region containing A and let q be the continuous
function on W* which is harmonic on Sl — A, equal to 1 on W* — 12
and equal to 0 on A. In either case, it follows from Proposition 5.3 of
[5] that q - e is a potential on W or W - A respectively.

Now let v be an element of 9^ or 96^ ̂  respectively withnonnega-
tive limit infimum at 1̂  or at 3A U F« respectively. Given any £ > 0,
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the s e t S = { ^ : ^ G A A , lim inf^y v(t) < — £} will be a closed subset of
AA^I^, and since S is compact there will be a finite sum s of the form

s = 2, [(/-/A^) - (f, A^,)] + Q? - e)

which is positive on S. Multiplying s by a suitable positive constant fS we
can have fts larger than — inf^g^ v(x) everywhere on S. Then clearly
v 4- {Ss will belong to 3€^ or 96^A respectively, and we shall have
— £ < inf{lim inf^y (v + ps) (x):x E A^}. As a consequence v 4- jS? 4- £
will be nonnegative at A^ or 3 A UA^ respectively, and thus v 4- (35' 4- c > 0
on all of W or W ^ A. Letting H(^) denote the greatest 96-harmonic
minorant of a given 9^-superharmonic function in W or in W ^ A res-
pectively, we see that

v 4- ps +00 ==>H(y + ̂  +6) = HOC + ?(5) + H(6) > 0

(by 0.1). Since clearly H(^) = 0, this gives v +e > H(y) 4- H(6) > 0,
so y > —C for any & > 0, whence y > 0. I

PROPOSITION 2.2. - Z^r U^ A^be a closed set which is a
border associated with !S€^ . Then the restriction map f——> f\ M
of 9 into OR(M) is an isometry (not necessarily onto) preserving
positivity in both directions.

Proof. - Suppose first that ^ C (%ge^ . That/G ^ is nonnegative
on W if it is nonnegative on M is immediate. Since ||/|| < a is equi-
valent to having the two Se-superharmonic functions a + / and oc — f
nonnegative, the isometry conclusion is no less immediate. In the case
when C S^o^w-A' one observes that by Prop. 1.1. above the set
M U 3A is a border associated with 9e\v-A? anc^ ^g^8 m the same
way. I

THEOREM 2.3. - The restriction mapping f——> f\ FQ of ^
into ® R (1^) is a surjective isometry sending the order unit of $ to
the order unit \ of O^T^) and preserving the lattice operations^).

Proof. — By the definition of I A , the range of this restriction
mapping is a sublattice ofe^Cr^) containing 1, and 1 is the image of
the order unit. Since 9 separates points of 1^ and S 11^ (being iso-
(3) Z. Semadeni has informed the authors that this theorem can also be deduced

from results of K. Geba's and his in Spaces of Continuous Functions (V),
Studia Math. 19 (1960), 303-320.
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metric to a Banach space by 2.2 above) is a closed subspace of
GR(I^), our theorem is an immediate consequence of the Stone-
Weierstrass theorem (in its lattice form). I

COROLLARY 2.4. - 1^ is equal to the border F of [3] (^ the
discussion preceding 2.1 above), and no proper closed subset ofF^ is
associated with 9€1^.

Proof. — Given the function q defined in the proof of 2.1, we see
that q — e is also a potential on W or W — A respectively ; thus
r C r& . That no proper closed subset of 1^ can be associated with
3e^y follows from the observation that any such subset is contained in
the set of zeros of some nonzero, nonpositive function in ®R(r^).
Since F is associated [3], F = F^ . •

Examples.

1) Suppose W is a relatively compact regular region in some larger
space Sl on which 3€ is defined. Let $ consist of all 96-harmonic
functions on W which have continuous extensions to 3W ; then A^and
r^ can be identified with 8W.

2) Take S = dSSC^. The corresponding compactification, which
we shall use in studying pairs of harmonic classes, is denoted simply by
W^ ; its ideal boundary and ideal border are denoted by A^ and F^
respectively. We denote W U Fgc by W^ .

3) Take 9 = ^BO^W-A ^or some compact outer-regular A. We
denote the compactification given by this lattice by W^ (A), and its
ideal boundary by A^(A). Its ideal border is denoted by F^ (A),
while W^ (A) denotes W U F^ (A).

4) The following example illustrates the fact that the compacti-
fications W^ and W^(A) are in general distinct. For ease in visuali-
zation, we realize the example in the plane: the space W is the union
of the half-axes ]— 1 , + °°[ of the x- and the ^-axes ; the harmonic
class 96 is composed of the real-valued functions which are affine on
the lines except possibly at their intersection, while at the intersection
(the origin) the sum of their four directional derivatives in the directions
outward from the origin is zero. Since functions in d? 9€^ must be
constant on the positive x- and ^-axes, A^ consists (making use of the
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obvious natural imbedding) of the left and lower endpoints (- 1,0)
and (0,— 1) of the two axes, together with a point at infinity which is
the ideal meeting point of the positive halves of the x- and ^-axes. It is
quite easy to see that (— 1,0) and (0,— 1) are the only points of F^ .
Now suppose we let A = [1,2] in the positive half of the x-axis and
consider the compactification W^ (A). Now the compactification process
adjoins the points (— 1,0) and (0,— 1), but this time there are functions
(in ^o^w-A) ^ich take different values on the infinite segments of
the two axes. Hence in W^ (A), a point at °° on the x-axis and a distinct
point at °° on the y-2ixis must both be adjoined; W*,and W^(A) are
non-homeomorphic.

Also note that in this example there are nonzero functions
h E dS9€^ which vanish on open subsets of W.

Remarks.

1) For any 6 CtfBSe^ and any fixed XQ EW, one may define a
positive linear functional of norm < 1 on ^ by p : /——> /O^).
This functional is strictly positive [5, Thm. 2.1], and via the positive
isometric isomorphism between ^ and ^(I^) may be thought of as a
functional on the latter space, i.e., a Radon measure of total mass
< 1 on r« . It is evident from the strict positivity of p that nonempty
open subsets of 1^ must have strictly positive p-measure. It is possible
to show (as was stated for $ = (K9€^ in [11]) that the isomorphism
between ^ and ^(1^) can be given by a kernel with respect to p,
when W is countable at °°. Corresponding statements, mutatis mutandis,
can be made for ^ C ̂  S^^A •

2) The case when ^ = (BSC^y has certain additional features. GSK^
is a complete lattice, a fact which follows from Hamack's principle
(Axiom III). The fact that the supremum of an upward-directed majo-
rized family {f^s is a pointwise supremum on W also shows that the
measure p defined above has the property that p(sup^,/^) = sup p(/a).
The hypotheses of [9, Lemma 1.3] are thus ful lied for the measure p on
the space E ,̂ , and consequently the natural" identity" map of G^F^)
into L°°(p) is an isomorphism onto, preserving all operations (lattice
and algebraic) and relations; in particular, every class in L°°(p) has a
unique continuous representative function. Moreover, (Sp/r^) is the
dual space of L1 (p), and the weak* topology on the unit ball of
G^(r^) = L°°(p) is identical with the topology of uniform convergence
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on compacta for the unit ball of (B^e^y (where one identifies G^K^ and
fi^(r^)). Indeed, both these topologies are compact Hausdorff and
evaluation at any point x^ €E W is easily seen to be weak* continuous.

3) Among the results of the analysis above is the construction of
a compact Hausdorff space F^ with the property thatdSSe^ is isomet-
rically linear- and order-isomorphic to SpOT^), with H(W) corres-
ponding to 1. Other constructions of such a space are possible: the
Banach lattice (B?e^ is an abstract M-space with unit in the sense of
Kakutani [4], H(W) being the unit. By Kakutanfs representation theo-
rem, there exists a compact Hausdorff space X for which (BSe^y is
isomorphic as an abstract M-space with unit to <°p(X), i.e., is isome-
trically isomorphic as a Banach lattice with H(W) corresponding to 1.
This observation, at least in the classical case of harmonic functions in
plane domains, is due to Stone [4, p. 999, footnote]. Another way of
constructing such a space X has been given by L. Lumer-Naim [8] ; her
method involves making (K3€^ into a Banach algebra with identity 1
(for which she assumes thati G9e, so 1 = H(W)).(B9e^ is then repre-
sented as algebraically isomorphic and isometric to a continuous-function
algebra (3p(X), with 1 = H(W) as the identity element; it is not difficult
to show that this isomorphism also preserves positivity. Still another
approach offering a construction of a compact Hausdorff space X with
(B96^ isometrically linear- and order-isomorphic to <°p(X) follows from
the compactness of the unit wedge (i.e., the intersection of the unit
ball and the positive cone) of(B96^ in the u.c.c. topology, a fact which
implies that it possesses extremal points; these extremal points can be
shown to form a Boolean algebra under their natural ordering, with
unit H(W), operations v and A, and complementation given by subtrac-
tion from H(W). (In the present context this is quite easy to see
because of the isomorphisms between (S3€^, OpO^,), and L°° (p).)
The Stone space of that Boolean algebra can be shown to have the
property that its continuous-function vector lattice is isomorphic to
(R3€^ . (Cf. the recent paper of Taylor [10].) In [3], Constantinescu
and Cornea exhibit a positive isometry between (896^ and <°p(r^),
where F^ is the harmonic part of the Wiener boundary. Regardless of
what method one uses to construct the compact Hausdorff space X,
homeomorphic spaces result, since any such space is homeomorphic to
the space formed by the extremal points of the unit wedge of the dual of
(K5^ , equipped with the weak* topology. Indeed, if thediS^-
compactification W*; of W is constructed by the method of [6], F^ is
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exactly that set of extremal points. It is again possible to repeat the
analysis above for the compactification obtained by using < = ^V^W-A-

Let us now return to our original setting. We begin by showing
that with one possible exception, any border 1^ meets the regularity
criteria given in § 1 above.

PROPOSITION 2.5. - Except perhaps when 6 consists only of
constant functions, there is an ̂ -unit-barrier, an Sf^unit barrier and a
system of barriers for W at each point of T^ .

Proof. — If e is the order unit of<^ , then it is clear that e is
simultaneously an 96- and an ^C-unit-barrier for each point of 1^ , by
the definition of 1^ . Supposing for the time being that 1^ has at
least two points, so that there exist nonnegative continuous functions
on I A which vanish at a given point without being identically zero, then
we can get a system of barriers at a given point IQ € F^ . To do this, we
define a class of neighborhoods of t^ b}

N ( y , e ) = { ^ E W * :/(0< £ and e(t) > \ -€}v
for each nonnegative /€ ^ with f(fo) = 0 and each positive £ < 1.
These sets have the finite intersection property since

N(/v^ g , £ A 6) C N(/\ £) H V(g , 5).

Thus if U is an open subset of W* containing IQ but not containing
any N(/',e), there must exist some ^ ^ IQ which belongs to all
N(/*, c)^. But then, since IQ G F ,̂ and therefore

Wo) = 0 => (h v^O) Oo) = 0 = (h A^O) Oo)

for any h GO, it follows readily (using the fact that e(t^) = 1 = ed^))
that ® cannot separate IQ from ^ . Since ^ ^ W because no positive
harmonic function can have a zero in W, ^ must belong to A^, a
conclusion which contradicts the fact that % separates points of A^ .
Thus U contains some N(f, e).

Given N(/, e), set b = / 4- (1 - e) ; we claim that & is a barrier
which belongs to W and N = N(/, e)0 in the sense of the definition
preceding 1.2 above. For 3N is a subset of the set

{ r : / 0 ) < £ and e(t) = 1 -e}U{t:f(t) =e and e ( r ) > l - £ } .
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The fact that 9(N H W) - (N H A) C 3N shows that the infimum of b
on the set 3(N H W) - (N 0 3W) = 3(N 0 W) - (N H A) is positive,
and in fact is > £.

Only the trivial case where 1^ consists of a single point remains.
If e ̂  1, it is easy to see that the function 1 — e is a barrier at that
point and has positive lim inf at every other point of A ̂  . On the other
hand, if e =1, so W* is just the one-point compactification ofW, the
assertion of the theorem is false in general; for example let 3€ be
the affine functions on the space W == ]0 , oo[ . •

Remark — Let W be an open Riemann surface. The above results
show that a great deal of information about the harmonic part of the
Wiener boundary can be obtained from an investigation of Wjjg and
F^ . Also one may consider the linear space (iKfCS) consisting of all
bounded harmonic functions on W with finite Dirichlet integral. It is
clear that if /E^B^ecOthen |/| has finite Dirichlet integral (I/I is a
Dirichlet function on W, by [2, p. 78]); by Dirichlet's principle,
l / lae= Hd/DEdSa^.Letting $ be the uniform closure of 8S3VS), one
may form the spaces W* A^, 1^ and W^ as above. Now let W^
denote the usual Royden compactification of W [2, p. 98] ; then,
since the elements ofGS9€<S) are Dirichlet functions, there is a natural
mapping p : W^ ——> W* , which is onto, and it can be shown
(either from the known regularity of Fp [2, p. 101] or directly) that
p | r^ is a homeomorphism onto 1^. Thus W^ is a 1-1 continuous
image of W U F^ under a map which is the identity on W and a homeo-
morphism on r^ . Consequently one can establish many properties of
the harmonic part of the Royden compactification using W*. Note
that r^ is <( attached" to W with a topology which is weaker than that
attaching F^ . Since a system of barriers for a point t^ E F^ can
readily be seen to be a system of barriers for p~~1 (to) E F^ , we have
demonstrated the existence of systems of barriers at the points of the
harmonic part of the Royden boundary. Similar considerations can be
given for solutions of AK = Pu on a Riemann surface W, where P > 0
is an integrable density on W ; one need only replace the usual Dirichlet

bilinear form D(u , v) by the form E(u , v) = D(u , v) 4- j uvP.

Let us again consider the case where $ = dSS^. The definition
of A^ insures that every bounded function in g^ has a unique
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continuous extension to A^ ; we shall now show that every bounded
function in 3€^ or ge^ has a continuous extension to Yyc . The exten-
sion is described by the next theorem, where (S3€^ and (!S9€^ denote,
respectively, the cones of bounded ^-superharmonic functions and
bounded ae-subharmonic functions on W.

THEOREM 2.6. - For any v E0^9€^, let IQ) be the function on
r^ defined by

10) (t) = lim inf^(r) for t E 1^ .

Then_l(v) is continuous on F^ for each v QBS^ , and the mapping
I: (fi9€^ ——> <°^(r^) is positive-homogeneous and additive.

Proof - Given any v ediSC^ , let HO) denote the greatest
9e-harmonic minorant of v, and let HO) also denote the uniqve conti-
nuous extension to all of W^ . Since v - HO) is a positive potential
on W, lim inf^ (v - HQ)) = 0 at 1^ , and thus

0 = lim inf^ 0 - HO)) (t) > lim mf^v(t) -h lim inf^ - HQ) W

= 10) (0 - HO) W ,

or HO) W > 10) 0) ; but the reverse inequality is obvious. Thus
10) = HO) I r^ , showing that IQ) is continuous for each v 0(096^ .
The additivity (and obvious positive homogeneity) of v ——> HO),
proved in 0.1 above, then immediately imply the same properties for I.B

The mapping I can now be extended in_a unique manner to the
linear space of functions formed by 6Sy€^ -(R3^^ by setting

I^i -^^O^-IO^
where v^ , ̂  G (f!SC^. In particular, one sees that l(u) = lim sup^ u
ifuCdige^.

Now let A be an outer-regular compact subset of W. It is known
[5, Cor. 8.2] that(B9e^ and (BO^W-A are isometrically isomorphic ;
we shall now show that this isometric isomorphism can be realized as
a boundary correspondence on I^e , with the usual exception.

THEOREM 2.7. - Let 3€ be hyperbolic on W ; let A be an outer-
regular compact subset o/W. Suppose thatWSt^ contains non-constant
functions. Then each h ̂ o^w-A has a continuous extension (which
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we shall also denote by h) to Fgc U (W ̂  A). The mapping

h |W - A——>A I F9€

is an isometric isomorphism, positive in both directions, of^o^e^^
with <°R(r^).

Proof. — Since we have excluded the exceptional case of 2.5
above, 2.5 and 1.2 imply that every continuous function/on Y^ can
be extended to a function continuous on (W ~ A) U r^ U 3 A which
vanishes at 3A ; one simply solves the Dirichlet problem with boun-
dary values / on F^ and 0 on 3 A. Denote the solution of that
Dirichlet problem by Ho (/). By [5, Thm. 5.3], H^ (1) < H(3W , W - A);
on the other hand, since

Urn inf^.A^od) - H^ , W - A)] = 1 - lim sup^ H(3W , W - A)>0

everywhere on 1̂  while limw.Al^V1) - H<^w , W ~ A)] = 0 on
3A, the reverse inequality holds and one has H(3W , W ~ A) == Ho(l).
To prove that sup |HL(/)0) |= sup |/(01 is entirely straight-

jceW-A t€L9€

forward. To complete the proof, one need only show that every
element of ^o^w-A ^as a continuous extension to (W ~ A) U r^ .

Given a nonnegative h ^^BO^W-A' consider the extension of h
to W obtained by setting h = 0 on A. This extension (which we also
denote by h) is bounded and subharmonic, hence the operator I of
2.6 above extends h continuously to Fge ' In fact, if a > 0 is any
real number for which h < a on W ^ A, then

a = I(a . Ho (1)) = I(a . H(3W , W - A))

= I[a . HOW , W - A) - h] 4- \(h)

= lim sup^ [a. H(3W , W ~ A) - h] + lim sup^ h

= a — lim inf^y h + lim sup^ h

or lim inf^h = lim sup^y/z = l(h) on F^ .

Thus \{h) extends any nonnegative h in^o^e^^ to be continuous
on (W ^ A) U F^ . Since ^SO^W-A ls generated by its nonnegative
elements and I is linear on (JS9€^ - (f^9€^ , the theorem is proved. I



SOLUTIONS OF ELLIPTIC DIFFERENTIAL EQUATIONS 299

COROLLARY 2.8. - // 96 is hyperbolic on W, then for any
outer-regular compact A C w the spaces(RfK^ and <BO^W-A are isome-
trically isomorphic, with positivity preserved in both directions.

Proof. — If (B9€^ consists only of multiples of 1, then by 1.2 and
2.5, ^o^w-A consists of multiples of H(3W , W ~ A), whence the
corollary follows for this case. lf(K9€^ does not reduce to the cons-
tants, then any function in either space has a unique continuous ex-
tension to W^ = W U r^ (vanishing identically on A in the case
of ^BO^W-A)- ^e i^r^try between (fH)€^ and ^BO^W-A ls g^611 by
composing the isometry between one space and its boundary values
on r^ with the inverse of the isometry between the other space
and its boundary values on P ,̂ . •

This last corollary already indicates that I\ and Fge (A) are
homeomorphic spaces, since their continuous-function lattices are
isometrically linearly and lattice isomorphic [4, Thm. 7, p. 1 008]. We
shall now show that the borders are attached to W in the same way,
i.e., that the spaces W^ = W U I\, and W^ (A) = W U F^(A) are
homeomorphic under a mapping which extends the identity mapping
on W. Thus with the exception of the one trivial excluded case, we
can reduce all considerations to a single space W^e , and we shall see
that W^c (A) was in fact independent of A.

THEOREM 2.9. - Suppose 96 is hyperbolic and (096^ does not

reduce to the constants. Let A be an outer-regular compact set. Then
there is a unique continuous mapping j : W^e ——^ W^ (A) for which
j | W = identity and which is a homeomorphism of the two spaces.
j | r^ may be described in the following way : if ho GJBo^e^^, then
ho (j(s)) = ho (5') f019 a^ s G ^e ' where ho (s) is the boundary value of
hQ at s e: r^ .

Proof. - Having defined j on W by the identity mapping, we
extend / to r^ as follows : let ^ be a filter in W whose limit in W^ is
s^F^ . Then for any ^o^^o^w-A ' dearly l im^/z^ = ho (s) ; but
looking at ^ in W^ (A) it is clear, since ̂  contains the complements of
compact sets, that ^ can have limit points on A^(A) only. Since
lim^ hQ = AQ (s), ^BO^W-A cannot distinguish those limit points and S1

must therefore be convergent to a point 7(5') E A^e(A). This defines; ;
reexamining the argument shows that / must now be continuous from
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W^ to W^ (A). We had observed above that by [4, Thm. 7] for each
point s € r^ there had to be one and only one point t E F^ (A) for
which HQ^S) = HQ^I) for every ^Ed^S^^ ; since we have found
such a point / (5)GA^(A) and ^BQ^W-A ^parates the points of
A^(A), we see that f(s) is the point t corresponding to s by the
Kakutani theorem. Thus / maps F^ 1-1 onto F^ (A) and / | Fgc is
already seen to be a homeomorphism.

We now have 7 sending W^ 1-1 onto W^ (A), so /-1 is well
defined ; it remains to show that it is continuous. Since its restrictions
to W and to F^ (A) are clearly continuous, it suffices to show that if^
is a filter in W with limit t e E^ (A), and if t = j(s), then for every
h GdSSe^ one has lim h = h(s). Suppose that /E ̂ (F^ ) is a non-
negative continuous function which takes its maximum value at
s = /-1 (0, and let h and h^ be the elements of^BS^ and ^o^w-A
respectively which take the boundary values given by/. Since h — h^ is
Se-superharmonic on W and nonnegative at Y^ , it is nonnegative on W.
Consequently lim inf^ h > lim inf ^ h^ = lim ̂ h^ = f(s) ; but the ine-
quality /C?) > /?(jc) for all ;c ^ W is clear, and therefore lim 3; h =f(s).
Since functions / satisfying the description above generate ^(T^ ),
we have lim^; h = h(s) for any /? G<B9e^ ; consequently /-1 sends the
filter ^ to a filter which converges to s = j~1 (t\ and continuity is
proved. •

We may consequently cease to distinguish between W^ and
W^ (A), F^ and F^ (A), and we shall simply delete the "(A)". The
interested reader may consider the exceptional case where (Si3€^
consists only of constants.

Section 3.

This section will be concerned with the boundary behavior of
functions in a pair (SC ,9C) of harmonic classes where 9€ > 3< in the
sense of [5, § 7 ff.]. We shall fix 36 and 3<: throughout the section and
assume that 1 € 9€^ and 1 G 3<^ . We shall also fix an outer-regular
compact set A ̂  W which is an excluded set for the pair (96, 3<) in
the sense of [5, § 7], that is, a set with S^ | W - A C 3C. By 0.2
above, there is no loss of generality in assuming that W ^ A has
only finitely many components.



SOLUTIONS OF ELLIPTIC DIFFERENTIAL EQUATIONS 301

PROPOSITION 3.1. - Let ̂ be a Hausdorff space of which W is a
proper dense subspace. If 9W = W ~ W is associated with 3€^, then
3W is associated with 3C^.

Proof. — By the "converse" part of 1.1 above, it suffices to show
that any v ^3<-w-A ^ich is nonnegative at 3(W ^ A) is nonnegative.
But given any such v, the function v A 0 is in9€^^ by [5, Prop. 7.2
(iv)]. Consequently, since v A 0 is clearly nonnegative at 3(W ^ A)
and 3(W ^ A) is associated with 9€1^^, we must have v A 0 > 0, or
v > 0, on W - A. •

PROPOSITION 3.2. - Let W he a Hausdorff space of which W is
a proper dense subspace. If there are no positive SC'harmonic !K.-
potentials in W - A, then H(3W , W ~ A) is the least 9€-harmonic
majorant of K(3W , W - A). //H(3W , W - A) is the leasts-harmonic
maforant of K(8W_W - A) and 3W is associated with 9C^, then 3W
is associated with 3^.

Proof. - Let h^ be the least SC-harmonic majorant ofK(3W , W ~ A).
The first statement follows from the fact that H(3W , W - A) - h^ is a
^potential. To prove the second statement let V be a function in
96^^ which is nonnegative at 3(W ~ A), and for the purpose of
arriving at a contradiction, suppose that a = — inf VQc) > 0

xeW-A

(see 1.1). We may replace V b y y = = ( ~ ~ v ) A O and reduce the problem^a '
to considering a nonpositive function yEge^^ which has limit 0 at
3(W ^ A) and whose infimum on W ~ A is - 1. The nonnegative
function — v is 9^-subharmonic on W ^ A, has limit 0 at 3A, and has
supremum 1 ;by the characterization ofH(3W , W ^ A) of [5, Prop..7.2
(iv)], it follows that - v < H(3W , W ~ A), or 0 < H(3W , W - A) + v.
The function on the right of this inequality belongs to 96^^ anc* ls

nonnegative, so it belongs to ̂ <\v^; hence

H(3W , W - A) 4- v - K(3W , W - A) e^w-A

and is nonnegative at 3(W ^ A), because

HOW , W - A) - K(3W , W - A) > 0 .
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Since 3(W ^ A) is associated with 96^ ̂

H(3W , W ~ A) + v - K(3W , W - A) > 0

holds everywhere in W ^ A. This can be written as

HOW , W - A) + v > KQW , W -A) ;

since the left side is 9e-superharmonic and the right side 9^-subharmonic,
the inequality is unaltered by replacing KQW , W ^ A) by its least
96-harmonic majorant: H(3W , W - A) 4- v > H(3W , W - A), or
v > 0. This finishes the proof. •

In order to motivate the next theorems, we consider the following
example : let W = ]0, 1[, let 3€ be the class of solutions of u" = 0,
and 3<: be the class of solutions of x2 . u19 = 2u, a basis for which is
( 1 ^^ - , x 2 ^ . It is easily verified that 3€ > 9<:, that W^ = WJ^ = [0 , 1 ],
i x i
and that 1^ j= {0 , 1} but F^c = {1}. It is immediate that 1"̂  is asso-
ciated with 9^ but not with 9€^. And although Fjc is regular for
W and 3C, and 1̂  is regular for W and 96, F^ is not regular for W and
9^C ; indeed, every bounded function in 3C must vanish at 0. The diffi-
culty in this case lies with barriers: clearly every SC-barrier is a3<:-
barrier, but there is no 3C-unit-barrier at the point 0 E F^e = 9W.
This example, incidentally, will also prove useful in demonstrating the
sharpness of 3.7 below.

The following two theorems provide a partial answer to the
question " under what conditions does the regularity ofW (as a dense
subspace of a Hausdorff space W) with respect to one of two compar-
able classes 96 and 9<: imply its regularity with respect to the other ?"

THEOREM 3.3. - Let W be a^ Hausdorff space containing W as a
dense subspace such that 3W = W - W is associated with 9€^ (and
thus with 3<:^, by 3.1 above). Let XQ E 3W. If there is aSC-unit-barrier
u for W at XQ and a system of W^barriers for W at X Q , then there is
an ^unit-barrier for W at XQ and a system of ̂ -barriers for W at XQ ,
whence XQ is a regular point with respect to 3€.

Proof. - It is clear that u v 0 is an ^C-unit-barrier at XQ . Since
XQ is regular with respect to 9<: (by 1.2 above), there is a neighborhood
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o;o of XQ for which c*;o c W - A and K(3W , W - A) > - in o?o HW.

Let &o be a barrier in the system of Wi -barriers for W at XQ . Without
loss of generality, assume that the domain of b is the intersection of a

neighborhood co C o?o with W and that BQ < — on a? 0 W (taking

&o A 1/2 if necessary). Since &o - K(3W , W - A) < 0 on co,

& o - K O W , W - A ) ( E ^ n w •
Consequently the function b defined by

b = &o - K(3W , W - A) 4- H(3W , W - A)

satisfies the conditions for an 3C-barrier for W at XQ , and since
H(3W , W - A) > KQW , W - A), b is positive wherever b^ is positive ;
in particular, since &o is positive at 3(o? HW) — (co H 3W), b is positive
there also. Thus there is a system of 96-barriers for W at XQ . •

THEOREM 3.4. — Let W be a compact Hausdorff space con-
taining W as a dense subspace. Assume either that 3W = W ^ W has at
least two points or that 1 ̂  9€^ and 1 ̂ .Wi^ . Then W (as a subset of
W) is regular with respect to 9C if it is regular with respect to 3€ and
there is a ̂ unit-barrier at each point of 3W.

Proof. — This is an immediate consequence of 1.2, 1.3, 1.4, and 3.3
above. •

THEOREM 3.5. - Let W^(A) denote the compact Hausdorff
space W U A^ (A). /// is a continuous function on 3W = Ajc (A), then
f is resolutive with respect to !S€on 3W. Similarly, if f^- e^(A^(A))
and /o denotes the extension off to 3(W ^ A) obtained by setting
/o I 3W = f and /o | 3A = 0, then f^ is resolutive with respect to 96 on
3(W - A).

Proof. — We prove only the first part of the theorem ; the other
half is similar. Since 1 is 9^-superharmonic, we have H(1,W) <1 and
H(l, W) < H(l, W), whence 1 is 9e-resolutive on 3W. Making the con-
vention (as we did in § 2 above) that functions indi^SC^^^ are to
be thought of as extended (continuously) to all of W by setting them
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equal to 0 on A, we see that i f f e i s a nonnegative element of ^o^w-A»
then k e3e. Consequently k < H(k \ 3W , W), whence

H(k | 3W , W) < H(k | 3W , W)

and k \ BW is 36-resolutive. It is known [1, pp. 100 ff.] that the set of
flC-resolutive continuous functions on BW forms a closed vector sublat-
tice of <°R(8W), and we have shown that this sublattice contains 1 and
contains ^BO^W-AI 8W (since (B^ 9C^ ̂  is generated by its non-
negative elements). Since ^o^w-Al aw separates points of 8W, the
lattice form of the Stone-Weierstrass theorem implies that the S^ -
resolutive continuous function on 9W constitute all of e^(8W). •

In [5, § 8], one of the authors showed that there is an isometric
isomorphism from (B9<^ into (f^SC^ when 96 and 3C are both hyper-
bolic on W. We shall now reestablish that isomorphism, realizing it by
identifying functions with their boundary values on 1^ and 1̂  .

THEOREM 3.6. - Let 3€ and 3K: be hyperbolic on W and assume
thaKfSSK,^ does not reduce to multiples o/l. Then there are isometric
isomorphisms o/tf33C^ and ^o^w-A onto subspaces of(Q3€^ and
^^^S^n by

k —>k\Y^——>Ko(fe|r,c)——>H[(Ko(fc|r^))|A^A),W]

k ——>k\r^——>K^(k\r^)

——> H[(Ko (k | F^)) | A^(A) U 3A , W - A]

k —>fc|A^(A) ——> H[fc |A^(A) ,W]

and

k ——>fc|A^(A) — — > H [ f c | A ^ ( A ) U 3 A , W - A ] ,

\^here for any continuous f defined on I^c , K^C/) means the unique
element of^SC^^ whose restriction to 1̂  is f. The isomorphisms
of tf?o^w-A mto ^^w anc^ ^O^W-A respectively send nonnegative
functions fc^^o^w-A to ^^r leasts-harmonic majorants on W or
W ^ A respectively, and all isomorphisms preserve boundary values
on I^c .

Proof. — It is clear that each of the mappings constructed above
is a composition of isometries and is thus an isometry. Boundary
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values at Fjc are preserved because the points of Fjc are regular for W
and A^(A) with respect to 96, by 3.4 above. (It should be observed,
however, that elements of(ii3€^ or^o^C^^ are not in general deter-
mined by their boundary values at 1̂  , since the latter may not be
associated with 3€^.) Finally, the mapping which sends each non-
negative k in ^BO^W-A lnto ^e Unction H ( f c | A ^ ( A ) , W ) surely
sends k to its least 9C-harmonic majorant, for Ajc(A) compactifies W
and k is continuous on W^ (A) = W U A ̂  (A), so any function
s E 3€^ has lim inf^ s > k on A jc(A) if and only if s > k on all ofW.
The argument for sending k ——> H[k \ (A^(A) U 3 A), W - A] is
identical.

Note that ifd39<^ consists only of the constant functions, then
^O^W-A = ^O^W-A slnce 1 ls ^ot^ ̂ " anc* 3^-harmonic in W ^ A
(see 7.3 of [5]). This fact together with 2.8 implies that in this case
there are isometric isomorphisms of (fKK.^ and tfSo^C^y^ onto (096^
and ^o^-A-

THEOREM 3.7. - Assume that neither (Q9€^ nor (B3<:̂  reduces
to the constant functions. There is a continuous (necessarily unique)
mapping f : W^ ——> W^ v^hich extends the identity mapping on W
and which is determined by the following property : if k E (BQ^W-A '
then H(fe | A ^c(A) U 3A, W ^ A) takes the same value atf(t) as k does
at t, where rEFjc . The mapping f is 1-1, and thus establishes a
homeomorphism between F^ and /[F^] = C C r^ ; C is open and
closed in F^ .

Proof. — Each nonnegative element of <%o^w-A belongs to
SC^A' so ^ ^(^) denotes the greatest O^C-harmonic minorant of a
nonnegative h G^^e ̂ ^ (on ̂  set ̂  ̂ ^)» ̂ en the map h ——> K(A)
is additive and positively homogeneous by 0.1 (applied to each
component o f W ^ A), and it has an additive extension to (BO^W-A-
Since h — K(h) is a 9C-potential on W ^ A for any nonnegative
AG^Se^^, one has lim inf^^h = lim K(h) at I\ , and the
right side of that equation is a continuous function (cf. 2.7 above).
Furthermore, the inequality 1 > H(3W , W - A) > K(3W , W - A) im-
plies that H(3W , W ^ A) has limit 1 at each point of F^ . A straight-
forward modification of the argument employed in the proof of 2.7
above will now show that
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Um inf\y^ h = K(A) = lim sup^y^ h

at each point of F^ . Consequently, extending h to take the same
boundary values as K(A) on I\ yields a continuous extension (obviously
the unique such extension) of h to W ̂  = W U F^ . Thus, as in the
proof of 2.9 above, the identity mapping on W can be continuously
extended to map Wgg into W^(A) ; denote that extension by/. (Cf.
the construction of Wjjg (A) given by the method of [6].) It follows
readily from the facts that every 9€ -potential on W ^ A is a 3C-
potential on W - A and that HQW , W - A) has limit 1 at Ijc , that
/[F ] C r^, ; denote /[F^] by C. By 3.6 above, every continuous
function on F^ is a set of boundary values for an appropriate element
ofcBoffe^A' so ^e elements of^S^^ (or, more accurately, their
extensions to F^ ) separate the points of I\ ; consequently/is 1-1,
so C and F^ are homeomorphic.

It remains to show that C is open and closed in F^ . To show
this, we begin by observing that for a nonnegative h G^^e^^ to be
aye-potential it is necessary and sufficient that it takes zero boundary
values on C, because then it also takes zero boundary values on F^ and
thus can have no nonzero nonnegative 3C-harmonic minorant. We
claim that there is a largest ^-harmonic 3^-potential dominated by
H(9W , W ~ A). Indeed, let h^ be the least 9C-harmonic majorant of
KQW , W ~ A), so that the function p = HQW , W ~ A) - h^ is the
greatest ge-harmonic minorant of H(3W , W - A) - K(3W , W - A) ;
since the latter is a 3C-potential (cf. 3.2 above), so is p. Now, if h is
any 9e-harmonic 9K^-potential and h < H(3W , W ^ A), then

[H(3W , W - A) - h] - K(3W , W - A)

is 3C-superharmonic on W ^ A, with limit zero on 3A ; on the other
hand, since h has limit zero at F^ , one has

0 < [H(3W , W - A) - h] - KQW , W ~ A)

at r^ . Hence (since 3AUrjc is associated with9<^^) one has
0 < HOW , W ~ A) - h - KQW , W - A), or

h < HOW , W - A) - KQW , W - A) ,

everywhere on W ~ A, whence h <p. Clearly p takes the value zero
on C ; if on the other hand p(^) <^ 1 f01 some t^ E Fgc ^ C, then
there is an /E GR^ ) for which /[C] = 0, 0 </< 1 - p , and
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f(to) = 1 — p(to). Letting h^ G (BQ^W-A^ ^e function whose boun-
dary values are those given by /, we have p + h^ < H(3W , W ~ A)
and p 4- h^ is a 3C-potential, yielding a contradiction. Consequently
p | Fae is the characteristic function of F^e ^ C, whence C is open and
closed. •

Remarks.

1) From the definition of the mapping/ : I\ ——> C (which is
a homeomorphism) and the definition of the isometry from tf?o^w-A
into <B()^W-A ln ^•6 above, it is easy to see that the isometry may now
be interpreted as follows: if ^ed^S^^ has the boundary-value
function g on F^ , then the image of A: in <®o^w-A ̂ der the isometry
has the boundary-value function which equals g o f~1 on C and 0 on
F^e ^ C. (The choice of 0 is dictated by the fact that if k is non-
negative, then its image in tf3o^w-A ls lts l^stHC -harmonic majorant.)
Similar interpretations are available for the other isometries of 3.6.

2) IfK(3W,W- A) has limit 1 at each point ofC, then K(3W ,W - A)
is a SiC-unit-barrier at each point ofC, whence each such point is regular
with respect to 9^. Should this happen, the same methods employed
above will show that / is a homeomorphism of W^ and W U C. The
authors have not found a simple necessary and sufficient condition
that this occur.

3) The example of two classes S^ and 3C on W = ]0 , 1[ consi-
dered in the discussion preceding 3.3 above is an example in which
c^r^e .
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