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ANALYTIC CONSERVATION LAWS
by A. P. STONE 0

1. Introduction.

Let (u°, . . ., u") form a (local) coordinate system belonging
to the ring A of germs of analytic functions at some point
P of an analytic manifold, and let u°(P) = = . . . = = u"(P) == 0.
Denote by 8 and E the corresponding localizations of the
modules of differential forms and vector fields on the mani-
fold. These are in fact free A-modules whose generators are

denoted by (c?u°, . . ., du^ and (-^,. . . , -^\ respectively,
\OM' OU j

where d is the operation of exterior differentiation. If h is
any endomorphism of 8, one defines a conservation law for
h as any 6 e= 8 for which both 6 and A6 are exact. Conservation
laws defined in this manner can be shown to have a relation
to conservation laws in the sense of physics. For a given
h e Horn (8, 8), the problem investigated in this paper is that
of obtaining all conservation laws for h. It will also be conve-
nient to modify the problem slightly by placing some restric-
tions on h. These will be announced in section 3.

We shall denote elements of § by 6, y, . . . and elements of
E by L, M, . . .. If 0L is the ring of endomorphisms generated by
h and scalar multiplications, then h is cyclic (i.e., non-deroga-
tory) on § if and only if there exists an element 0 e 8 such that
0L 9 == 6; 8 is called a generator of 8 with respect to h. Equiva-

(1) This paper is based on the author's Ph. D. thesis (University of Illinois, 1965,
directed by H. Osborn); the research was supported in part by NSF grants NSF-
G-25226 and NSF-GP-3624.
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lently h is cyclic on 8 if and only if the minimal and charac-
teristic polynomials of h are identical. Hence if h is cyclic and
9 is a generator of 8, then (9, A9, . . ., A"9) is a basis for 8 and
with respect to this basis h is represented by the matrix

/O ...... ^
1 ^

(A) = 0 \^

\0 . . x 1 a,

and the characteristic equation for h is

A"+1 ==aoI+OiA+ - • • +^A\

Finally, we note that A is cyclic on 8 i/* and only if the adjoint
of h is cyclic on E. Since we shall write Lh when the action of
A is on L e= E, and A9 when h acts on 9 e 8, no distinction in
notation will be made between h and its adjoint. That is,
(LA, 9) = <L, A9).

2. Nijenhuis Torsion.

An element h e Horn (8,8) induces homomorphisms of the
exterior algebra A*8 generated by 8. Since 8 is a free module
generated by du°, . . ., c?u",

A*8 == A°8 © A^ e • • • e A"-^
where A°8 == A and A^ == 8. In particular we make use of
the induced transformations,

A^8 ̂  A^ i==0,l,2
which are given by

(2.1) AW (9 Ay) = A 9 A 9 + 9 A A y
(2.2) ^{Q/\^)=h^/\h^

for any 9, 9 e 8. The mapping AW is taken to be the identity
on 8 A 8. It is easy to verify that these mappings are well-defi-
ned. An element [A, A] of Horn (8, 8 A 8), called the Nijenhuis
torsion of A, is defined by setting

(2.3) [A, A]9 == - A<2) M + A<^ d(A9) - AW d{h2^)
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for any 0 e 8. It was originally defined in [2] and it also appears
in [1] and [4]. One notes that additivity and homogeneity
over the reals is clear, and a short calculation will establish
that [A, h] (a6) == a[h, /i]9 for any a e A and 6 <= 8.

Since E A E c^ Horn (8 A @, A), a dual characterization of
[A, h] may be obtained. This is given for any L and M e E
by setting

(2.4)
(LAM) [h, h] = [L, M]h2 + [Lh, Mh] - [Lh, M]h - [L, Mh]h.

3. The Problem of Conservation Laws.

The problem of conservation laws is to find all forms 6 <= 8
such that both 6 and A6 are exact, for any given h e Horn (§, 8).

A
The existence and uniqueness of conservation laws has been
established in [4], by Osborn under the conditions that h
be cyclic, that [h, h] vanish, and that there exists a generator
L e E such that (L, LA, ..., LA") all commute. It is the purpose
of this paper to show that the commutativity condition may
be removed if one strengthens the condition that h is cyclic
to the condition that h possess distinct eigenvalues. While
this involves the introduction of the complex field into the
problem, the condition of distinct eigenvalues is not unnatural
since it appears in the study of hyperbolic systems of partial
differential equations. Finally, the condition that [h, h]
vanishes is an integrability condition which in fact guarantees
the existence of a basis of conservation laws for 8.

4. Distinct Eigenvalue Case.

Let h have distinct eigenvalues Xo, . . . . X ^ and denote by
Lo, . . . , L^ a corresponding eigenvector basis for E. Then the
vanishing of the Nijenhuis torsion of A is a necessary and
sufficient condition that there exist coordinates ^°, . . . ,?"

such that —;-? • • • , — is an eigenvector basis for E, and that
^° ^n °

the eigenvalues X, are functions of a single variable v\ As
16
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a result one can always obtain an eigenvector basis of 8 consis-
ting of closed forms. Another consequence of the vanishing
of [A, h] which is utilized in this paper is the fact that the Lie
bracket [L^ Lj] of any two eigenvectors L^ and Ly can be
expressed as a linear combination over A of L^ and Ly alone.
The preceding results are obtained in [2].

In the event that all of the eigenvalues are constant, one
easily obtains a basis of E generated by an L with the pro-
perty that (L, LA, . . ., LA") all commute.

LEMMA 4.1. — Let [A, h] = 0 and assume that the eigen-
values Xo, . . ., ̂ n °f h are distinct and constant in a neighborhood
of some point P of an analytic manifold. Then there exists a
generator L <= E such that [LA1, LA-7] = 0 for any pair (i, /) of
non-negative integers.

Proof. — One merely uses the existence of the eigenvector
, . / ^ b \ , . T 1basis ( —Q? • • • ? —^ i to obtain a generator L by setting

T ^ -i- -^ ^
"B^ " ' + ^ '

Since the eigenvalues are constant one obtains the result very
easily.

At the other extreme, if all the eigenvalues are non-constant
in a neighborhood of P then (rfXo, . . . , r f X n ) is a basis of ^.
If it were not, then d^Q A — A cTkn = 0 and one obtains a
contradiction by evaluating the left-hand side of this equation

on —.- A • • • A —• We may now obtain the following
°̂ ^n v °

lemma.

LEMMA 4.2. — Let [A, h] = 0 and assume that the eigenvalues
Xo, . . ., An of h are distinct and non-constant in a neighborhood
of some point P of an analytic manifold. Then there exists a
generator L e E such that [LA1, LA7] = 0 for any pair

(i,/)^(0,l, ...,n).

Proof. — Since the coefficients a; of the characteristic
polynomial of h are symmetric functions of the eigenvalues,
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one may easily verify that
n

rfaoA • • • f\da^ = n (^ — ^) rfXoA • • • ArfX^
i<7

and hence that {da^ . . ., rfaj is a basis of 8. It is not hard to
verify that the vanishing of the Nijenhuis torsion of h is suffi-
cient to guarantee that

h dai = da^ 4" ^i dan

for i = 0, 1, . . ., n. One of course defines a_i to be zero.
Hence with respect to the preceding basis, h is represented

by the companion matrix

(h)=

'0 .... oo'
1 0,

\
.0 1 a,

and one can then easily verify that — is the desired generator,
/ ^ ^ \ ^o

that ( — » • • • » — ) is a cyclic basis of E, and that da^ is a

generator of the dual space €.

5. A Decomposition of 8.

With these special cases disposed of, let us assume that
(Xo, . . ., Xp) are locally constant and that (Xp+i, . . ., XJ are
locally non-constant. Let us also assume that all of these
eigenvalues are distinct. Let (6°, . . ., O^, O^, . . ., 6") be a
corresponding basis of eigenforms of 8, and let us consider
the direct sum decomposition 8 = S^ e §2 where @i is spanned
by the eigenforms (9°, . . ., 9^ and 83 ls spanned by the eigen-
forms (9P+1, . . ., 9"). One may also regard h as a direct sum
Ai©/i2, and it is easily verified that [A(, AJ == 0 if [A, h] = 0.
We then note that there exist projections P, of 6 onto ^,
i = 1,2, satisfying

(i)
(")
(iii)

P?=P.
PA=0

Pi + P, = I.
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A homogeneously generated ideal (? of A18 is said to be
closed under exterior differentiation d if and only if for each
(peC, d^eC. Let (°i be the differential ideal generated by

(6°, . . . , 9^ ) and Cg

the differential ideal generated by (O^4-1, . . ., 6"). The following
results show that if [h, h] ==0, then dC, c (^ and hence the
ideals (°, are generated by locally exact 1-forms as a conse-
quence of the Frobenius theorem.

LEMMA 5.1. — If h has distinct eigenvalues and [h, h] == 0
then [P, P,] = 0. L , J ,

Proof. - Let (Lo, . . ., L^, Lp+i, . . ., LJ be a dual basis of
eigenvectors, and let E, be the dual space of 8,. Then any M
and N in E may be written in the form M == Mi + Mg and
N = NI + N3, where M,, N, are in E,. Since [A, h] = 0,

[NX, MJ = S a,L, and [N,, M,] = ^ .̂L,
»==o y=p+i

for a,, (̂  <= A. A short computation will then establish that
(NAM)[P ,P , ]==0 , for . = = 1 , 2 .

LEMMA 5.2. — Let P be any projection. Then

(i) 2P<2) == PC^pO) — pd)
(ii) 2P<2) == p(Dp(2) == p(2)p(i)

The proof of Lemma 5.2 is a direct verification from the defi-
nitions of P<1) which are given in equations 2.1 and 2.2. This
lemma may then be applied to obtain the following theorem.

THEOREM 5.3. — For any 0 e §,

(i) - 2P^rf(P,9)==P,D[P,,P,]e
(ii) - 2PW d(P^) = P^[P,, PJ9.

Hence, if h has distinct eigenvalues and [h, h] = 0 then the
preceding theorem implies d&, c (^, i == 1,2.
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6. CycBc Case.

Since h^ and h^ are cyclic, one may regard (°i and (^ as being
generated by elements of the form

^=|y°, . . . ,9? j , e,=|9p+i, ...,<p^
where 9° generates gi and y^1 generates Sg. That is,

h^=^\ 0</<p
/^P == 6^0 4. ... 4. ̂ p
A^^^+i, p+i^y,<^
^== w^1 + • • • + c^^,

where 6y and c^e A. The 6y in fact are symmetric functions of
the eigenvalues Xo, . . ., Xp and the ^ are symmetric functions
of the eigenvalues Xp+i, . . ., X^. Since rfC, c 6, there exist
coordinates (t/°, . . ., ̂ ; z^4-1, . . ., z") such that 9^ == dyj where
0 < / < p and also such that ^ = ̂  where p + 1 < /c < n.

It is easy to verify that — is a generator with respect to h^
_ i7

of the space E^ which is dual to ^i. It is somewhat harder to

verify that — is a generator with respect to h^ of Eg. TheWQ
idea of the proof, which is similar to that contained in Lemma
4.2, is a follows. If A is the Vandermonde determinant of the
eigenvalues Xp+i, . . . , X » , one finds that the relations

h^dcj = dc^ + Cjdc^_p_i
dc, A . • • A dcn.^ = (- l)("-P-iX"-p)/2 ^__^ /\ ... ̂  ̂ -p-i ̂ _^

= (- l^-^-^A^ A • . • A rfX,
are consequences of the vanishing of [Ag, ̂ ] and the distinctness
of the eigenvalues. Thus rfc^_p_i generates 83 with respect to
h^ and with respect to the basis (rfco, . . . , r f^_^_i) of 82,^2
is represented by the companion matrix

/O Co

(^2) = ( \ \

Vo N 1 c,.
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One then concludes that — generates Eo and that
bCo

\6Co ^n-p-l/

is a cyclic basis of E^. These results may be summarized in the
following theorem.

THEOREM 6.1. — If [A, h] = 0 and if the eigenvalues of h
are distinct, with p <^ n eigenvalues constant in a neighborhood
of a point P of an analytic manifold^ then there exist generators
N, ofE, such that the bases (N1, . . ., Ni/i?) and (N3, . . ., Ng/ig-^1)
of EI and JL^ respectively all commute. That is, there exist
coordinates (y°, . . ., y^; z^, . . ., z^ such that (dy°, . . ., dy^
and (dz^y . . ., dz") are bases of &^ and 83 respectively. More-
over y the action of h on the basis (dy°, . . ., dy^ u (dz^1, . . . ,ck'1)
of 8 is given (schematically) by

ro i o
0

0 r^i

0

bo b^ . . . . b.

0 1 0 ... 0
0 \

\

d̂z^

CQ Ci ^n-p-l.J dz"

The last statement then guarantees that if one solves the
problem of conservation laws in 81 and 8g separately, then
the problem is also solved in 8. Since the last theorem also
removes the commutativity restriction imposed in [4], at
least for the case of distinct eigenvalues, one is now in a posi-
tion to obtain conservation laws.
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