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ON RESTRICTED MEASURABILITY

by A. K. MOOKHOPADHYAYA

1. Introduction and Definitions.

The purpose of the present paper is to study some proper-
ties of the restricted measurability [5] and to show that
a Radon measure similar to that of [4] can be constructed
with the help of the notion of the restricted measurability.
Before we go into details, we write out, for the sake of comple-
teness, a few definitions and notations some of which are
borrowed from the above papers and the standard texts

such as Halmos [1] and Kelley [2].

1.1. DerFiniTION. — W is a measure (Carathéodory) on X
if 1 is a function on the family of all subsets of X to 0 <t <
such that

(i) 4(0) = 0
1) 0<<pA < Y B, whenever Ac U B,cX.

n=1
1.2. DeriniTiON. — A € X is p-measurable if for every T ¢ X
pT =w(TnA) + (T ~ A)
where 1. is a measure on X.

1.3. DeriNiTION. — A partition is a finite or infinite dis-
joint sequence {E,} of sets such that‘ ’E‘ = X.
1
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1.4. DeriniTiOoN. — A partition {E.} is called a p-partition
if
vA = Y w(AnE)

i=1

for every A in X and where 1. is a measure on X.

1.5. DeFiNiTION. — If W is a measure on X, then a parti-
tion {E.{ is called a p-partition F if for every E of F

w(TE) = ¥ w(TEnE) wheneyer TcX.

i=1

1.6. Derintrion. — If {E;} and {F,} are partitions, then
{E.{ is called a subpartition of {F,} if each E, is contained
in some F;

1.7. DeriniTioN. — A set E is a p-set if the partition {E, E'}
s a p-partition.

1.8. DeriNiTION. — A set D is a p-set F if the partition
{D, D'} is a p-partition F.

1.9. DeriniTION. — A is p-measurable F if u is a measure
and, for each member E of F

w(TE) = w(TE n A) + (TE ~ A)
swhenever T c X.

1.10. DerinitioN. — F is p-convenient if p. is a measure,
F is hereditary, and corresponding to each T of finite u. measure

there exists such a sequence C that y.<T ~ U Cj> = 0 and
Jj=o0

for each integer n, C,cC,; ;e F and C, is a p-set F.

1.11. DeriniTiON. — Sect (i, B) is the function f on the subsets
of X such that f(a) = w(aB) for ac X.

1.12. DerFiniTION. — If ¢ metrizes X, then
dist (A, B) = inf {p(z, y); z< A, yB}.



ON RESTRICTED MEASURABILITY 161

1.13. DeriniTiOoN. — If X is a topological space, then .
is a Radon measure on X if i is a measure and

(1)  open sets are w-measurable

() if C is compact, then u.C << o

(ii) if « is open, then pa = sup{uC; C compact, Cc «}
(iv) if AcX, then pA = inf{pa, « open, A cal.

1.14. DeriniTioN. — (D, <) is a directed set if D =~ 0,
D s partially ordered by << such that for any i, j €D, there
exists ke D with v <k, ] <<k.

Let X be a regular topological space; & be a base for the
topology; (D, <) be a directed set and for each te D, p; be
a Radon measure on X.

For each ae®, let

g(a, E) = ;—ft—ﬁ Sect (w;, E)a where E is a member of F.

Let 9(A, E) = infg 3 g(o, E); H countable, He$, Ac|_J«
aeH aeEH
and ¢*(A, E) = inf sup ¢(C, E) where A cX.

a open C compact
ACa CCa

Then ¢ is a measure on X generated by g and % [3].

2. Theorems and Corollaries.

2.1. Tueorem. — Product of two p-partitions F is a @-par-
tition F.

Proof. — Let {E;} and {F,} be two wu.-partitions F, then
for every E of F

W(TE) = 3 wTEnE)  and  w(TE) = 3 w(TEaF)

whenever T c X.
Since

Zp.TEnEnF ngTEFnE)i

2
= Y TEnF))
J
x(

the proof is complete.



162 A. K. MOOKHOPADHYAYA

2.2. Tueorem. — If a subpartition {F;} of a partition
{E:} is a p-partition F, then {E.} is a p-partition F.

Proof. — For T < X and any member E of F, we have
3 WTEnE) = % u[TEn { |_JE,}]
i i j
where UEﬁ = E; and E; is a member of {F}
7

< ; % *(TE n E;) = «(TE),
since {F;} is a p-partition F. The reverse inequality is,
however, clear. This proves the theorem.
2.3. Tueorem. — A partition {E;} is a p-partition F if
each E; is a p.-set F.

Proof. — Suppose that each E; i1s a p-set F. Then for E
in F and TcX, we have

w(TE) = w(TE n E;) + w(TE n E;)
And = w(TEn Ey) + w(TEn {Byu By ---}).
n

“(TEn {E, uEgu
=wTEn{E,uE;u - -} nE,)

+ #(TEn {E;uEgu ---{ n E,)
o = wTEnE,) + w(TEn {EguE u ---}).
0,

W(TE) = (TEn E;) + w(TEn E;) + w(TEn {EguE u ---}).
Proceeding in this way, we ultimately obtain
W(TE) = WTE n By) + W(TE By) + - = 3 w(TE n E).

This proves that {E;} is a p-partition F.
Conversely, suppose that {E;} is a p-partition F. Then for
every E of F and TcX, we have w(TE) = X w(TE n E,).

Replacing T by Tn {E;uEgu -}, we obtain
W(TEn {EguEgu - -}) = 2 “(TEn {E,uEsu -} nE)
— W(TE n E;) 4+ (TE n Ey) +
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So, '
(TE) = w(TE n E;) + w(TEn {E,u Eju -+ })
— W(TE n E,) 4+ (TE n EJ).

This shows that E; is a p-set F. Similarly, it can be shown
that each E;, : = 2.3,... 1s a p-set F.

Cororrary. — If F is p-convenient, then any w.-partition F
is a p-partition.

Proof. — Let the partition {E;} be a yp-partition F, then
each E; i1s a p-set F. Since F is p-convenient, by Theorem
3.4 [5], a p-set F is a w-set. So, each E; is a w-set and conse-
quently the partition {E; is a p-partition f{p. 48 [1]}.

In the following two theorems, we shall suppose that
p metrizes X.

2.4. TaeoreM. — If F is hereditary and p.(A v B) = pA + B
whenever A and B are such members of F that d(A,B) > 0,
then each open set is a p-set F.

Proof. — This theorem is due to Trevor J. McMinn [5].

2.5. Tueorem. — If F is p-convenient and every open set
is a p-set F, then @ is a metric outer measure.

Proof. — It follows from Theorem 3.4 [5] that each open
set is a p-set. Let A and B be two sets with d(A, B) > 0.
Let « be an open set such that Aca and anB = 0. Then

“(AuB) = u(fAuB}na) 4+ p(fAuB} ~ a)
= pA + uB.

In the following theorems, we shall suppose that X 1is
a regular topological space and % be a base for the topology.

2.6. Tugorem. — If A and B are disjoint, closed compact
sets, then

¢(AuB, E) = ¢(A, E) + ¢(B, E) for each E of F.

Proof. — Let a and B be two open sets such that A c«,
Bcf and anf = 0. This is possible, since X is regular.
If ¢ > 0 is arbitrary, there exists a sequence {v,} of open
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sets such that
AuBe| Jvw and 3 g0, E)< $(AuB,E) +e

n

Let v, = v, na and v, = v, n f3, then v,, v, are open and

ACUV;, BCUV’,:.
SO’ n n

9(A, E) + ¢(B, E) < 3 {g(w, E) + g0, E)§

n

— 3 (g0 o E) + gbnn b, E)]
% g— Sect (4, E)(v, n o)

+ie Sect (i, E)(v, n B)

< % LED Sect (i, E)v,
= 2 g0, E)
< 9(AuB,E) ..
Since ¢ > 0 is arbitrary, we have
(A, E) + ¢(B, E) < ¢(A v B, E).

The reverse inequality is clear, because ¢ is a Carathéodory
measure. This proves the theorem.

2.7. Taeorem. — For each E of F, ¢* is a Radon measure
on X.

Proof. — (1) If « is any open set, by definition
7(0, E) = sup ¢(C, E) < ¢(x, E).

C compac
Cca

So, for any A c X, we have
¢*(A, E) = inf sup ¢(C, E) = inf ¢*(a, E)

o open G compact o open
Aca CcCca Aca

< inf ¢(a, E) = ¢(A, E).

o open
ACa
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If C 1s compact and « 1s open, C c a«, we have
¢(CGE)<¢X« E), so  ¢(C E) <<%, E).

Therefore, if C is compact, ¢(C, E) = ¢*(C, E). But, it is
clear that for any compact C, ¢(C, E) << oo and hence
¢*(C, E) < oo.
(i1) Let « be an open set, TcX and &> 0 arbitrary.
Since for any AcX, ¢*(A, E) = inf ¢*(v, E), there exists
v open

. ACvY
open set T/, T< T and ¢*T, E) < o*(T, E) + «.
Also, ¢*(a, E) = sup ¢(C, E).
G compact
Cca

Therefore, since X is regular, there exists a closed compact
set C;cT' na such that ¢*(T" na, E) < ¢(C, E) 4 . Simi-
larly, there exists a closed compact set C;cT' ~ C; such

that ¢*(T' ~ G, E) < ¢(G,, E) + =.

So,
¢(Tna, E) + ¢*T ~ a, E)
< ¢ (T na, E) 4+ ¢5(T" ~ G, E)
= ¢"(C v Gy, E) + 2¢, by Theorem 2.6
< (T, E) + 2¢
< ¢ T, E) + 3e.

Since &€ > 0 is arbitrary, this shows that « is ¢*-measurable.
The other properties are evident. This proves the theorem.

2.8. Tueorem. — If A and B are sets of which any one of
them 1s open and A n B = 0, then

¢*(AuB,E) =¢"A,E) 4+ ¢*B,E) foreach E of F.
Proof. — Let A be open and so it is ¢*-measurable. Hence

¢(AuB, E) = ¢*{(AuB)n A, E} + ¢*{(AuB) ~ A, E}
¢*(A, E) + ¢*(B, E).

Il

2.9. Tueorem. — If X is a metric space, then ¢* is a metric
ouler measure.
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Proof. — This 1s clear.

In conclusion, I offer my best thanks to Dr. B. K. Lahin
of Calcutta University for his helpful guidance in the prepara-
tion of this paper.
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