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1. Introduction •

The origin of this work can be traced to two sources. The first is the
work of J. Wolff [24] in which he produced a series of the form

FOO^y—1—— 0 < 2 [ ^ | < oo, !wJ<l , (1.1)
^JWn——Z I ' ' i

n=l,2,3,. . .
such that

F(z)=0 a U [ z [ > l . (1.2)

Related questions were investigated in some detail by Brown, Shields, and
Zeiler in [4], with the unit disc replaced by a general Jordan domain. In
some sense, a substantial part of the present paper represents the mathe-
matical content of that paper after such superstructure as series like (1.1)
has been stripped away. To see the underlying idea, we may rewrite
(1.2) as

F(^f-^=0, all z [> l , (1.3)
J w — z '

where [JL is the complex measure consisting of point masses {an} at the
points {Wn} for n = 1, 2, 3,... But from (1.3), it follows easily that

jy(HOd[ji(HO=0 (1.4)

for each function / that is bounded and analytic in the unit disc, so that
we are, in effect, concerned with measures of a special kind that annihilate
all bounded analytic functions.

At this point, special restrictions on the domain G of the functions
become irrelevant, except that to avoid trivialities, we suppose that G
is a region and that not every bounded analytic function on G is a
constant. (It is likely that many of our results and methods hold equally
well for bounded analytic functions on Riemann surfaces, or for bounded
analytic functions of several complex variables, but we do not pursue
this line of thought.)

It is a natural step from here to pass to a detailed study of the
duality

(f^)=Sfdy.



SPACE OF BOUNDED ANALYTIC FUNCTIONS 239

between the bounded analytic functions / on the region G and the
bounded complex measures p, that have all their mass in G. We conduct
such a study, using as our main new tool the method of balayage, or
sweeping of measures, borrowed from potential theory. We pay special
attention to the weak topology a that the duality induces on the space
Bn(G) of all bounded analytic functions on G, and call the resulting
topological vector space a(G). A generalized sequence [fy], where y lies
in the partially ordered indexing set T, then converges to 0 provided that
J/ydjji converges to 0 for each such measure p,.

The other origin of our work is the extensive study that has been
made, especially in case G is the open unit disc D, of the Banach algebra
Hoc (G) of all bounded analytic functions on the region G, in the topology
of uniform convergence. That study proceeds mostly by an analysis of
the radial boundary values of the functions. One fact that emerges is that
the ideal structure of Hoo(D) is extremely complicated. Another point
is that these methods do not seem to carry over easily to more general
regions. By imposing a weaker topology, the so-called strict topology ji
(introduced in this context by R. C. Buck [5] in the special case G = D)
on the underlying space Bn(G), some of these difficulties are removed,
especially in the case G == D. A generalized sequence [fy], y € r, con-
verges to 0 in p(G) provided that [fyk] converges uniformly in G to 0
for each weight function k that is continuous on the closure of G and
that vanishes on the boundary of G. For example, the resulting topological
algebra p(G) has the properties, in case G = D, that each closed ideal
is principal, and that the closed maximal ideals correspond to points
of the disc in a natural way.

The two spaces a (G) and [3(G) turn out to be closely related,
although different, and this relationship can be exploited to advantage.
For example, a(G) and (i(G) have the same closed subspaces, the same
dual space, the same convergent sequences, the same compact sets, and
the same bounded sets. In both a(G) and P(G), a sequence (fn} is
convergent if and only if it is boundedly convergent, that is, if and only
if the {fn} are uniformly bounded and converge at each point of G. Of
course, such a sequence must also converge uniformly on compact subsets
of G. This fact, and others like it from the theory of normal families
of analytic functions, are valuable tools.

At this point, it might be appropriate to address a few remarks to
the more classically oriented analyst about our use of generalized sequen-
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ces. As we have just remarked, the convergence of actual sequences in
both a(G) and (3(G) is rather easy to deal with, whereas the convergence
of generalized sequences is not so accessible. But because of such facts
as Proposition 3.12, some consideration of generalized sequences is ne-
cessary. Nevertheless, because of Corollary 4.7 and Corollary 4.8, in
studying the linear structure of a(G) and (3(G), and in particular the
ideal structure of (3(G), only the convergence of actual sequences need
be considered.

We proceed now from this preliminary description to a brief outline
of the paper.

In § 2 we give the precise definitions of such entities as Bn(G),
M'(G), etc., and prove some simple results about them. In § 3, we
introduce the spaces a(G) and j3(G) and begin the study of their struc-
ture. In § 4, we discuss balayage. The first method of balayage, using an
annular form of the Cauchy integral formula, sweeps a measure into the
class of absolutely continuous measures with respect to planar Lebesgue
measure. By this means, we prove that the space M'(G) is separable and
that Hoo(G) is its dual space. Further properties of a(G) and (3(G) follow
from these considerations. Then we introduce the notion of a dominating
subset S of G as one on which the supremum of each bounded analytic
function is the same as its supremum on all of G, and prove that a set
is dominating if and only if it is universal in the sense that any measure
may be swept onto that set. This means that for any measure [JL with
all its mass in G, there is a measure v with all its mass in S such that
Sfdy. == ffdv for each bounded analytic function / on G. This second
method of balayage is effected by existence theorems from functional
analysis. A third method is given rather explicitly in terms of a non-trivial
measure [A, whose existence we assume, that has all its mass on a discrete
subset of G and that has the property that ffdy, = 0 for each bounded
analytic function / on G. We continue the section on balayage by cha-
racterizing sets of removable singularities for bounded analytic functions
as those sets which are so thin that any measure can be swept a positive
distance away from them. We conclude the section by proving, by our
methods, a known result to the effect that any measure in the disc may
be swept to the boundary of the disc as an absolutely continuous measure
(with respect to Lebesgue linear measure), and conversely, that any such
boundary measure may be swept inside the disc.

In the last section, we study the closed ideals in the topological



SPACE OF BOUNDED ANALYTIC FUNCTIONS 241

algebra j3(G). In case G is the open unit disc, we prove that the principal
ideal generated by a function / is dense if and only if / is an outer func-
tion, and is closed if and only if f is the product of an inner function
and a function that is bounded away from 0. Here, we use « inner » and
« outer » in the sense of Beurling. We prove that each cic ed ideal in
j3(D) is the principal ideal generated by an inner function, nd use this
result to characterize, for a rather large class of topological vector spaces
of analytic functions, those closed subspaces that are invariant under
multiplication by bounded analytic functions. We also prove, for a wide
class of regions G, that the continuous multiplicative linear functionals on
P(G) correspond to point evaluations. We conclude the paper with a list
of unsolved problems, some of which were mentioned in the body of the
paper.

Some of the methods and results hold for classes of analytic func-
tions satisfying growth restrictions other than boundedness, but we have
not explored this question in any detail. The problem of polynominal
approximation in spaces like a(G) and (3(G) was considered by the
authors in [20] and has been further studied by D. Sarason (unpublished).

Some of the material of the present paper was presented to the
American Mathematical Society, and an abstract of its principal results
has appeared in [21].

2. Definitions and preliminaries.

2.1. By G we will always denote a connected open set in the complex
plane. By G~ we denote the closure of G and by <9G we denote the
boundary of G. Both closure and boundary are taken with respect to the
Riemann sphere, so that G~ and 9G are compact.

2.2. We assume that there is a non-constant function that is bounded
and analytic on G. Then the bounded analytic functions on G separate
the points of G. For if / is a non-constant bounded analytic function
and if Zi^^s, let g(z)=f(z)—/fe0 and let A(z) = (z—Zi)-"1^),
where m is the order of the zero of g at Zi, so that h vanishes at ^2 but
not at Zi.
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2.3. Given distinct points Zi,..., ̂  in G and values wi,..., H ,̂ there
is a bounded analytic function / that takes these values at these points.
To show this, it is clearly sufficient to produce, for ; == 1,..., n, a bounded
analytic function /y that takes the value 1 at zy and that vanishes at the
other z<. This is done as follows. Given i 7 ;̂', choose <y< so that y<(z<) = 0,
<p<(^) = 1, and let if be the product of the cp<.

2.4. Bn(G) denotes the set of all bounded analytic functions on G,
regarded as a complex vector space (or as an algebra over the complex
numbers) with no topology. By Hoo(G), we denote the Banach algebra
that has Bn(G) as its underlying algebra, in the supremum norm

|'|/||«=sup{|/(z)[:zeG}.
2.5. By M(G), we denote the set of all bounded complex-valued

Borel measures p. that live in G (that is, the variation of a over any set
in the complement of G is 0). We consider M(G) as a Banach space in
the norm

1 1 ^ 1 1 ==var(^)=|{x|(G)=;J |^[.

Now M(G) is paired with Bu(G) via the inner product

(f,\i)=Sfd^

There will exist measures [A 6 M(G) such that < / , p , ) = = 0 for each
/ € Bn(G). We will discuss such measures in 2.8.

2.6. If / is continuous in G with |/| < 1 there, and if (A € M(G),
then

l^|<J|^H^||l4

Equality holds in the first inequality if and only if fdy, is a constant
multiple of a positive measure. Equality holds in the second inequality
if and only if j / j = 1 almost everywhere with respect to |^[.

2.7. PROPOSITION. — If f ^ Bn(G) then the supremum norm of f
is the same as the norm of f when it is regarded as a linear functional on
the Banach space M(G).

Proof. — By 2.6, the functional norm does not exceed the supre-
mum norm. The reverse inequality follows by considering point measures.

2.8. We introduce an equivalence relation in M(G): (A ̂  v means
that ffdy. = ffdv for all / 6 Bn(G). By N(G) we denote the set of mea-
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sures equivalent to the zero measure. N(G) is a closed subspace of M(G)
in the norm of 2.5.

2.9. Let M'(G) =M(G)/N(G) be the space of equivalence classes
[p.] == (A + N(G) under the equivalence relation of 2.8, with the usual
addition and scalar multiplication, under the quotient norm

j | [ t x ] | | = = i n f { | | ( J i + v | | : v € N ( G ) } .

A space related to M'(G) was studied in [10].

PROPOSITION 2.10. — The infimum in 2.9 is attained if and only if
there is a measure yf equivalent to [A such that ayf is a positive measure
for some constant a.

Proof. — If such a pair a, yf exists, then we may choose a with
\a\ == 1. Now let / be the constant function with value a. We have for
any v € N(G),

||[(x][[< 1 1 ^ 1 1 =W= JW|A + v) < 1 1 / H |[[x + v|| = ||ix + v|[.

Hence |[[A'||=[[[tx]||.

In the other direction, we use Proposition 2.7, a later result (Theo-
rem 4.5), and the Hahn-Banach Theorem, to show that to each [A € M(G)
there corresponds an / € Hoo(G) with N / | [ = 1, such that Sfdy, == |[[^]||.
Suppose now that (A' attains the infimum. Then we have

IH|=||[!X]||=;M^ 1 1 / 1 1 1 1 ^ 1 1 = 1 1 ^ 1 1 .
Hence by 2.6, fd^ is a positive measure and \f(z) \ == 1 almost everywhere
with respect to [[JL'L In particular, \f(z)\ == 1 for at least one z G G, and
by the maximum principle, this implies that / is a constant.

2.11. Let K = K(G) denote the set of all non-negative continuous
functions k defined on G"" such that k vanishes on <9G. It can be easily
shown that given (AI, ..., (An e M(G), there is some k G K for which

—d (A<[ < oo, i= l, . . . ,n.

The proof involves exhausting G by an increasing sequence of open
subsets Gj, with Gy- C Gy+i for / = 1, 2,... Note that lim |[jJ(Gy+i —
Gy~) == 0 as /-» oo for each i = 1,..., n. We omit the details.
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3. Topologies.

In this section we introduce two natural locally convex Hausdorff
topologies on Bn(G) and study some of their properties.

3.1. DEFINITION. — Let a(G) denote Bn(G) under the weak topo-
logy arising from the duality between Bn(G) and M'(G) with the inner
product

<upi])=a[i>=w.
The basic neighborhoods of 0 are of the form

N((JLI, ..., (Jin : e) = {/ € Bn(G): \ffd^\ < £, i = 1,..., n}.

This is the weakest topology on Bn(G) in which all the elements
of M'(G), regarded as linear functionals on Bn(G), are continuous. A
net (generalized sequence) {/-y}, y € r, where r is the partially ordered
index set, converges to 0 in this topology if and only if the net {Sfydy.}
converges to 0 for each p. € M(G). In particular, an a-convergent net is
pointwise convergent. The converse is false in general, but is valid when
the functions are uniformly bounded (Theorem 3.7). See [16], Chapter 2,
for a discussion of topological concepts in terms of nets.

3.2. DEFINITION. — p(G) denotes Bn(G) under the topology given
by the seminorms

| | / [ | f c=sup{[«z )* (z ) [ : z€G} ,

where k ranges over the class K(G).

The basic neighborhoods of 0 are the sets { / : \\f\\ic < e), where
k € K and £ > 0. A net {fy} converges to 0 in this topology if and only
if the associated net [fyk] converges to 0 uniformly on G for each fixed
k € K(G). In particular, a ^-convergent net must converge uniformly
on compact subsets of G. (The converse is true for bounded nets, by
Theorem 3.7) This topology was discussed briefly by Buck [5] in the
case G = = D = = = { z : | z | < l } , who called it the strict topology.

3.3. PROPOSITION. — Every w-open set is also ^-open (that is, the
^-topology is at least as strong as the a-topology), and every ^-open set
is open in Hoc (G).
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proof. — For the first part, it suffices to show that each basic
a-neighborhood of 0 contains a basic [3-neighborhood of 0. Let the a-
neighborhood be determined by e > 0 and measures [AI, ..., |x» in M(G).
We may assume that |[[AJ| *̂  1 for ^== 1,..., n. By 2.11, there is a
* € K(G) for which J(l/Jk) d |[JL<| < 1, i = 1,..., n. Let

E = E f c = = { / e B H ( G ) : | | / | [ f c < e } .
Then for / G E,

\Sfd^\^S\kf\(l/k)d\^\<e.

Thus, E is contained in the a-neighborhood.

Now consider a basic p-neighborhood E == Ejc as above. Let
d = max [k(z) : z € G}. Since for / GE, |/(z) [ < e/*(z), z € G, we
see that the Hoo-ball {/ : \\f\L < i / d } is contained in the ^-neighborhood.

3.4. THEOREM. — a(G) and p(G) have the same dual space, namely
M'(G).

proof. — As noted in 3.1, the elements of M'(G) are continuous
linear functionals on a(G). Since (3 is at least as strong as a, they are
also continuous on ?(G). It therefore suffices to show that evbry ji-con-
tinuous linear functional is given by integration with respect to some
element of M(G).

Let X : p(G) -» C be a ^-continuous linear functional. By the general
theory of locally convex topological vector spaces, there is some k in
K(G) such that \ is continuous with respect to the seminorm [ [ [ [ jk .

The collection {*/}, / € Bn, is a vector subspace of the Banach
space Co(G~") of all continuous functions on G~ that vanish on <9G, with
the supremum norm. Further, \ is a bounded linear functional on this
subspace. By the Hahn-Banach Theorem, \ can be extended to be a
bounded linear functional on Co(G~). It follows from the Riesz repre-
sentation theorem that X can be represented by some measure ^ in M(G):

X(/)=;^ /€BH(G) ,

and the proof is complete.

3.5. COROLLARY. — a(G) and (3(G) have the same closed linear
subspaces and the same closed convex sets.
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This follows directly from the preceding theorem by well-known
results in functional analysis/See [9], Chapter V, § 2.14, for details.

Problem. — We have seen that the a-topology is the weakest topo-
logy on Bn(G) with respect to which M'(G) is the dual space. Is the
P-topology the strongest topology having this property ? In other words,
is the ^-topology the Mackey topology on Bn(G) with respect to the
duality <Bn(G),M'(G)> ?

3.6. PROPOSITION. — a(G) and ?(G) have the same bounded sets,
namely the norm-bounded sets.

Proof. — Recall that a set S in a topological vector space is said
to be bounded if to each neighborhood U of 0, there corresponds a posi-
tive number e such that eS £ U. If a set is bounded in a given topology
then it is bounded in any weaker topology. It follows that the norm-
bounded sets are also a-bounded and ^-bounded.

In the other direction, it is enough to show that if S is a-bounded,
then S is norm-bounded. Let us regard the elements of S as linear
functionals on the Banach space M(G), and apply the uniform boun-
dedness principle. These functionals are pointwise bounded on M(G)
since for any measure (A in M(G) we may consider the a-neighborhood
U of 0 given by

U={/€BH(G) : | J^ ( J I |< I} .

Since eS Q U for some e > 0, we have [ ffdy, | < 1/e for all / € S.

By the uniform boundedness principle, the set S, regarded as a set
of linear functionals on M(G), is bounded in norm. But by Theorem 2.7,
the Hoo norm is the same as the linear functional norm, and the proof
is complete.

3.7. THEOREM. — Let {fy}, Y € F, be a uniformly bounded net of
functions fy € Bn(G) - say |/y(z) j < w for all z 6 G and all y 6 F. Then
the following statements are equivalent:

i) {fy) is ^-convergent to 0,
ii) {fy} is ^-convergent to 0,
iii) {fy} converges pointwise to 0,
iv) {fy) converges to 0 uniformly on compact subsets of G.
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Proof. — It is clear that i) implies ii) since the (3-topology is at least
as strong as the a-topology. On considering point measures, it is clear
that ii) implies iii). That iii) implies iv) is a familiar fact from the
theory of normal families of analytic functions. Expressed a little diffe-
rently (see [8], Chapter V) the bounded sets in the space H(G) of all
analytic functions on G, in the topology of uniform convergence on
compact subsets of G, are precisely those sets of functions that are uni-
formly bounded on each compact subset of G. In particular, a uniformly
bounded set of analytic functions is a bounded set in H(G). But H(G)
has the property that the bounded sets have compact closures. Hence
every subset of {fy} has at least one cluster point. But by iii), the net {fy}
has at most one cluster point, namely 0, and iv) follows.

It remains to be shown that iv) implies i). Let there be given a
function k € K(G) and a number e > 0. There is no loss of generality
in supposing that k(z) ̂  m in G. There is a compact set C C G such
that Jk(z) < e/w for z € G — C. Since {fy} converges uniformly on C,
there is an index yo such that \fy\ < i/m on C whenever y > yo. Hence

<^)| /yfe) |<£ ^ € G , Y > Y O ,
which completes the proof.

3.8. COROLLARY. — The a and {j topologies agree on bounded sets.

This follows from the fact that two topologies with the same con-
vergent nets must agree.

3.9. COROLLARY. — The a and (3 topologies, restricted to any
bounded set, are metric.

Proof. — The topology of uniform convergence on compact subsets
of G is determined by the countable family of seminorms |[ [L given by

||/l|.=sup{|Kz)|:zeK.}

where {Kn} is an increasing sequence of compact subsets of G such that
any compact subset of G is contained in one of the Kn. The topology
determined by these seminorms has the metric p given by

P(^)=^ 2-»

—o

\\f-8\\.

1 + \\f-8\\n
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We remark that the fact that the topology is metric is equivalent, via [9],
p. 426, Theorem 1, to the fact (see Theorem 4.5) that M(G) is separable.

3.10. COROLLARY. — The a and p topologies have the same compact
sets, namely the bounded and closed sets,

Proof. — If S is a bounded set in a(G) or (3(G), then S is a normal
family by Theorem 3.6. Hence each sequence of elements of S contains
a subsequence that converges uniformly on compact subsets of G. By
Theorem 3.7, this implies convergence in a(G) and ?(G). Because S is
metric, this shows that S is compact. Conversely, in any topological
vector space, a compact set is always closed and bounded.

3.11. COROLLARY. — The spaces a(G) and p(G) have the same
convergent sequences, namely the bounded sequences that converge point-
wise.

Proof. — A bounded and pointwise convergent sequence must be
[i-convergent, by Theorem 3.7. Also, every ^-convergent sequence is
a-convergent. Consideration of point measures shows that an a-convergent
sequence must be pointwise convergent. It remains to be shown that an
a-convergent sequence [fn] is bounded, and this follows from the uniform
boundedness principle. For if we regard the functions fn as linear func-
tionals on M(G), then they are pointwise bounded since limj/ndjji
exists by hypothesis. They are therefore bounded in the linear functional
norm. By Theorem 2.7, this norm is equal to the supremum norm, and
the corollary is proved.

3.12. PROPOSITION. — Neither a(G) nor ji(G) satisfies the first
axiom of countability and consequently neither a(G) nor j5(G) is a
metric space.

Proof. — The idea of this proof is from a private communication
by R. C. Buck to one of the authors. Let / be a function in Bn(G) with
N / N = 1, / not a constant. Let

S == [^ + n^ : m, n = 1, 2, 3,...}.

Now the sequence [f^ converges to 0 in a(G) and (3(G) by Corollary
3.11, since it is uniformly bounded and converges pointwise to 0. We
prove that 0 € S~ but that no sequence of elements of S can converge
to 0. Let U be a neighborhood of 0 in either a(G) or (3(G), and let V
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be a neighborhood of 0 in the corresponding space, such that V + V C U.
Choose n so large that ^ € V, and then choose m so large that nf € V.
It follows that f» + nf^ € U, so that 0 € S~. On the other hand, suppose
that {5-fc}, k = 1, 2, 3,..., were a sequence of elements of S that con-
verged to 0, say

^ = ̂  + m, ̂ .
Since the ^ must be uniformly bounded, it follows that the njc must be
bounded, so that some integer n occurs infinitely often in the sequence
{njc}. Passing to a subsequence, we have

SK == /w + n^

If Wjk -» oo then Jfc -> /n =7^ 0, while if for some w, Wfc == m for infinitely
many k, then ^ + n/^ is not 0, but is a limit point of [s^]. In any event,
then, we have a contradiction.

For the definitions of the terms used in the next theorem, see [16],
§ 12.2, § 19.2.

3.13. PROPOSITION. — The space a(G) is neither barrelled nor
bornological. The same is true for (S(G).

proof. — The closed unit ball U == { / : | [ /[ |» ̂  1} in H^(G) is a
barrel in a(G) and j5(G). That is, U is convex, circled, and absorbing.
Also, U is both a-closed and ^-closed, since, by Theorem 3.7, the a-con-
vergent or p-convergent nets of functions in U are just the pointwise con-
vergent nets, and U is obviously closed in the topology of pointwise con-
vergence. But U is not a neighborhood of 0 in either a(G) or j3(G). To
see this, choose a function / e Bn(G), [ 1 / 1 1 = 1, / non-constant. Then the
sequence {2^} converges to 0 in a(G) and in (3(G) by Corollary 3.11,
yet 2^ is never in U. Therefore neither a(G) nor (3(G) is barrelled.

Since U absorbs all bounded sets but is not a neighborhood of 0,
neither space is bornological.

This completes our list of the similarities between a(G) and ji(G).
Despite the similarities, they are different spaces.

3.14. THEOREM. — The a and (3 topologies are not the same.

Proof. — Choose a compact subset C of G that has a non-empty
interior, and choose a function k £ K(G) such that k > 0 on C. Let

E = {/€BH(G): U / 1 1 , <!}.
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The functions in E are uniformly bounded on C. But no a-neigh"
bourhood of 0 can have this property. Indeed, given any finite collection
of measures, there is an / £ Bn(G), /=^0, that is orthogonal to all of
them. This follows from the fact (see 2.3) that Bn(G) is an infinite-
dimensional vector space. No matter what the number e > 0, the functions
{ nf }, n = 1, 2, 3, ..., all lie in the a-neighbourhood of 0 determined by
these measures and this number e. But the functions {n f ) are not uni-
formly bounded on C since / cannot vanish on all of C.

The next result provides an alternate proof that the a and ? topo-
logies are different.

3.15. PROPOSITION. — The space j3(G) is topologically complete
-while the space a(G) is not.

Proof. — To prove that j3(G) is complete, let { fy }, y € T, be a
Cauchy net in ?(G), so that if * € K(G) is given, the net { f y k } is
a Cauchy net in the uniform topology and is consequently uniformly
convergent. It follows that on each compact subset of G, { f y } is uni-
formly convergent, so that the limit function / is analytic in G. Also,
for each k € K(G), sup { [ f(z) k(z) [ : z £ G } < oo, and it follows that
/ is bounded.

To prove that a (G) is not complete, choose a bounded, continuous,
and non-analytic function / in G. Let Fo be the family of all finite subsets
of M(G), partially ordered by inclusion. Given y G To, y == { p-i,... [An },
choose a function fy £ Bn(G) such that

J7yd[Xi== Sfdy.i, <==l,...n.

Such a choice is possible because Bn(G) is infinite-dimensional. This
net { fy } is a Cauchy net in a(G), but does not converge to an element
of a(G). Thus a(G) is not complete. Another way of seeing this is by
applying the well-known fact that the dual of an infinite-dimensional
Banach space is never complete in the weak-star topology, and using
Corollary 4.6.

3.16. PROPOSITION. — p(G) is a topological algebra. That is, multi-
plication is jointly continuous in j3(G).

Proof. — Let { f y } , { gy }, Y € r be two nets that converge to 0
in p(G), and suppose that k € K(G) is given. Then

\fygyk\=\fyk^\\gyk^\,
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and since k^2 € K(G), it follows that [ f y g y k ] converges uniformly
to 0 in G. Hence [ f y g y ) converges to 0 in P(G). Now suppose that
{ fy }» { 8v } are two nets such that { fy ] converges to / in p(G) and
{ gy } converges to g in (3(G). By the above, { (fy—f)(gy—g)} tends
to 0 in (3(G). Hence

(fygy—fg) +f(g—gy)^g(f—fy)->0

in P(G). But the second and third summands tend to 0 in (i(G) and so
the first must also. The result is proved.

3.17. Remarks. —We conclude this section with some additional
facts about the structure of a(G) and P(G), omitting the proofs.

PROPOSITION. — There exists a sequence [fn] of invertible elements
of Bn(G) such that {fn} converges boundedly to 1 but such that
{1/fn } does not converge boundedly.

COROLLARY. — The algebra |3(G) is not multiplicatively convex in
the sense of Michael [18].

PROPOSITION. — The weak topology of the unit ball in M'(G) is not
metric.

4. Balayage.

In this section, we show by balayage or " sweeping M that any
measure in M(G) can be replaced by an equivalent measure that has
special properties.

4.1. THEOREM. —Given a measure ^ in M(G), there exists a
measure v in M(G), such that

v^,||v^||tx||

and such that v is absolutely continuous with respect to planar Lebesgue
measure.

DEFINITION. — Let X denote planar Lebesgue measure.
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DEFINITION. — Let L^G) denote the subspace of M(G) consisting
of all measures (A that are absolutely continuous with respect to X, with
the norm \\ p. |[ = J d \ [A | as before.

Proof of theorem. — Following a suggestion of J. L. Doob, we first
sweep a point measure, and then sweep the general measure by an inte-
gration process. Our original proof was longer. It is easy to modify the
proof to make v even better behaved. For example, we could assure that
rfv == yrfX, where y is an infinitely differentiable function of the two real
coordinate variables.

In 4.24 we give a proof via functional analysis of a slightly weakened
version of Theorem 4.1.

i) Let £w be the unit point mass at the point w, w C G, let
d=d(w,QG) denote the distance from w to the boundary of G, let
d' == min (d, 1), and finally let a = d73, b = 2rf73. Then the closed
annulus Au, == { z : fl ̂  | z — w | ̂  & } is a subset of G and varies
continuously with w in the sense that a and b are continuous functions of
w. We now define a measure Vw by

Vw(E) = —!— f '"Y—— r , XE(S) -dt9—} dt,
b—ajt^a \2wJ |c-w|=t S — w /

where E is any Borel subset of G and XE is its characteristic function.
Then f(w) = J fd^w for each f € Bn(G), so that Vw ̂  £w. This assertion
is just the Cauchy integral formula averaged over an annulus. Also,
[ j V w | | == 1, as a simple estimation shows. It is clear that Vw € L^G).

ii) For any measure [A € M(G), let v be defined by
v(E) == J Vw(E)^(w) = ; (J XE(z)rfvw(z))^(w),

where E ranges over the Borel subsets of G. For / G Bn(G), we have
; / (z) r fv(z)===J(J^(z) r fvw(z))^(w)=J^(w)^(w) ,

so that v ̂  p.. Also, if <p is any continuous function on G~ that vanishes
on <?G then

| J ydv | < J (J | <p (z) | d | v. | (z)) d | [x | (w) ̂  || <p ||^ || (i [I.

where |[ <p || ^== sup { [ <p (z) | : z € G }. Hence || v || ^ |'| (JL ||.

iii) Finally, let E be a subset of G such that \ (E) = 0. Then
Vw(E) =0 for each w € G, and consequently v (E) = 0. Hence v is
absolutely continuous with respect to X, and the proof is complete.
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4.2. Earlier, in (2.8), we considered the subspace N(G) of M(G)
consisting of all measures orthogonal to all bounded analytic functions.
We now consider the corresponding subspace of L1 (G). Let Nx (G)
consist of all measures (JL in L1 (G) such that (A ̂  0. The inclusion map
is a map of L1 (G) into M (G), and it induces a map of the quotient
space L1 (G)/Nx (G) into M' (G). By Theorem 4.1, this map is onto and
isometric.

4.3. COROLLARY. — The space L^GVN^G) is isometrically iso-
morphic to M'(G) under the natural correspondence.

4.4. COROLLARY. — The space M'(G) is separable. (See the remark
following Corollary 3.9 for another proof of this result.)

Thus, M' (G) is considerably " nicer n than the rather pathological
space M (G).

4.5. THEOREM. — The space H»(G) is the conjugate space of the
separable Banach space M'(G).

Proof. — It is enough to prove that H00 (G) is the conjugate space
of L1 (G)/Nx (G), by Corollary 4.3. Let L°° (G) be the space of equi-
valence classes of complex-valued functions on G that are bounded almost
everywhere (with respect to X) in the essential supremum norm. We
make the usual abuse of notation by not distinguishing between bounded
functions and the equivalence classes of L°° (G) that they belong to. Since
BH (G) may be regarded as a linear subspace of the space L°° (G), it will
be sufficient to show that BH (G) is weak-star closed in L°° (G). By a
result of Banach ([2], Chapitre VII, Theorfeme 5), it is sufficient to show
that BH (G) is sequentially closed, that is, that each sequence in BH (G)
that converges in the weak-star topology of L00 (G) to a limit in
L00 (G) actually has its limit in BH (G).

Let {fn } be a sequence of functions in BH (G), and suppose that
f € L00 (G) and that fn-> f in the weak-star topology of L00 (G). Then,
by the definition of weak-star convergence, itnd^ converges (to Sfdy.)
for each [JL G L1 (G). Consequently, J fndy, converges for each (JL € M (G),
by Theorem 4.1. As in the proof of Corollary 3.11, the fn are uniformly
bounded and converge uniformly on compact subsets of G to a function
f € BH (G). Since J fdy. = J fdy. for each [A € L1 (G), it foUows that
/ = = f (actually that /==f almost everywhere with respect to X), and
the proof is complete.
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4.6. COROLLARY. — The ^'topology on Bn(G) is precisely the
weak-star topology on Hoo(G) as the dual of M'(G).

The proof is immediate from the preceding theorem and the defini-
tions. Since M' (G) is a separable Banach space, we have the following
corollaries.

4.7. COROLLARY. — A linear subspace of a(G) is closed if and only
if it is sequentially closed.

See [2], Chapitre VIII, Thtorfeme 5.

4.8. COROLLARY. — A linear subspace of (i(G) is closed if and only
if it is sequentially closed.

We make much use of this fact in the sequel. It follows from the
previous corollary and the facts that a (G) and j3(G) have the same
closed linear subspaces (Corollary 3.5) and the same convergent sequences
(Corollary 3.11).

4.9. COROLLARY. — The space a(G) is separable. In fact, for each
subset S of a(G), there is a countable subset A C S such that each
element of S is the limit of a sequence of elements of A. The same
assertion holds for P(G).

See [2], Chapitre VIII, Theor^me 4, for the assertion about a(G).
The fact (3 (G) that has the same convergent sequences as a(G) implies
the assertion for (i (G).

4.10. DEFINITION. — A subset S of G is called dominating, provided
that

sup { | / (z) [ : z € S } = sup { j f (z) | : z e G }

for each / € BH (G).

4.11. DEFINITION. — Let S be a subset of G. We denote by M(S)
the set of all measures p, e M(G) that live in S.

M (S) is a closed subspace of M (G) in the variation norm.

4.12. DEFINITION. — A subset S of G is called universal, provided
that for each (JL in M(G) there exists a measure v in M(S) such that
v ̂  p,.
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We say that [ji can be swept onto S in this case. Theorem 4.14 shows,
among other things, that this sweeping can be accomplished with an
arbitrarily small increase in norm.

4.13. DEFINITION. — A subset S of G is called strongly universal
provided that for each (JL in M(G) and each s > 0 there exists a measure
v in M(S) such that v ̂  [x and | [ v | [ ^ ( l + e ) | [ ^ [ [ .

A result equivalent to the next one was proved in [4] for the case
where G is a Jordan domain. It can be used in conjunction with Propo-
sition 4.15 to give an alternative proof that M' (G) is separable.

4.14. THEOREM. — Let S be a subset of G. Then the following
assertions are equivalent.

i) S is strongly universal
ii) S is universal
iii) S is dominating.

Proof. — It is trivial that i) implies ii). To prove that ii) implies iii),
suppose the contrary. Then there would exist a point ^ £ G — S and
a function / € BH (G) such that

^(0=1, | / ( z ) [ ^ r < l for z 6 S .

Let v e M (S) be equivalent to the point measure se at ^. Then

l^(iW^^-dz,=^d^

so that
l^||v[| for n = 1, 2, 3,..,

which is impossible.

To show that iii) implies i), we may suppose without loss of generality
that S is a countable set, say S == { Sn }, n = 1, 2, 3, ..., since a dense
subset of a dominating set is dominating, and any superset of a strongly
universal set is strongly universal. In this case, M (S) may be identified
with the space I1 of absolutely summable sequences. Consider now the
operation T of restricting a bounded analytic function / to S. Since S is
dominating, T is an isometric mapping of Hoo (G) onto a subspace E of
the space f°° of all bounded sequences. Without attempting to further
describe E, we assert that E is weak-star closed in f00 as the dual space
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of P. This follows just as in the proof of Theorem 4.5. It is enough
to show that E contains all limits of sequences of elements of E. But a
weak-star convergent sequence in f°° is bounded. If the sequence is (T/n),
it follows that the fn are uniformly bounded on G. Hence { fn } is a normal
family, and passing to a subsequence if necessary, the fn converge uni-
formly on compact subsets of G to a bounded analytic function /. But
lim Tfn == Tf at each point of S, and the assertion is proved.

Now let N = E1 be the subspace of P orthogonal to E. Since E is
weak-star closed, it is the annihilator of N, that is, E = N1. Hence E is
the dual space of the quotient Banach space P/N. In this case, its norm
as a linear functional on E is equal to its quotient norm.

To complete the proof, let us choose ^ 6 M (G). We may regard [A
as a linear functional on H» (G), and consequently on E. As such, it is
continuous in the weak-star topology of E. To prove this, we need only
show that the null space of [A, namely Ep. = { T/ £E : Sfdy. == 0 }, is
a weak-star closed subspace of E (see [13], Corollary to Theorem 2.62).
But a subspace is weak-star closed if it contains all its sequential limits.
Let {Tfn } be a weak-star convergent sequence in En, with limit T/.
In /°°,a weak-star convergent sequence is bounded. It follows that {fn }
is a bounded sequence since T is an isometry, and on passing to a
subsequence if necessary, we see that { f n ) converges boundedly and
pointwise to a function in BH (G) that must be the function f, since it
agrees with f on the dominating set S. Applying Corollary 3.11, we see
that 0 = lim Sfndy, = Sfdy. so that / € E^, and we have proved that
Ej^ is closed.

Applying the remarks of the next to the last paragraph, we see that
[A can be identified with an element a of P/N, and the norm of [A as a
linear functional is equal to the quotient norm of a. In other words,
given e > 0, we can find a measure v £ M (S) such that v ^ |ji and
|| v || ̂  (1 + e) || p- [ I *» where |[ p- || * denotes the norm of p, as a linear
functional on Hoo (G). But

|| [z || * == sup { [ Sfdy. [ : / 6 H< (G), |[ / ||oo ̂  1 },

and by Theorem 4.5, this is the norm of [[JL] in the space M' (G), which
completes the proof, since [ [ [|JL] [ [ ̂  N p, |[.

4.15. PROPOSITION. — There exists a countable dominating subset
of G that has no limit point in G.
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Proof. — G can be written as the union of a sequence { Fn } of open
sets Fn having compact closures, with

Fn £ Fn~ C Fn+i n == 1, 2, 3, . . . .
Let Cn = Fn —Fn-i, with the understanding that Fo is the empty set.
Then the Cn are compact sets. By the maximum principle, for all
/ € BH (G), we have

Wn = Wn (0 = max { [ / (z) | : z € Cn } = max { | / (z) | : z € Fn }

Wn-> [ [ / IL as n-> oo.

Let U denote the unit ball of Hoc, and let { e n } be a sequence of
positive numbers decreasing to 0. By the uniform equicontinuity of the
functions in U, there exists for each n a positive number 8n such that if
z , w € C n a n d | z — w [ < 8 n t h e n [ / ( z ) — / ( w ) | < e n f o r a U / e U.

For each n, we choose a finite subset En C Cn such that each point
of Cn has distance less that 8n/2 from some point of En. Then

max { [ i(z) | : z € Cn } ̂  max { | f(z) \: z € En } + £n.
Thus, the union of the sets En is a dominating set with no limit points
inside G.

4.16. PROPOSITION. — Every dominating subset of G contains a
countable dominating subset of G that has no limit point in G.

Proof. — Our proof is a continuation of the preceding proof. Let S
be a dominating set in G and let n be a positive integer. For each point z
of En, we choose a point w of S that is in Cn and whose distance from z
is less than 8n/2 if this is possible. Let S' denote the totality of the points
so chosen for n = 1, 2, 3, .... Then S' is at most countable, and has no
limit points in G.

To prove that S' is dominating, we fix a function f £ U and choose a
sequence { ^ } of points in S such that | / (^) | -» || / |L as Jk -> oo.
We may choose the ^ so that they approach the boundary of G. Each
point ̂  is in a set Cn for at least one index n. Let n (k) be the first such
index. Then n (k) —> oo as k —> oo since ^ approaches the boundary of
G. Hence, if e > 0 is given, we can choose k so that

|/(^) [ > | | ^ | | < — — e » Sfc € Cn, £n<6,

where n == n (k). The set En contains a point z whose distance from ^
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is less than 8n/2. Hence S' must contain a point w whose distance from z
is at most 5n/2. Thus ( w — ̂  | < 8n and consequently

| / ( ^ ) | > | / ( ^ ) | — e > | | / | | o o — 2 e

and the proof is complete.

4.17. THEOREM. — Let S = { z» } be a countable subset of G with
no limit points in G. Then S is dominating if and only if there is a measure
p. € M(S), (A ̂  0, such that p. ̂  0.

Proof. — Suppose first that S is dominating. Then by Theorem 4.14,
S is strongly universal. If S were to carry no non-zero measure equivalent
to 0, it would follow that [ [ p, N == [ [ [p.] [| for every measure [JL 6 M (S),
contrary to Theorem 2.10. In the other direction, let y. be a measure in
M (S) with p, ̂  0 but (A =^ 0. There are complex numbers { On }, n == 1,
2, 3,..., such that

0 < 2 [ a n | < o o
and

2fln«Zn)=J^=0

for each / G Bn(G). Consider the function

A^V———f^- .eo-s
^•JZn——Z J W — — Z

This function is analytic in G — S and has simple poles at each point Zn
for which an ̂  0, since S has no limit point in G. In particular, A (z) is
not identically 0, and therefore, since G is connected, the zeros of A (z)
in G are isolated. We claim that

rf(w)
(4.17.1) A(z)/(z)= <————4t(w) z € G — S

J w—z

for each / € BH (G). This is equivalent to the assertion
'f(w)—fWCiW—iW ^ , ,/—————— 41 (w)J w—z

0 ^ g o — S .
w—z

But this follows from the hypothesis, since for each z € G — S, the
integrand is a bounded analytic function of w. More precisely, the inte-
grand is the function g defined by g (w) == (f (w) — f (z))/(w — z) if
w ̂  z, and g (z) = f (z).
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Now suppose that S is not dominating. Then there exists a function
/ € BH (G) and a point Zo ̂  S such that

/(zo)=l, | / ( Z n ) | ^ r < l forn= 1,2,3,....
We may further assume that A (zo) ¥^ 0, since we could otherwise move
Zo slightly, and renormalize /. Applying formula (4.17.1) to /", we have

r (f (w)Y
A(zo)=A(zo)ff(zo))n= /————rfjAOiO,

J W—Zo

which is impossible for large n. This completes the proof.

4.18. We remark that formula (4.17.1) is a discrete Cauchy integral
formula for bounded analytic functions. In effect, it gives an explicit
formula for sweeping the unit point measure at the point z, z^S, onto
the set S. It leads to a general balayage formula as follows. If p € M(G),
then the measure a € M(S) given by the following expression is equi-
valent to p :

dow=(f.w \d,w.\J A(z)(w—z) /
We leave the details to the reader.

We now indicate a connection between balayage and the problem of
characterizing sets of removable singularities for bounded analytic
functions.

4.19. DEFINITION. — Given a connected open set G' and a compact
subset E of G', let G === G' — E. We say that E is a set of removable
singularities for bounded analytic functions in G provided that each
f € Bn(G) has a bounded analytic extension F £ BH (GO.

It is well known (see [I], Chapter IV, Section 4C) that the above
property of E is independent of the set G', so that it makes sense simply
to speak of E as being a set of removable singularities for bounded
analytic functions. In some sense, such sets E are thin sets. We shall prove
a result to the effect that E is a set of removable singularities for bounded
analytic functions if and only if E is so thin that each measure in M (G)
can be swept a positive distance away from E. First we require some
preliminaries.

We shall use the following notation :
E, = { z € G : distance (z, E) > e }, e > 0.
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4.20. DEFINITION. — Given G', E, and G as in the preceding
definition, we say that a measure p. £ M(G) is holomorphically free of
E, if, for some £ > 0, there is a measure v ̂  (A that lives in Eg .

4.21. LEMMA. — If every measure p, in M(G) is holomorphically
free of E, then for some e > 0, Eg is a dominating subset of G.

Proof. — Lei us write En in place of Ei/n. Proceeding by contraction,
if the lemma were false, we could find a sequence {fn ] of functions in
BH (G) and a sequence { Zn } of points in G such that

supq/n^l^eEn}^-**

|/n(Zn)|>^||/n| =1.

We define a measure (A G M(G) by

(Ji==2;3-^,

where ejc is the unit point mass at z^ By hypothesis, there is a measure v
that lives in EN for some positive integer N, with v ̂  p.. For n ̂  N, we
have EN C En, and therefore
(4.21.1) I JA^VI^^HVH.

On the other hand,

|J/n^|= !:§ 3-^(^)1 >-^3^—

( 2 + 2 )3 - f c | / n ( ^ ) | ^ ^ -3 - "— 1 4 - n — 1 3 -^
k<n k>n ' ' 4 2 2

which contradicts (4.21.1) for large n.

4.22. THEOREM. — Let G' be a bounded open set, let E be a compact
subset of G', and let G === G'—E. Then E is a set of removable singu-
larities for bounded analytic functions in G if and only if each measure
p. in M(G) is holomorphically free of E.

Proof. — By the preceding lemma and by Theorem 4.14, it is suffi-
cient to show that E is removable if and only if Eg is dominating for
some s > 0. Suppose first that E is not removable, and let e > 0 be
given. There exists a non-constant bounded analytic function / on the
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complement C of E with respect to the Riemann sphere (see [I], Chapter
IV, Section 4C). By the maximum principle, we see that

sup {|/(z) | : z € G} = sup {|/(z) | : z € C}.
But

sup {|/(z)|: z 6 E, } < sup {[/(z) | : z £ C}

since (Eg )~- is a compact subset of C. Hence Eg is not a dominating set.
Conversely, suppose that E is removable, and choose e with

0 < e < distance (E, W). Then Eg is a dominating set. For, given
f € Bn(G), there is a bounded analytic continuation, which we still
denote by /, into all of G'. But G' — Eg is a compact subset of G', and
thus

sup [\f(z)\: z € G'} = sup {[/(z)| : z € Eg }
as was to be proved.

The next result deals with the sweeping of measures on the unit
disc D onto the boundary of D, and conversely with the sweeping of
measures on the boundary of D into the interior.

4.23. THEOREM. — The spaces M'(D) and U (—71, 7t)/N1 are iso-
metrically isomorphic, where

N1 = [h € LK— TC, 7i) : f" fW A(9) dQ = 0, aH / € Bn(D)}.

This means that, given a measure ^ € M(D), and a positive number
e, there exists a function h € 1L1(— n, n) such that

(4.23.1) F f(z) 4i(z) = r"f(^9) A(8) rf8 for each / € Bn(D),

and such that N A [ [ i ̂  (1 + e) [ [ ( A J L and conversely, that given any
function h G L1 (— TC, 71), and a positive number e, there is a measure ^ in
M(D) for which (4.23.1) holds, and such that [|[jJj < (1 + s) j [ A [ [ i .

Remark. — A result equivalent to this theorem was proved in [4],
Theorem 6. The fact that each [A e M<D) may be swept into U(— 71, n)
follows from Theorem 3.4 and [7], Theorem 2. It was proved in [19],
Theorem A that each equivalence class of LVN1 contains a unique func-
tion h of minimal norm.
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Proof of the theorem. — Suppose we are given a function
h €^(—71,71). We define

(4.23.2) L(/) = F f(e^) A(6) d6, / 6 Bn(D).
»/-"

To prove that there exists a measure [A € M(D) such that

(4.23.3) L(/)=f /(z)^(z), /€BH(D),
J D

it is enough to prove that L is a continuous linear functional on a(D).
The linearity is obvious. To prove that L is continuous, it is enough to
prove that L-^O) = {/ € Bn(D): L(/) == 0} is a closed subset of a(D).
But since L-^O) is a linear subspace of a(D), it is enough, by Corol-
lary 4.7, to prove that it is sequentially closed. Let us suppose then that
fn converges t o / i n a(D), and that for each n, L(fn) = 0. We must
prove that L(f) = 0. By Corollary 3.11, we know that the fn are uniformly
bounded, say |[/n|[oo< 1, and pointwise convergent to / in D. Let us
consider the /„ as elements of the unit ball in Hoc (D) as the dual of
LK—TC, 7c)/N1. By the Alaoglu theorem, we may pass to a subsequence
so that now {/„} converges, say to F, in this space. This means that

ShW H(9) dQ -^ JF(^) H(6) dQ

for each H e L1 (— n, 71). By choosing, for each Zo € D, H(6) =
(27i)-1 ei6/(ei6—zo), we see by the Cauchy integral formula that F == /.
Since JF(^°) A (6) dQ =•= 0, we are done.

Suppose now that we are given a measure [A e M(D). We define L
by (4.23.3) and must prove that it has a representation (4.32.2). Analog-
ously to the above considerations, it is enough to prove that if /„ -> / in
the weak-star topology on Hoo(D) as the dual of U(—n, 7i)/N1, and if
L(/n) = 0, then L(f) == 0. But, by the uniform boundedness principle,
if the fn converge in this topology, then they must be bounded in the
essential supremum norm as functions on (— jc, n). Therefore, they must
be uniformly bounded as functions on D. We see also that they must
converge pointwise in D by choosing the functions H as above. Hence
fn -> / in a(D) and the result follows.

4.24. Another approach to Theorem 4J. We give a non-constructive
proof here, based on functional analysis methods, that given a measure
[A € M(G) and a positive number e, there exists a measure v e L^G)
with v - (A and [ j v j j ̂  [ [ ( J i j j + 8. We recall (see 4.2) that Nx(G) is the
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annihilator in L^G) of Bn(G) and that (see the proof of Theorem 4.5)
Bn(G) is a weak-star closed subspace of L^CG). Recall also that we
write [p.] for the equivalence class of M'(G) that [JL belongs to. In case p.
belongs to L^G), let us write [[p-]] == (A + N\(G) for the equivalence
class of LKGVNxCG) that (A belongs to.

Then we have, from the theory of Banach spaces, that
a) Bn(G)=Nx(G)^
b) (LKGVNxCG))* is isometrically isomorphic to H°° (G)
c) for v € LKG), we have

[|[[v]]|[ = sup {|J/rfv| :/ € H°°(G), [ [ / [ | = 1}.
The isomorphism in b) is the following: to the function / € Hoo we

let correspond the linear functional Ly given by L/([[v]]) = ffdv.

Now let the measure ^ € M(G) be given. We define the linear
functional Lp.: Bn(G) -> C by U (/):== Jjfd[A. Then L^i is a continuous
linear functional on Bn(G) as a subspace of L." (G) in the weak-star
topology. This is the same topology as the weak-star topology on Bn(G)
as the dual of L^GVNxCG). That L^ is continuous is proved by proving
that the null space of L^i is sequentially closed, and this is done by an
argument with normal families. This is similar to other proofs we have
given and we omit the details. As a consequence, we see that there exists
an element [[p]] of U(G)/Nx(G) such that UO)==J^p for all
/ € Bn(G). There exists an element v € [[p]] such that

||v||^||[[p]]||+e.

We now assert that N[^]N = ||[[p]]||. H this is proved, we have the desired
result since then

||v||^|l[tp]]||+e=||^]||+e<||ixl[+e,

and we have already shown that v ^ p,. Now if we take / G H°° (G) with
[|/ |[ ̂ 1 then we have ;^|< ||[[i][| so that [J^p|^[|[|x]ll. By
c), this implies that | [[[p]] j!^ \\W\\' ^OT ^e QPP08110 inequality, choose
a sequence {pn} of elements of [[p]] such that [|pn([—»([[[?]][[. Since
[|pn|| ̂  |[[(Jt]||, we are done.

We remark, finally, that by Proposition 2.10, we have proved, by
these methods, the full strength of Theorem 4.1 except in the case when
some constant multiple of a measure equivalent to p is a positive measure.
It does not seem that these methods will handle the exceptional case.
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5. Closed ideals in (3(G).

Our study of the closed ideals in p(G) is most successful in the case
of the unit disc, G == D. We assume some familiarity with the theory of
bounded analytic functions in D, in particular the fact (see, for example
[14], Chapter 5) that every bounded analytic function in the unit disc
has a unique representation as the product of an inner function and a
bounded outer function. The radial boundary values of a bounded analytic
function / in D, which exist almost everywhere, will be denoted by /(^ie).
Inner functions / are characterized by the property that multiplication by
them is an isometry on Hoo(D), or equivalently that l/^9)] = 1 almost
everywhere. An inner function / has the representation / == BS where B
is a Blaschke product over the zeros of / in D.

^n^^
and where S is a singular function

S(z) = exp f—f ̂ t^ 4t(6)1,

where [A is a singular non-negative measure with respect to Lebesgue
measure. An outer function Q has the representation

Q(z)=exp[-^^.A(9)d9]

where h € LK—71,71). The outer function Q belongs to H^(D) if and
only if ess in f{A(9) :—n < 6 ̂  n} > — o o .

Notation. By (f) = / Bn (G), we denote the principal ideal generated
by/ in Bn(G).

R. C. Buck has conjectured [5] that if / 6 p(D), then (f) is dense
in p(D) if and only if / has no zeros. We show that this conjecture has
to be modified — the ideal is dense if and only if / has no inner factor.
In other words, the topological units in j3(D) are just the outer functions.
Roughly speaking, it might be said that the ideal structure of (i(D) is as
simple as it is because the (i topology is fairly strong on the one hand,
yet weak enough so that the dual of |3(D) is the same as the dual of a(D),
namely M'(D).
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5.1. THEOREM. — The principal ideal (f) is dense in (i(D) if and only
if f is an outer function.

Proof. — First, suppose that / is an outer function. It will be enough
to show that the constant function 1 belongs to (f)-. We may assume that
|[/||=1. Then

(5.1.1) /(z) = expT f ^-^AO) del

where A (8) = log JK^8) | is a non-positive integrable function. Let

An(8)=min(A(8),n),

^(e)=A(9)—A^(8),

F^(z) = exp — f i-t^- hn(Q) d8,
J z—^v

so that

(5.1.2) /(z) F^z) = exp f i-t-^ ^(8) d8.
^ z—e^

Now ^,(8) ̂  0, and gn converges to 0 in the L1 metric. Hence

H / F n I l o o ^ l ,

and /(z) Fn(z) -> 1 as n -» oo for each z in D, and we have proved that
1 € (/n)-.

For the converse, assume that / has a non-trivial inner factor <p. Then
(f) £ (<p) =^ P(D), and the result follows from the next result, which we
understand has also been obtained by Paul Hessler.

5.2. PROPOSITION. — // <p is an inner function, then (<p) is closed
in P(D).

Proof. — By Corollary 4.7, since an ideal is a fortiori a linear sub-
space, it is enough to show that (y) is sequentially closed. Let us then
assume that y /„ -» g in j3(D). By Corollary 3.11 the functions {<p /„} are
uniformly bounded. But | [cp j f» | | = ||/n|[ since multipUcation by an inner
function is an isometry, and it follows that the functions fn are uniformly
bounded. By passing to a subsequence, we may assume that {fn} con-
verges, say /„-> /, in |3(D). Hence g = cp/, and it follows that g € (y),
which was to be proved.
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5.3. PROPOSITION. — // / C P(D) and if cp is the inner factor of f,
then (f) is dense in (<p).

Proof. — Let g denote the outer factor of f, so that / == y g . From
the proof of Theorem 5.1, there exists a sequence {gn} of bounded ana-
lytic functions such that gng—> 1 in (i(D).

A function / e P(G) is called a unit if fg = 1 for some g € (3(0);
/ is a unit if and only if I /1 is bounded away from 0 in G.

5.4. THEOREM. — The principal ideal (f) is closed if and only if the
outer factor of f is a unit.

Proof. — Let g be the outer factor of / and let <p be the inner factor
of /. If g is a unit, then (f) is closed, by Proposition 5.2. If g is not a unit,
then (f) does not contain <p, for Hy=fh==^gh, then gh=l. But
<p £ (j0~ by the preceding theorem, and the proof is complete.

5.5. THEOREM. — Every closed ideal in (3(D) is the principal ideal
generated by an inner function.

Remark. — Since, by Corollary 3.5, the closed ideals of j3(D)
correspond to the closed subspaces of a(D) that are invariant under multi-
plication by bounded analytic functions, the result follows from a result
of Srinavasan (see [12], p. 25) and Theorem 4.23. We prove the result
here by using Beurling's characterization of the closed invariant subspaces
of Hfc (see [3], or [14], Chapter 7), as being of the form cpH2, where cp is
an inner function. It would be good to find a direct intrinsic proof. By
solving a simple extremal problem, the result can be shown to follow from
the assertion that if / and g are two inner functions with no non-trivial
common factors, then there exist sequences {Fn} and (Gn) of bounded
analytic functions such that /Fn + gGn converges boundedly to 1. It has
been remarked to the authors that this fact follows from the Corona
theorem of Carleson [6], but because of its depth and the difficulty of
its proof, the Corona theorem is hardly an appropriate tool for this
problem.

Proof. —Let I be a closed ideal in j3(D). If / € I and if cp is the
inner factor of /, then cp € I by Proposition 5.3. It is sufficient to show
that I contains one inner function <po that divides all the other inner
functions in I.
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Let J denote the closure of I in the Hilbert space Hb of all functions /
analytic in D such that 1 1 /1 [ 2 < oo, where

,. ( i r "lim j—— / "\Kre^)\2 rf8 j1/2.
-»i- ( 2 7i J -re ' )

Then J is a closed subspace of H:2 that is invariant under multiplication
by z, and so by Beurling's theorem, J is generated by some one inner
function cpo; that is, J = cpo H2. Consequently, (po divides all the inner
functions in I, and it is therefore enough to show that <po itself belongs
to I.

Since cpo is in the H2 closure of I, there exists a sequence {fn} of
functions fn C I such that fn-> cpo in the H2-metric. We write in = cpn^n,
where cpn is inner and gn is outer. By passing to a subsequence, we may
assume that {(pn} converges in j3(D), say (pn-»cp., In particular, cp € I.
Since \\8n\\2 = [ | /n[ [2 , we may use the weak compactness of the unit
ball in Hilbert space, and by passing to a subsequence, may assume that
{gn} converges weakly in H2, say gn-^g. In particular, gnh)->g(z)
for each z € D, since evaluation at points of D is, by the Cauchy integral
formula, a continuous linear functional on H2. It follows that cp^ == cpo.
From the next lemma, with go = 1, it follows that cp is inner. But from
the equation cp^ = cpo, with cp inner and g € H2, it follows that g e Hoo,
since H2 C Hi and the inner-outer factorization of functions in Hi is
unique. Hence cpo G IHoo = I, and we are done.

5.6. LEMMA. — Suppose that {fn}, n == 1, 2, 3,..., is a sequence of
functions in H^ that fn->fo in H2, /o ¥- 0, that fn = cpn gn is the inner-
outer factorization of fn, n = 1, 2, 3,.... and that fo = cpo go is the inner-
outer factorization of fo. Suppose further that cpn->cp in |3(D) and that
8n—>g weakly in H2. Then cp is an inner function and gn->g in the
H2 metric.

We remark that g need not be an outer function.

Proof. — It is clear that [(p(z)[ ̂  1 for each z £ D, so that
[(pC^9)) ̂  1 almost everywhere. To prove that y is inner, it is enough
to prove that [y^9))^! almost everywhere. If, on the contrary,
[y^6)) < 1 on a set of positive measure, then for some set of positive
measure and for some e > 0, we would have jcp^18) < 1 —e on that
set. It would follow that for each h 6 H2, h ̂  0, 1 1 cpA [ 2 < | [ h \ \ 2. From
the fact that gn->g weakly, we see that \\8\\2 ̂  liminf|[^J|2. Hence
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| [ ^ [ ]2^1 im| |^n[ [2==l im[[A»[[2= ||Vo^o|[ = [|^o||,

M=||cpo^o||= l l^H ̂ ||,||.

Hence, we have equality throughout, so that \\V8\\==: [ ^ | [> anc!
cp is consequently an inner function. Also, \\g\\ == lim \\8n\\, and this,
plus weak convergence of {gn} to g, implies that [gn] converges to g in
norm, since then

(8—8n,g—gn)->0.

Theorem 5.5 can be used to extend Beurling's theorem on invariant
subspaces of H2 to other spaces of analytic functions, and in particular
to the spaces Hp, 1 ̂  p < oo. These spaces Hp were treated in this
connection by Helson in [12]. We restrict outselves to spaces of functions
of bounded characteristic, that is, functions that are quotients of two
bounded analytic functions. Another characterization of such functions f
is given by the criterion.

Plog+ [/(r^9) \dQ ̂  m < oo for all r < 1.
»/—ir

Every function of bounded characteristic is the product of an outer
function and the quotient of two inner functions that have no non-trivial
common inner factor. A space of functions is said to be invariant if it is
taken into itself by multiplication by each bounded analytic function.

5.7. THEOREM. — Let E be a topological vector space whose ele-
ments are functions analytic in the unit disc D, that statistics the following
five conditions :

i) every function in E has bounded characteristic;
ii) if f € E and f == cpig/cp2, where g is an outer function and cpi

and cp2 we inner functions with no non-trivial common inner
factor, then g/^ £ E.

iii) the bounded analytic functions in D form a dense subset of E.
iv) for each function f that is bounded and analytic in D, let T/ be

the transformation defined by Tfg == fg. Then T/ maps E into
E and T/ is continuous.

v) if S is a closed subspace of E and if {fn} is a uniformly bounded
sequence of analytic functions in S that converges pointwise in D
to a function f, then f € S.
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Then each closed invariant subspace V of E is generated by an inner
function <p, that is, V == <pE.

Proof. — We show first that if / is an outer function in E, then the
constant function 1 is in the E-closure of /BH(D). The proof is almost
identical with the proof of Theorem 5.1. The function / has the repre-
sentation (5.1.1), where /z(8) is an integrable function, not necessarily
bounded above. We define hn and Fn as before. Then each Fn belongs to
Bn(D), and fFn has the representation (5.1.2). Hence ||/Fn[|oo ̂  1 and
/(z)F^(z) -» 1 as n—> oo for each z € D, and therefore by condition (v)
of the present theorem, the function 1 belongs to the smallest closed
subspace of E that contains /Bn(D).

Now let V be a closed invariant subspace of E, and let / == cpi^/(p2
be the inner-outer representation of /. Then cpi £ V. Indeed, as we have
just seen, there is a sequence {fn} of bounded analytic functions fn such
that gfn-> 1 in E. Using (iv), we see that f^fn) = cp^/n) -> <pi in E,
and hence <pi € V.

We now let V'=VHBH(D), and claim that V is a closed ideal
in Bn(D). First, V is clearly an ideal. Next, to prove that V is closed,
it is enough to prove that it is sequentially closed. Let {/n} be a sequence
of functions in V such that fn—> f, say, in P(D). Using (v) and the fact
that / € Bn(D), we see that / € V.

Now by Theorem 5.5, V == cpoBn(D) for some inner function cpo.
We now prove that V = (poE. First, to see that V C cpoE, let f be any
function in V, and write f == <pi^/(p2 as its inner-outer representation.
From the first part of our proof, we see that cpi € V, hence cpi € V,
and consequently cpi == cpocp' for some inner function cp', and hence
f = cpocp'^/^. But from ii), we have that g / ^ p z €E? and from iv), since
cp' € Bn(D), we have that g<p7^2 6 E and so / € cpoE. It remains to
show that cpoE C V, that is, that (po/ € V for each / £ E. By iii), there is
a net {fy}, y € r, of functions fy £ Bn(D) such that {fy} converges to /
in E. But by iv), cpo/y -»<yo/ m E and hence cpo/ € V, since cpo/y € V
for each y e F, and the result is proved.

5.8. Remarks.

a) The second half of condition (iv), namely the continuity of the
multiplication operator, follows automatically from the closed graph
theorem if E is complete metric space in which evaluation at any given
point of D is a continuous linear functional on E.
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b) In many spaces E that actually arise, bounded pointwise conver-
gence implies weak convergence, and this gives condition (v).

c) It is perhaps true that conditions (i)-(v) imply that if cp is an inner
function, then <pE is always a closed subspace, but we do not have a proof
of this.

5.9. Applications.

We now show briefly that the familiar spaces Hp, 1 ̂ p < oo,
satisfy the hypotheses of Theorem 5.7, so that each closed invariant
subspace of Hp is generated by an inner function. The case p •== 2 is,
of course, the theorem of Beurling we used in the proof of Theorem 5.5,
which was used in turn in the proof of Theorem 5.7. The case p = 1
was treated by de Leeuw and Rudin [17]. The general case was treated
by Helson [12].

i) HK^9) [p dQ ̂  m < oo for r < 1 implies that

fhg+ JK^9) | dQ ̂  w' < oo for r < 1,

so that each / € Hp has bounded characteristic.

ii) Passing to the boundary of the disc, we have
r gc^6) r gW
\ J^ ^9=: / J, ^(ei6) pdQ

J ^f2W J <p2(^9)

since [(pi^8)] = 1 almost everywhere.

iii) The polynomials are bounded analytic functions in D, and by
Fejer's theorem, the Cesaro means of the partial sums of the Taylor's
series of a function in Hp must converge to the function in the metric of
H,.

iv) It is obvious that T/ maps Hp into Hp, and the continuity is also
clear since

|[T^-T^||,=[[^-^)[|p^||/||oo||^-^[[p.

v) Let us suppose, by the way of contradiction, that we have a
sequence {fn} of bounded analytic functions in S, that fn—>i in j3(D),
but that /^S. By the Hahn-Banach theorem, there exists a function

g € L®(— n, n) such that J/n(^8) gWdQ = 0
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but such that ffgdQ^O. But by Holder's inequality, if we define v by
dv(Q) == g(Q)dQ, then v is a measure on (—TC, TC) that is absolutely
continuous with respect to Lebesgue measure. By Theorem 4.23, this
measure v can be swept inside the disc, in the sense that there is a
measure y, 6 M(D) such that

n(z)^(z)=jK^v(e).
But then we have 0 = ffndy. -» ffdy, ̂  0, and the assertion is proved
by contradiction.

It is a consequence of Helmer's Theorem [11] that in the algebra of
analytic functions in the complex plane, every finitely generated ideal is
closed in the topology of uniform convergence on compact subsets. This
contrasts with the algebra R(D), as the next result shows.

5.10. PROPOSITION. — There is a finitely generated ideal in (3(D)
that is not closed.

Proof. — We outline the proof, which is along familiar lines. By
Theorem 5.5, it is enough to construct a finitely generated ideal in Bn(D)
that is not principal. We choose two sequences [Zn] and {Wn} of points of
D having no points in common, such that S (1 — |zJ) < oo and such
that [zn—Wn\ converges to 0 extremely rapidly as n tends to oo. Let Bi
be the Blaschke product formed with the zeros {Zn} and let B2 be the
Blaschke product formed with the zeros {Wn}. Suppose that the ideal
in Bn(D) generated by Bi and B2 were principal, with generator /. Then /
has no zeros since Bi and Ba have no common zeros. Thus 1/f is an
analytic function of bounded characteristic, and it follows that for some
positive constant c,

\f(z) I ̂  exp j —c ) all z € D.
' 1 ^ 1 '

We would also have / === ^iBi + ^Bg for some pair ^i, gs of bounded
analytic functions. In particular, |/(^n)| == ?2(2,1) [ \gs (^n)[, which is
impossible, because gs is bounded while Ba is extremely small at the
points {z^}.

5.11. PROPOSITION. — There is a maximal ideal in ji(D) that is not
closed.
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Proof. — If a maximal ideal is closed, then by Theorem 5.5, it is
generated by an inner function cp. But the multiples of cp cannot form a
maximal ideal unless cp is a single Blaschke factor. To see this, observe
that if y contains a Blaschke product of at least two factors, or a
Blaschke product and a singular function, then the inner function formed
by deleting one factor will generate a larger ideal. On the other hand,
if <p has no zeros, then there is a square root of cp that is an inner
function that generates a larger proper ideal. Now let I be the ideal of all
functions / € Bn(D) such that f(x)-> 0 as x—> 1-. There is a maximal
ideal J that contains I, and by the above remarks, it follows that J
cannot be closed, since the functions in I have no common zeros.

5.12. In a general region G, we make the following definitions, where
as before, (f) denotes the principal ideal in Bn(G) generated by /.

a) The function / £ (3(G) is called an exterior function if (f) is dense
in j3(G).

b) The function / £ j3(G) is called an interior function if (f) is closed
in P(G).

Note that if f is both interior and exterior, then f is a unit, since then
/BH == BH.

Problem. — For which regions G does each f € |3(G) have an unique
factorization, modulo units, as the product of an interior function and an
exterior function ?

Problem. — For which regions G is each closed ideal in j3(G) prin-
cipal ?

We call a transformation T : Hoo (G) -> Ho, (G) an approximate iso-
metry provided that there exist two positive numbers a and b such that

^ 1 1 / 1 1 ^p)[.0[(/l| for each KHoo(G).

Problem. — For which regions G do the interior functions coincide
with those functions cp such that multiplication by cp is an approximate
isometry on Hoc (G) ?

5.13. In the disc, there is an intrinsic way of finding the inner factor
of a function / G Bn(D). Let us suppose for simplicity that /(O) ̂  0.
For each interior factor y of /, let
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p(cp) == sup {[^(0) y(0)[ : u is a unit, [ [ M y [ L = = l } .

Among all such cp with | [cp[ [ == 1, there is a function cpo that minimizes p,
and it can be shown that //<po is an exterior function. We omit the details.

5.14. We now consider maximal ideals in P(G). From the Gelfand
theory of Banach algebras, we know that there is an one-to-one cor-
respondance between maximal ideals in Hoo(G) and multiplicative linear
functionals on Hoo(G); the ideal associated with a given multiplicative
linear functional is just the null space of the functional. Since Bn(G) is the
underlying algebra both of Hoo(G) and of p(G), it follows that a maximal
ideal is closed in p(G) if and only if the associated multiplicative linear
functional is (5-continuous see [13], Corollary to Theorem 2.6.2).

5.15. Let X be the class of all continuous multiplicative linear func-
tionals on j3(G), and suppose that G is bounded, so that e e Bn(G), where
e: G -> C is the identity map, e(z) == z for z £ G. If X € X, we let X*
be the complex number X* = X(^).

5.16. Let G' denote the set consisting of the points of G and of all
points that are removable singularities for all functions in Bn(G). We may
think of the functions in Bn(G) as being defined on G'.

For ^ € G', let Xc denote the functional of evaluation at ^,
XcOT=/ (S) .ThenXs€X.

The question arises : for which regions G do we obtain all the
elements of X in this manner ? Rudin [22] has shown by an ingenious
construction that not all regions have this property. We shall show,
however, that there is a wide class of regions that do have this property.

5.17. THEOREM. — If G is a bounded region and if 9G is the union
of non-degenerate continua and isolated points, then the only continuous
multiplicative linear functionals on ji(G) are the point evaluations at points
ofG\

Proof.— From the easily proved fact that if G is an open set in the
plane, and if p is an isolated point of <9G then GU {p} is an open set,
we know that if we adjoin the isolated boundary points of G to G, we
obtain a region whose boundary is now the union of non-degenerate
continua. This new set has no removable singularities in its boundary
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(any point Zo € <9G is a non-removable singularity for the bounded
analytic function (z — Zo)172 (z — Zi)172? where Zi is a point on the same
component of <9G as zo) and so this new set is precisely G'. Now let
X € X be given. We first show that X* = X(0 belongs to G'. Indeed, X*
cannot belong to the exterior of G", since then the function / given by
/(z)=(z—X*)"1 would belong to Bn(G), which would lead to the
contradiction

l=W)=Xk—X*n(f)=OX XW==0.

Also, X* cannot belong to the boundary of G, for in this case there would
be another point zo ̂  Xs" in the same component of <9G as X*. Let

( 7__ V* \l/n
^ =(,-„) -i—L)-

Z—Zo /

for some branch of the n-th root. Then gn € P(G') and Xten)==0
since (X^n))" = Xtew") = 0. The functions gn are uniformly bounded,
and hence some subsequence converges in ji(G) to a function that must
have the form c(z—zo)» where c is a constant of modulus 1. Hence
cQ^*—Zo)=X(c(z—Zo)) = 0, which is a contradiction.

We now know that X* € G', and we must show that XOT == jf(X*)
for all / € Bn(G). Let us choose / 6 Bn(G), and let g € Bn(G) be defined
by

,, Kz)—KX*) , ,,-„gk) == ——————— for z ̂  X*,
z — X - '

with g(X*) = f(X*). We then have that

X (f) — f0*) = X (z — X*) X fe) = 0, and the proof is done.

5.18. In conclusion, we list some unsolved problems, some of which
have already been mentioned in the text.

a) Is the p-topology on Bn(G) the same as the Mackey topology in
the pairing < Bja(G), M'(G) > ?

b) Suppose that T is a Hausdorff topology on Bn(G) that makes it
into a locally convex space in which the convergent sequences are precisely
the uniformly bounded and pointwise convergent sequences. Must T be
intermediate between the a and j3 topologies ?

c) If we think of Bn(G) as a space of multiplication operators on
L^G) (the space of equivalence classes of complex-valued functions /
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on G with [ [ / [ [ 2 = f\f\2 d\, where X is Lebesgue planar measure), then
it follows from Theorem 4.1 that the weak operator topology on Bn(G)
is identical with the a topology. Is the strong operator topology identical
with the p topology?

d) Is multiplication in a(G) jointly continuous ?

e) For which regions G does each / € Bn(G) have an unique
factorization, modulo units, as a product of an interior factor and an
exterior factor ?

f) For which regions G is every closed ideal in (i(G) principal ?

g) Give a concrete description of the continuous multiplicative linear
functionals on j3(G) for the general region G. For which regions G are
they just the point evaluations at points of G and at removable singu-
larities ?

h) Does there exist a natural way of assigning a topology to Bn(G)
so that the continuous multiplicative linear functionals are just those
described in the proceeding problem ?

i) Let D denote the open unit disc, and let [an], n === 0,1, 2,..., be
a given sequence of complex numbers. Suppose that i f / i s any function
in Bn(D), with power series /(z) = 2 bn^, then the limit

lim 2 cinbn^
r-»l~

exists. Is {dn} necessarily one side of the sequence of Fourier coefficients
of some integrable function ? That is does {an} determine a continuous
linear function on P(D) ?

(This question is referred to in [4], p. 181. In essence, it was raised
by A. E. Taylor in [23], p. 33.)

Since the preparation of this paper for publication, some of the
questions raised have been answered. Collins has given a negative answer
to problem a), Waelbroeck has given a negative answer to problem d),
and Shields and Wells have given a positive answer to problem i).

Added in proof. — Some of the questions posed have been answered
in the meantime. For question a), J. B. Conway has shown that the
P topology is not the Mackey topology, in his paper : Subspaces of C(S)^,
the space (I00, p), and (H°°, (3), Bull. Amer. Math. Soc. 72 (1966), 79-81.
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For question d), L. Waelbroeck has shown in a private communication that
multiplication in a(G) is not jointly continuous. Finally, the conjecture
in problem i) is correct as has been shown (unpublished) by Piranian,
Shields, and Wells.

We give some additional bibliographical information. In reference 10,
Havin shows that H°°(G) is a conjugate Banach space, which is precisely
our Theorem 4.5. Another paper of V. P. Havin that should be mentioned,
in connection with balayage, is the article, Analytical representation of
linear functionals on spaces of harmonic and analytic functions, continuous
in a closed domain, Doklady Akad. Nauk SSSR, Vol. 151 (1963), 505-
508. Finally, we mention the paper by T. P. Srinivasan and Ju-Kwei Wang,
On closed ideals of analytic functions. Bull. Amer. Math. Sac. 16 (1965),
49-52 where a result close to our Theorem 5.5 is proved.
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