PETER LOEB Bertram Walsh

The equivalence of Harnack's principle and Harnack's inequality in the axiomatic system of Brelot

Annales de l'institut Fourier, tome 15, nº 2 (1965), p. 597-600 <http://www.numdam.org/item?id=AIF_1965__15_2_597_0>

© Annales de l'institut Fourier, 1965, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

THE EQUIVALENCE OF HARNACK'S PRINCIPLE AND HARNACK'S INEQUALITY IN THE AXIOMATIC SYSTEM OF BRELOT by PETER A. LOEB (¹) AND BERTRAM WALSH (²)

During the last ten years, Marcel Brelot [2] and others have investigated elliptic differential equations in an abstract setting, a setting in which the Harnack principle is assumed to be valid. When necessary, the Harnack principle has been replaced by another axiom which establishes a form of the Harnack inequality. In 1964, Gabriel Mokobodzki showed that the two axioms are equivalent when the underlying space has a countable base for its topology (see [1], pp. 16-18). We shall show that this restriction is unnecessary. First we recall some basic definitions.

Let W be a locally compact Hausdorff space which is connected and locally connected but not compact. Let \mathfrak{H} be a class of real-valued continuous functions with open domains in W such that for each open set $\Omega \subseteq W$ the set \mathfrak{H}_{Ω} , (consisting of all functions in \mathfrak{H}) with domains equal to Ω , is a real vector space. An open subset Ω of W is said to be *regular* for \mathfrak{H} or *regular* iff its closure in W is compact and for every continuous real-valued function f defined on $\partial\Omega$ there is a *unique* continuous function h defined on $\overline{\Omega}$ such that

 $h|\partial\Omega = f, \quad h|\Omega \in \mathfrak{H}, \quad \text{and} \quad h \ge \mathbf{0} \quad \text{if} \quad f \ge \mathbf{0}.$

Moreover, the class \mathfrak{H} is called a *harmonic class* on W if it satisfies the following three axioms which are due to Brelot [2]:

AXIOM I. — A function g with an open domain $\Omega \subseteq W$ is an element of \mathfrak{H} if for every point $x \in \Omega$ there is a function $h \in \mathfrak{H}$ and an open set ω with $x \in \omega \subseteq \Omega$ such that $g|\omega = h|\omega$.

Supported by National Science Foundation research grants $(^{1})$ GP-1988 and $(^{2})$ GP-4563 respectively.

AXIOM II. — There is a base for the topology of W such that each set in the base is a regular region (non empty connected open set).

AXIOM III. — If \mathfrak{F} is a subset of \mathfrak{H}_{Ω} , where Ω is a region in W, and \mathfrak{F} is directed by increasing order on Ω , then the upper envelope of \mathfrak{F} is either identically $+\infty$ or is a function in \mathfrak{H}_{Ω} .

It follows immediately from Axiom I that if h is in \mathfrak{H}_{Ω} , then the restriction of h to any nonempty open subset of its domain is again in \mathfrak{H} . Given Axioms I and II, Constantinescu and Cornea ([3], p. 344 and p. 378) have shown that the following axioms are equivalent to Axiom III:

AXIOM III₁. — If Ω is a region in W and $\{h_n\}$ is an increasing sequence of functions in \mathfrak{H}_{Ω} , then either $\lim_{n} h_n$ is identically $+\infty$ or $\lim_{n} h_n$ is in \mathfrak{H}_{Ω} .

AXIOM III₂. — If Ω is a region in W, K a compact subset of Ω , and x_0 a point in K, then there is a constant $M \ge 1$ such that every nonnegative function $h \in \mathfrak{H}_{\Omega}$ satisfies the inequality

 $h(x) \leqslant \mathbf{M} \cdot h(x_0)$

at every point $x \in K$.

Given Axioms I and II, we shall show that the following axiom is equivalent to Axiom III.

AXIOM III₃. — If Ω is a region in W then every nonnegative function in \mathfrak{H}_{Ω} is either identically **0** or has no zeros in Ω . Furthermore, for any point $x_0 \in \Omega$ the set

$$\Phi_{x_0} = \{ h \in \mathfrak{H}_{\Omega} : h \geqslant \mathbf{0} \quad \text{and} \quad h(x_0) = 1 \}$$

is equicontinuous at x_0 .

Axiom III₁ is, of course, just the Harnack principle, and Axiom III₂ gives a «weak » Harnack inequality for \mathfrak{H}_{Ω} . On the other hand, a consequence of Axiom III₃ is the fact that for any region Ω and any compact subset $K \subset \Omega$ there is a constant $M \ge 1$ such that for every nonnegative $h \in \mathfrak{H}_{\Omega}$ and every pair of points x_1 and x_2 in K the relation

(1)
$$\frac{1}{\mathbf{M}} \cdot h(x_1) \leqslant h(x_2) \leqslant \mathbf{M} \cdot h(x_1)$$

holds. Moreover, for any point x in Ω and any constant M > 1there is a compact neighborhood K of x in which (1) holds. Thus Axiom III₃ establishes a strong Harnack inequality for \mathfrak{H}_{Ω} . Mokobodzki has established the equivalence of III₃ and III for the case in which the topology of W has a countable base; it is this restriction which we shall now remove.

That Axioms III and III₃ are equivalent follows from the

THEOREM. — Let \mathfrak{H} be a harmonic class and Ω be a region in W. Let x_0 be a point in Ω , and set $\Phi = \{h \in \mathfrak{H}_{\Omega} : h \ge 0 \}$ and $h(x_0) = 1\}$. Then Φ is equicontinuous at x_0 .

Proof. — Let ω be a regular region and K a compact neighborhood of x_0 such that $x_0 \in K \subset \omega \subset \overline{\omega} \subset \Omega$. Each continuous function f on $\partial \omega$ has a unique extension $H(f) \in \mathfrak{H}_{\omega}$, and for each $x \in \omega$ the mapping $f \to H(f)(x)$ from $C(\partial \omega)$ into the reals is a nonnegative Radon measure on $\partial \omega$, which we denote by ρ_x . Axiom III₂ (which follows from Axiom III) gives for each pair of points x_1 and x_2 in ω a constant M (depending on those points) for which $H(f)(x_1) \leq M \cdot H(f)(x_2)$, i.e.

 $\rho_{x_1} \leqslant \mathbf{M} \cdot \rho_{x_2}$

in the usual ordering of measures on $\partial\omega$. Hence all the measures $\{\rho_x\}_{x\in\omega}$ are absolutely continuous with respect to one another, and the Radon-Nikodym density of any one with respect to any other is essentially bounded (« essentially » being unambiguous because all the measures have the same null sets). Following an idea of Mokobodzki's, we now consider for each $x \in \omega$ the Radon-Nikodym density of ρ_x with respect to ρ_{x_0} , which we denote by g_x ; each g_x is essentially bounded, and $d\rho_x = g_x \cdot d\rho_{x_0}$.

Let $A = \{h | \delta \omega : h \in \Phi\}$. Axiom III₂ states that the functions in A are uniformly bounded on $\delta \omega$, and of course they are continuous there. Thus, if S is any countably infinite subset of A, there is a function $f \in L^{\infty}(\rho_{x_0})$ which is an accumulation point of S with respect to the weak* topology of $L^{\infty}(\rho_{x_0})$ (i.e. the topology determined by $L^1(\rho_{x_0})$; see [4], p. 424). Since $L^{\infty}(\rho_{x_0}) \subset L^1(\rho_{x_0})$, f is also an accumulation point of S with respect to the weak topology of $L^1(\rho_{x_0})$ (i.e. the topology determined by $L^{\infty}(\rho_{x_0})$.) Thus by the Eberlein-Šmulian theorem ([4], p. 430), any sequence in A has a subsequence which converges weakly to an element of $L^1(\rho_{x_0})$. Since each

$$g_x \in \mathrm{L}^\infty(
ho_{x_0}) = \mathrm{L}^1(
ho_{x_0})^*$$

it follows that any sequence $\{h_n\}$ in Φ has a subsequence (which we may also denote by $\{h_n\}$) for which

$$h_n(x) = \int_{\partial \omega} h_n(y) g_x(y) d
ho_{x_0}(y)$$

converges for each $x \in \omega$; the pointwise limit function h on ω belongs to \mathfrak{H}_{ω} since it is the extension in \mathfrak{H}_{ω} of the weak limit (in $L^1(\rho_{x_0})$) of the sequence $\{h_n | \partial \omega\}$. By a result of R.-M. Hervé ([5], p. 432)

$$h = \sup_{n} (\inf_{k>n} \overline{h_n})$$

where $\hat{f}(x) = \sup_{\delta} (\inf_{y \in \delta} f(y))$ as δ ranges over the neighborhood system of x. Thus h is the limit of the increasing sequence of lower-semicontinuous functions $\inf_{k>n} h_n$, and that limit is attained uniformly on the compact set K. It follows that $h_n \to h$ uniformly on K, and thus $\Phi | K$ is relatively sequentially compact, hence relatively compact, in the uniform norm topology of C(K). So $\Phi | K$ is equicontinuous (Arzelà; see [4], p. 266), whence Φ is equicontinuous at the interior points of K, and in particular at x_0 .

BIBLIOGRAPHY

- M. BRELOT, Axiomatique des Fonctions Harmoniques, Séminaire de Mathématiques Supérieures (Été 1965), University of Montreal.
- [2] M. BRELOT, Lectures on Potential Theory, Tata Institute of Fundamental Research, Bombay (1960).
- [3] C. CONSTANTINESCU and A. CORNEA, On the Axiomatic of Harmonic Functions I, Ann. Inst. Fourier, 13/2 (1963), 373-378.
- [4] N. DUNFORD and J. SCHWARTZ, Linear Operators, Part I, General Theory, Interscience Publishers, Inc., New York, (1958).
- [5] R.-M. HERVÉ, Recherches Axiomatiques sur la Théorie des Fonctions Surharmoniques et du Potentiel, Ann. Inst. Fourier, Grenoble, 12 (1962) 415-571.

Manuscrit reçu le 23 novembre 1965.

Peter A. LOEB and B. WALSH, Department of Mathematics, University of California, Los Angeles, Calif. (U.S.A.).