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THE EQUIVALENCE OF HARNACK'S PRINCIPLE
AND HARNACK'S INEQUALITY

IN THE AXIOMATIC SYSTEM OF BRELOT
by PETER A. LOEB Q AND BERTRAM WALSH (2)

During the last ten years, Marcel Brelot [2] and others have
investigated elliptic differential equations in an abstract
setting, a setting in which the Harnack principle is assumed
to be valid. When necessary, the Harnack principle has been
replaced by another axiom which establishes a form of the
Harnack inequality. In 1964, Gabriel Mokobodzki showed
that the two axioms are equivalent when the underlying space
has a countable base for its topology (see [I], pp. 16-18)
We shall show that this restriction is unnecessary. First we
recall some basic definitions.

Let W be a locally compact Hausdorff space which is
connected and locally connected but not compact. Let & be a
class of real-valued continuous functions with open domains
in W such that for each open set QsW the set ^Q, (consis-
ting of all functions in ^») with domains equal to D, is a real
vector space. An open subset Q of W is said to be regular
for ^ or regular iff its closure in W is compact and for every
continuous real-valued function f defined on OQ there is a
unique continuous function h defined on 0 such that

AJOQ = f, h\Qe^, and A > 0 if /•>0.

Moreover, the class ^ is called a harmonic class on W if it
satisfies the following three axioms which are due to Brelot [2] :

AXIOM I. — A function g with an open domain 0, c W is an
element of ̂  if for every point x e Q there is a function h e ̂
and an open set w with xe w cf) such that g\w = h\w.

(^G^-Sies^ectS^81 science Foundati011 research ^ts (i)GP-1988 and



598 PETER A. LOEB AND BERTRAM WALSH

AXIOM II. — There is a base for the topology of W such that
each set in the base is a regular region (non empty connected
open set).

AXIOM III. — If % is a subset of ^)Q, where Q. is a region
in W, and ^ is directed by increasing order on 0., then the
upper envelope of ̂  is either identically -}- oo or is a function
in ^Q*It follows immediately from Axiom I that if h is in JpQ,
then the restriction of h to any nonempty open subset of
its domain is again in ^). Given Axioms I and II, Constanti-
nescu and Cornea ([3], p. 344 and p. 378) have shown that the
following axioms are equivalent to Axiom III:

AXIOM IIIi. — If 0. is a region in W and \h^ is an increa-
sing sequence of functions in ^)Q, then either lim h^ is identi-
cally + oo or lim h^ is in ^RQ.

n

AXIOM IIIg. — If 0. is a region in W, K a compact subset
of Q, and XQ a point in K, then there is a constant M ̂ 1 such
that every nonnegative function h e ^)Q satisfies the inequality

A(^)<M./i(0
at every point x e K.

Given Axioms I and II, we shall show that the following
axiom is equivalent to Axiom III.

AXIOM Ills. — If 0. is a region in W then every nonnegative
function in <§)Q is either identically 0 or has no zeros in tl. Fur-
thermore, for any point XQ <= 0. the set

^ = [h e ^)Q : h > 0 and h[x^ = 1}

is equicontinuous at XQ.
Axiom IIIi is, of course, just the Harnack principle, and

Axiom IIIg gives a « weak » Harnack inequality for ^)Q. On
the other hand, a consequence of Axiom 1113 is the fact that
for any region Q, and any compact subset K c Q there is a
constant M ̂  1 such that for every nonnegative h e ^?Q and
every pair of points x^ and x^ in K the relation

(1) — • A(^i) < A(^) < M.A(a;i)
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holds. Moreover, for any point x in Q. and any constant M > 1
there is a compact neighborhood K of x in which (1) holds
fo^ft M01? I \3 establishes a ^"g Harnack inequalityfor ^Q Mokobodzki has established the equivalence of IIL
and III for the case in which the topology of W has a coun-
table base; it is this restriction which we shall now remove

That Axioms III and III, are equivalent follows from the

• THEOREM- — Let ^ be a harmonic class and Sl be a resion
ln^ ? \, a point in D? and set q) = ̂ ^a: h>0and h{x,} = lj. Then $ is equicontinuous at x,.

k pkroo/,' ~t Let <0 be a regular ^e§ion and K a compact neigh-borhood of ^ such that ̂  K c <o c dc 0. Each continuous
function f on ^ has a unique extension H(/-) e ̂ , and for
each x^ co the mapping f-^ H(f)^) from C(^) into the reals
is a nonnegative Radon measure on ^, which we denote
by p,. Axiom III, (which follows from Axiom III) gives for
each pair of points x, and x, in <o a constant M (depending
on those points) for which H(/-)(^) < M.H(/-)(^), i.e.

p^<M.p^

in the usual ordering of measures on Oco. Hence all the measures
iPxjx^ are absolutely continuous with respect to one another
and the Radon-Nikodym density of any one with respect
to any other is essentially bounded (((essentially)) beinff
unambiguous because all the measures have the same null
sets). Following an idea of Mokobodzki's, we now consider
for each x.-co the Radon-Nikodym density of p, with respect
to p which we denote by ^; each g, is essentially bounded
and d^ = g,-d^.

Let A = ̂ : A^|. Axiom III, states that the func-
tions in A are uniformly bounded on Oco, and of course they
are continuous there. Thus, if S is any countably infinite
subset of A, there is a function /•<. L^pJ which is an accumu-
lation point of S with respect to the weak* topology of L-fp )
(i.e. the topology determined by L^pJ; see [4], p. 424';.
since L (pj c L (pj, f is also an accumulation point of S
with respect to the weak topology of L^pJ (i.e. the topology
determined by L°°(pJ.) Thus by the Eberlein-Smulian theorem
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([4], p. 430), any sequence in A has a subsequence which
converges weakly to an element of L^paJ. Since each

g.eL^pJ^L^pJ*,
it follows that any sequence \h^\ in 0 has a subsequence
(which we may also denote by {h^) for which

W =f^hn{y)8^y)d^{y)
converges for each xe co; the pointwise limit function h on co
belongs to ̂  since it is the extension in ̂  of the weak limit
(in L^paJ) of the sequence ^|0coj. By a result of R.-M. Herve
([5], p. 432) __

h = sup (inf hn)
n k>n

where f(x) = sup (inf f(y)) as S ranges over the neighborhood
8 ye^

system of x. Thus h is the limit of the increasing sequence of
lower-semicontinuous functions inf /^, and that limit is attai-

k>n
ned uniformly on the compact set K. It follows that hn -> h
uniformly on K, and thus ^[K is relatively sequentially
compact, hence relatively compact, in the uniform norm
topology of C(K). So ^[K is equicontinuous (Arzela; see
[4], p. 266), whence ^ is equicontinuous at the interior points
of K, and in particular at XQ.
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