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Introduction.

The principal aim of the present paper is to give a supplement
to the theory of spectral representation for selfadjoint operators
in a separable Hilbert space. This theory was begun by Hellinger
L/J and Hahn [6]; among the further contributors we have
to mention mainly M. H. Stone [16] (Chapter vn) and J. von
Neumann [15]. A detailed account can also be found in Dunford
and bchwartz [3] (Sections X-5 and XII-3).

If y. is a spectral measure for the selfadjoint operator A in a
Hilbert space 96 then the « classical » theory of spectral repre-
sentation sets up an isometric isomorphism mapping 36 onto
a suitable space ̂ (^) of vectorvalued functions on the real
line; 1 (d[/.) is the direct integral (rel. the measure pi) of Hilbert
spaces whose elements can be considered as generalized
eigenelements of the operator A. Various results in the classical
theory hold (^-almost everywhere, but the exceptional sets
and the relations between them were not specified. We shall
give a precise description of the exceptional sets; the conse-
quences of this description will be useful for questions of
expansion in generalized eigenelements of A. The feasibility
of this study was recognized after reading papers of Yu
M. Berezanskn [2], C. Foias [4], [5], G. I. Kac [9], [10], and
K. Maunn [12], [13]. In the remainder of the present paper
we apply the general results to the problem of eigenfunction
expansions in proper functional Hilbert spaces. We have
divided our investigation into three chapters.

Chapter i deals with spectral representation. In § I 1 we
give a resume of the classical theory, as far as we need 'it In
§ 1.2 we start with a generating system e = \eA in 36 rel
the operator A, and with the « minimal » pi-null set A The
exceptional sets A«.(,) are introduced (for every ue96) and
the generalized eigenspaces ^> (defined for every X < A )
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are investigated. The domain Sy of the « infinitesimal »
projection P^° : 96 —> 96y consists of all u for which A ^ A^(<,);
it is a subspace of 96; Py maps onto all of 96y\ For every X ^ A<
a closed subspace 96y of ?6 is constructed so that the mapping
Py : 96y —> 96y is an isometric isomorphism. The spaces
96y are found to be essentially independent of the choice of e.
In § 1.3 we introduce the notion of expansibility. A subset
Sc96 is called A-expansible if p / 1 j A ^ ( e ) ^ = = 0 for some

\ ues /
generating system e. We give some examples of expansible
Banach-subspaces S> of 96, based on the fact that if S> is con-
tained in 3)°^ then the mapping P^: S> -> 96^ is bounded.
The range of any Hilbert-Schmidt operator in 96 is expansible
for every selfadjoint operator A (2); a set contained in such
a range is called Hilbert-Schmidt expansible. If a set S is
A-expansible then for every fixed \ « I J A^(^) the components

aes
^n(x'y ^) ot the generalized eigenelements are functions defined
everywhere on S, they appear as generalized eigenfunctions
of A. In § 1.4 we consider operators T in 96 which are closed,
have dense domain, and commute with the resolution of iden-
tity E(.) of the selfadjoint operator A. The spectral decompo-
sition of these into operators T^° in 96^ is obtained and
described completely.

Chapter n gives applications to proper functional Hilbert
spaces j^, 81, i.e. Hilbert spaces 9 consisting of functions f
defined everywhere on a basic set § such that the evaluation
f{x) for fixed x e g represents a bounded linear functional
on 9: f{x) == (/*, K^;). The reproducing kernel is given by
K(rc, y) = (Kp Ka;). In § 11.1, for every X outside the minimal
exceptional set Ag, the generalized eigenspaces i^\ § { are
defined directly; they are determined by their reproducing
kernels K{x, y; X) = ^(E(X)Ky, E(X)K^)/^(X). The p.f. Hilbert
space ^, §j is called expansible if the set |Ka;|rce8^ is expan-
sible in 3^ in that case pi.(Ag) = 0, and the canonical isometric
isomorphism between ^x) as given by the abstract theory
and 3^ is established. In § 11.2 we employ the properties of

(2) This result can be interpreted as a slight improvement of a corresponding
result of G. I. Kac [9].
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Hilbert-subspaces of {9,^ to investigate Hilbert-Schmidt
expansibility.

In Chapter m we consider p.f. Hilbert ?, D| consisting
of functions analytic in some domain D in complex space C"
These spaces are all Hilbert-Schmidt expansible, and the
generalized eigenfunctions in ̂  (for ^-almost all X) are ana-
lytic in D.

We have not touched upon the theory of spectral represen-
tation for normal operators. Also, in § 1.4 we have not tried
to obtain a spectral decomposition for general T not necessarily
commuting with E(.) into operators T ^ ' " ) : ^W__^^) J

The notation and terminology of this paper will be explained
in the course of the development.

Formulas as well as items (such as « Definition », « Theorem »
etc ) are numbered through in each chapter. When referring
to formula (3) (or « 1. Theorem )>) of Chap. i we shall in other
chapters write (3.1) (or Theorem I.I), and in the same chapter
write simply (3) (or Theorem 1).
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CHAPTER I

SPECTRAL REPRESENTATION FOR HILBERT SPACES

1.1. Resume of the classical theory of spectral representation.

Let W be a separable Hilbert space. Let A be a fixed self-
adjomt operator in 96 with E(.) its resolution identity. An
interval (open, halfopen or closed) will be denoted by A For
a Borel subset S of the real axis E(S) denotes the corresponding
projection. r "

DEFINITION 1. - A sequence {e,} c^ is called a generating

T6^1^ L10. tlte t^8 E^en ^rate the space^ and^ (E(A)c,,, E(A')cJ = 0 for n^ m and any A,A'. We assume
the system normalized by ||.,|j = 1 for all n. The generating system
\ e^ defines a system of measures ̂  given by (A,(A) = ||E(A)e ||2 (3)

For our selfadjoint operator A we choose a fixed spectral
measure as follows. Consider the class T of all measures v such
that for every generating system ̂ , v ^ ̂  (4) f^ ̂  „
In this class we consider the equivalence class S of measures a
satisfying (x^v for every v e T. Let us choose a fixed measure
(AC b of total mass 1. This y. will be our spectral measure

^rom now on we shall keep 96, A, E(.), and y. fixed.
Let e= \e^\ be a generating system.

(3) We do not insist on any canonical choice of a generating system S c !. Neither

oTnTeSsT6"in "TT betveea^ T^ system and a (canonical -q———01 measures v,, v,, ... (where ̂  is absolutely continuous with respect to v 1 descri
bmg the operator A up to unitary equivalence (cf. M. H. Stone, ̂ 16^ Cn;p ^ T

Jh^ect'roZ^ure";^^
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Let Ag be the minimal set such that

(i) o<iimiiy=!te^e.w
AH [^(A) aa(A)

exists and is finite for every X ^ A<.. Clearly ^(A<.) == 0. For
X ^ Ae we define the following sequential Hilbert space WP :

We introduce the abstract vectors ^(X). Then Wo^ consists
of all elements u0^ = 2S;iA(X) where ̂  == 0 whenever 9^(X) = 0
and for which the norm defined by

(2) W|2 - S IWW
n

is finite.
The direct integral f 96^ d^(\) of these spaces is well-

defined. It consists of all sequences of (^-measurable functions
|y^(X)^ such that Sy^X)^(X) e 96^ for (x-almost every all \
(this implies y,(^) = 0 if 9»(X) = 0) and

/ ||S?.(X)^(X)||2 ^(X) = / Sly^)!^) rf;x(X)

= S/ly.Wi^^X^.
n

^ , , . . , . (u,E(AK) d(Ea)u,E(X)eJFor every u e 36 the limits lim v ? v / n/ = v N / ^ v / /
v An i^(A) d!p.(X)

exist, are finite, and equal zero if 0^(X) == 0 for ^.-almost
all X. We set

1 rf(E(X)u,E(^) ^ o a ) > 0
(3) ^(u;X)= 9^) ^(X) ^^^

o ifW = o
Furthermore, for u, ^ e 56 and any A,

(4) (E(A)u, E(A)^) = 5 f^n(^ ̂ n^)d^)

-f^U^^U^W^W'

The correspondence u -> |^(u; X ) j establishes the canonical
isometric isomorphism between 96 and the direct integral
f9&ydu.{\). Under this isometry any function F(A) of the

operator A in Wo corresponds to multiplication by F(X) in the
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d^ect integral: P(A)u -> ^F(^(u; X ) j for (.-almost all X,

(F(A)u, E(A).) = ̂  ̂  F(X)^(,; ̂ ^^ ̂ ^^

^tTe^^at^A'Tf?6 considered r ^rali.ed eigenelement.01 tne operator A. If X is an eigenvalue of A then the measure a
has a point mass at X, and ̂  is identified with t£ corres
ponding eigensubspace of 9$ corres-

:̂r̂ :r;̂ rj:r̂ ^^^^^^^:̂:̂ ct:t̂ ^^^^^and in some of ̂  =
1.2. Generalized eigenspaces.

^Sfir.'-̂ sas.-c'.;
^ ^E{X)u^{X}e,,)_,. . . .

d[t.(\) —(;»(M; ^}9n(A) e.ri5te, is ^mte, and

(5) [̂ fl) ̂ m ^raeper w = 0 (^ra we set

r. rfl|E(X)u|12 . '
6) dy^)6^' ^nl(»;X)|^,(X) co^r^, anrf

the two are equal.

Clearly (A(A,,(,))=O;

^^•:up^e?^n^^^^^^^^^^^

^^%^^
(6)

n?» ^(A)" ~J, 1^("; x)!2 ^(X)| < e for all A mfA X e A c Ao.
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Furthermore, for every k

/7) d\\E,{V)u\\2 ^^ ̂  ̂ ^ ^^ ̂  ̂ ^
dp. (A)

Proof. — We shall proceed by induction on k. For k = 1,
(6) follows from condition b) in (5). For every n we obtain
from (4) and Schwarz's inequality

^= ;̂JM..(̂ (P)
>^)fuu•'^li^[

For any sequence of intervals A^X,X<t=Au^) and (5) a) then
yield

Km inf }}En{w}2 > |U"; ̂ l2 W.
Aj+X (MAy)

Now suppose (6) is valid for the index k. We shall prove (7)
for k. For any X e A c Ao(/r, e) we have

-^^-i^w+i^
— S IS.(»;WO.W<t

fc+1

and for an arbitrary sequence Ao => Ay \ X

0 < (lim inf ll̂ ^ l̂l2 - |^(u; ̂ [^.(X))
\ A^X ^(A^ /

+ ( i lim inf IIEra(^ - S lU^; ̂ l^n^)) < ^\fc+i A,n p.(Ay) î /

where each of the two terms is non-negative. Consequently

(7') 0 < lim inf WW\2 - |^(u; X)!^) < £
A^n ^[^j)

for any s and every A^ ^ X, and so (7) holds for /c. Applying (6)

for k and -7-- and (7) for k:
2i

llE^-|^u;X)|2e^)<^ for XeAcA,(/c,-i-)
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we obtain (6) for k + 1 and Ao(/c +!,£)= A,, (k, -) n A, (k, A\

The assignment u ̂  |̂ (u; X)| defines a mapping

P^:<%-^), P^u=S^u;X^(X),
)jpq^||2 _ ^IIE(X)^

" W)
for X«A,.(,). P^ may be considered as an « infinitesimal
projection ».

THEOREM 4. - The domain 3)0) afPW ^ a Z^ar subspace
of W>. Furthermore, for u,^^ and every X« A»,(,) u A.,(,) :

/o^ ^(E(X)M, E(X)^) -, . . ___(8) w - = ? ̂ (M;x)^^ ^)ena).
Proo/-. — Clearly us 2)0) impi^ aue®Q) for any complex

number a. For u, v e ®W : p

rf(E(X) (u + p), Eq)eJ ,,, . ,
^(X) = ̂ (u' x) + ̂ (^ ̂ W-

Now we consider condition b). We have
||E(A) (u + p)||2 = ||E(A)K||2 + ||E(A)^ + (E(A)u, E(A)(.)

+ (E(A)p, E(A)u).
If (8) holds then we can apply it to the right hand side here
and obtain u+ pe®W. It remains to prove (8). By (4) we
•il.dVC

(9) ^ (E(A)U' E(A)(') = ̂ ) S (E^(A)u, E,(A)P)
1 ra ._______

= (T(A) ? h^ P)^^ P)6^?) ^(p).
Furthermore

(9/) Ii's^)^s»(M; P)^^)^) ̂ (P)
W T ^"(^W^^o^c')
(B) To prove this we establish ' '

ITx t^(A) ̂  SI>("' p) SB(t>> p) d^(p} =^(u' ̂  ̂ v^ /br ^'V n

by use of Lemma 3 and the following elementary

LEMMA. - Let v he a measure on the real line and let ,(r) and ̂ ) be two ^-measu-
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for every n. For arbitrary s > 0 choose k sufficiently large

so that S ^(u;,X)^;X)e,(X), S |^(u; X)|2 e^X), and
oo n=A+l fc-H

S |^n(^$ ^l2^) are each less than £. We keep k fixed now.
fc4-l -

By (9'), the first k terms on the right hand side of (9)

will approximate 2 Sn(^; ^)^n(^$ X)O^(X) as close as we please
n==l

provided that A is sufficiently small. It remains to evaluate
the remainder in (9). We have

^) J|̂  ̂  ̂ (U; P)^TP) 0,(p) ^(p)

< p )̂ LI ̂  is;n(u; p)ron(p) ̂ (p) + .1 ̂  î  p)i20^) ̂ (P) i
= 2i y ll̂ l̂l2 4- v IIEnW^II2)

(A ^(A) ''A. ^(A) i-
Since ̂ X ^ A^) u A^^) we may apply Lemma 3 and find that
the right hand side differs from

sit iu^)l2(w+ i i^;^!^^)? ,\ *-+-! fc+i )
by less than 2e for X e A c Ao(/c, s), and 2^ . . . | < 2s by the
choice of A*.

Since the subspace 3)^ contains all elements E(A)^, where A
is an arbitrary open interval, it is dense in 96.

THEOREM 5. — The range of P^ is all of 3^>.
Proof. — If X « A , and 9,(X) > 0 then P^e, == e,(X). Let

X « Ae be fixed. For every n we choose an open interval An
such that X e= A^, A^ ^ X, and (for O^X) > 0)

(10)

4- 9n^)^(A/)<||E(A')^||2<29,(X)pl(A') ^or aM A' ̂ A X e A' c A^

raMe functions such that the four functions Oi(p)= /\(r) dv(r),02(p)== PlytTtpdvtT),

î(p) == / ^ ( r ) <^v(T), Ta(p) = piWpd^) "are differentiable wUh respect to v
*.' a u a

at the point X and their derivatives there equal to the corresponding integrands <p(X),

lyWI 2 * +M, 1+(^)|2. ^en ^e function /(p) = r°9(T)^(T) dv(T) is differentiable at
^andW =<p(X)W.^(p)!?^
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Now let uft) = %<,(X) e ̂ 0), i.e., ̂  ̂  < oo and ^ = Q
^nev^ .^/T^n?11611 "^W"^ belon^ to ^ since
yu||2 = L|^(|E(A^[|2 < oo by (10). We show that us 2)0)
By construction we obtain condition a) with ^ (u- X) == ?
It remains to establish b). We shall show existence" (andequa"
hty to llE^e,,^)) of both the left and right hand derivatives
By Af(A») we denote the part of A, lying to the right (left)
of A and including X. Let A denote intervals to the right (left)
of X now: A = [X, X'[. Then for fixed A and n' = n'(M we
have

E(A)u = S WA)(, + i ̂ E(At)^.
"=1 n==7i'+l

For £> 0, fix k large enough so that 1 \^W < e. Then for
A sufficiently small M'(A) > A*, and k+l

l|E(A)u||2 1 k 1 nw
^A)-^^!^211^^1^^^'^2!!^"!!2

+^)J.1^1211E(At)^12

The first term approximates S l^l'O^X) as A ^ X . In the second

term^ we have A c A^- = A,, and so by (10) it is bounded by
2 S l^nl2^). In the remainder term we have A4-c A ^(^) < 1

*+i « " ' «(A) ^ '
and so it is bounded by 2 S ^W. Thus the second and
r i »'(A)+1

third terms together are bounded by 2e (by the choice of k)
for every A small enough so that n'(A) > k. This proves that
the right-hand derivative of ||E(X)u||2 exists and equals
5 l^nFOn^). The left-hand derivative is treated analogously.

PROPOSITION 6. — Let X OE A,. For a suitable choice of ele-
ments g, 6 38 satisfying P^g, == e,{\), the elements %?„ for
^hich S|E,^(X)<oo (^=0 for W=0) form a closed
subspace ̂  of 96 which by P^ is isometrically isomorphic
to W^'.

Proof. — If X is an eigenvalue of A, then PR-) == E ( ^ X h
is the projection of ^ onto the eigenspace corresponding to X
and we take g, = E(^|)^ (then \W = W).
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Suppose now that X is not an eigenvalue. Let An be the
restriction of A to the closed subspace generated by E(A)^,
for A arbitrary. If now 9n(X) > 0, then X is in the continuous
spectrum of An and is not an eigenvalue of infinite multiplicity.
Hence every open interval containing X must contain points
of the spectrum of An different from X. We choose such an
interval, An say, and take it so small that it satisfies (10)
and also ||E(AJ^||2 < 9n(X). Then we can find an open sub-
interval An containing X such that both An and An — An :M An
meet the spectrum of An, and thus E(An)en =7^= 0 =7^= E(A^)en.
Clearly P^A;)^ == 0 and P^E(An)^ = e,{\). We determine
the constant Cn > 0 such that:

||(c,E(A;) + E(A,))e,||2 = ^||E(A:)^||2 + \\E{^)e^=W:
c,=(9„(X)-|lE(A„).„||2)l/2/||E(A;).„||

and set
gn = (CnE(A;) + E(An))^.

Then we have P^gn = ̂ ) and ||gn||2 = en(X). The elements
u = S^ngn are hy P^ in one-to-one correspondence with the
elements of the complete space 96^\ and this correspondence
is isometric.

oo oo

THEOREM 7. — Define A(^ ̂  == |̂ J A^,(e)U [_j A^(^).
i i

Clearly ^(A(^ g')) = 0. Then for every \ «t A(e. e'), ^^ erci^te
a canonical isometric isomorphism J^l' of ^eP onto W^ such
that for u^SynSy

jy^pyu = p^u.
Furthermore for every u e 96

(II) A^(^cA^(,)UA^eQ.

Proof. — Let X^A(^^). We introduce y./<,n(X) == Sn^fc? ^)
and Tn.k(X) = ^(^n; X), that is

1 ^(E(X)4 E(X).n)
^n[ ' W d^)
and

(12) ^ ^. 1 rf(E(X)^ E(X)^) _ e^(X) —^
"•lc[ ' ~ W dy. (A) ~~ 9;(A) x't• '•v /

for 9,(X) > 0 an^ O^A) > 0,
, "nd ̂ n(A) == T,,,(A) = 0 for 9,(X) == 0 or 6,(A) = 0.
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Then we define the linear transformation J% : W^ —> Sf6^ by

(13) J^^)==SX..n(^)^),
n

and similarly J^: ^a) -> 3^> by

(13') J^(A) - S T^(X).;(X).
k

We have for any k and i:

^9,(A) = (eW, eW)^ == ^(E(y,E(A).;)
___du-^A)

== S 7^,n(^)Xi,n(X)e,(X)=(J^(X),J^;(X))^)
n

which shows that the mapping J^e' is an isometry and thus
can be extended to all of S .̂ Similarly J^e is an isometry
since for any m and n:

U.W = (<^), <,(A))^) = ̂ ^^^^^^
== S ^(^)^)Ok(X)= (J^,C,(A), j^^(X))^>.

fc

Using these formulas and (12) we find for any n and I

5 ^WX.,A) = ̂  = Sy^.,(X)T,,,(X)
k

which means that the matrices ^(X) == (%.fc,n(^)) and
r(X) == (r^n(X)) are inverse to each other. Consequently
J .̂U^ acts as identity in W}\ and J^J^ acts as identity
in W^. This also shows that the ranges of J^ and J^ are
all of S^ and ̂ ), respectively.

From our constructions we see that for u e 3)^ n 3)^

jy^pyu = p^u.
It remains to prove (11). Let u e= 38 and X ^ A^(^) u A(^^)- We

want to show X^A^(^) , that is u e ®^\ By the hypothesis
on X

d(E(\)u, E(X)^) ^ . / .,——7^. /.,
N ^ ̂ ) / = S 8n(^$ ^.n(^)en(X).

This is zero if 6^(X) = 0 since then all y^ vanish. It remains
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to establish condition b) rel. the system e ' . We have fform > o),
^^^^^^^e^^1^^^

This means that ^(u; X) are the components of the element
J^P^u in W-y, and because of the isometric isomorphism

S 1^; X)|^(X) == ||Ĵ P^ = []P^u||2 = ̂ Î H2

fc dpL (A)

which gives condition 6).

Remark, — Concerning the generalized eigenelements
2^(u;X)^(X) we note that ue®^ implies A.U e ©a) and, for
X=^0, also Au6®^> implies ue®^. If F(A) is a function of
the operator A then for every X ^ A^) u AF(A)U,(<;) one has

P^F(A)u=2F(X)^(u;X)^(X),
or in other words

t^(F(A)u;X)I =tF(X)^(u;^.

THEOREM 8. — 7/1 the sequence \x^\ is a total (6) subset of
96 then a generating system e can be obtained from it. Let e'
be another generating system. Then for every X « A(^ ,') u I j A^(^)

i,
the set ^P^x^ is total in W}\ If an particular we set e' = e
we find that {P^x^} is total in 96^ for X ^ IJA^(,).

k

Proof. — The generating system |e^ is obtained from [x^
as follows. Let 96^ be the closed subspace of 36 generated by
all elements E(A)^ where A is arbitrary and k = 1, . . ., n.
Let z/fc be the projection of x^ onto 38 -̂1 and set ^ = x^—y^.

If ^=7^=0 we define e^=—^—' Then \e^\ obviously forms
a generating system. 11^11

On the other hand, for fixed X <t= A(^) u [_)^w consider
fc==i

the sequence {P^x^} in W}\ We orthogonalize it (without
insisting on any normalization). Let us write P^^ == SW(X)

(e) A subset Sc^6 is total if (w, s) == 0 for all seS implies u = 0.
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and define Y]W(X) e 9^ successively by Y^X) == ̂ \\) and

W) = W) - ̂  ji,̂  (TO)- W))W)
where in the sum only terms with ^(X) =7^= 0 are taken.
Inspection now shows that

P^e, == a,Yj(^) for all k

where the a^ are positive constants. These vectors form a basis
for 9d>y == J^eX^ since, e is a generating system. Consequently
the sequence {P^x^} is total in W\ The particular case is
clear since A(e.e) = Ag c |̂ J A^(g).

/c

1.3. Banach-Subspaces. Expansibility.

Let the generating system e and X <t= A^ be fixed. Frequently
we shall omit the subscript e and simply write P^\ 3)^\ 9&^\

PROPOSITION 9. — Let B be a Banach-subspace of Wo with
norm \\ HB : \\U\\B > \\u\\ for u e B. Suppose that B c S)̂ . T/ien
the mapping

(14) P^IB,!! HB^^^
is bounded.

Proof. — We use the uniform boundedness theorem. For
fixed A s X, (E(A)u, E(A)^)/pi(A) represents a bounded linear
functional on B. The expression converges (as A \ X) for every
u e B since B c Q^\ Consequently the limit also represents
a bounded linear functional:

|S.(»;X)W1=^™^^<M.||,||..

Next, for each k the linear operator P» : B -» 9^ defined by

PtU = S Uu; ^)e»(X)
n=l

is bounded since
/ k \1/2 / fc "\/I2 \ 1/2

(SlU";^)!2^)) < 5 ̂  IMlB-
\n=l / \ "=l ""V7 ' / /\9na)>o /
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For every fixed u e B, the P^u converge to P^u in W Conse-
quently PW = lim P,, is a bounded operator of B into W>^\

DEFINITION 10. — A subset S of 96 is called ^-expansible
rf

(15) y-(U^)=o
for some generating system e (then by Theorem 7, the same condi-
tion holds for any other generating system). The set S is called
totally expansible if it is K-expansible for every selfadjoint
operator A in 9&. A countable union of A-expansible {totally
expansible) sets is also ^-expansible {totally expansible). Let
[SJ be the linear span of S {that is, all finite linear combinations
of elements in S). Then (15) implies (A / I J \^\ = 0.

As an application of Proposition 9 weThall give some exam-
ples of expansible subspaces.

Let a sequence \u^\ <=3Sg and an index p, K D < O O be
given such that '

(16) ^^(^^^'P^^W^PX00 if P<°o,

' S^s^pl^u^p^e^^p^oo if p=oo,

where S ̂ ; ̂ (X) == P^u, (rel. some fixed generating

system e). We denote the expression in (16) by ||^Ukj||2p). Let

^= ̂ }^l"' now. Then S i:A = lim 2 ^u, belongs to 36
N

since fc N^oo i
N

Cfi-n/-tf\ L. TV.^ft« - 0

2 ̂  = 2 f_^ i r^(u,; p)ro,(p) ^(p)
•* M I

<(| Î K)"' S /::(]| |̂ (u,; p)^2^^?) ^(p)
where the second factor is finite by (16), and the first tends
to zero as M, N -> oo.

Consequently all elements of X which can be represented
in the form S^ as just described form a subspace

^=^=^p(|^).
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By giving a norm to ^ it can be made into a Banach subspace
of 38 in two equivalent ways : Either we make the direct
definition

KU^= inf |h[Ml|^||^.
a^=s^"fc
f\=[f\jt\eiP'

Or we consider the linear mapping

U : V 3 ̂  -> S^u, e ̂

with null space U(U). Then ^ provided with the topology
of yi%{V) will be a B-subspace of W>.

THEOREM 11. — For every Banach-subspace $ = ̂ p ( ^ u ^ j )
of3f) there exists a [/.-null set A(I) such that 0 c Q^ for every X ^ A(]).

Proof. — The set A(|> is defined as follows. The complement
RI — A(I) consists of all X ^ [ j A^) for which the derivative
of fc

^ / oo .2/p(i7) j s s iu^;p)n On(p)^(p)
J-co n \k=l /

exists, is finite, and equal to the integrand. Clearly p!.(A<i>) === 0.
Let X ^ A<^ be fixed; we show that $ c 3) .̂

To establish condition a) of (5) we consider

^ S ^(E(A)U,, E(A).J = ̂  ———)^J" ^n(^; P)On(p) ^(P)

as A { X . In the series on the right, each term converges
N oo

individually as A \ X. We split the series into S • • • + S • • •
fc=l &=N-H

and evaluate the remainder. Let us write

(0, . . .,0,^,^, . . .) =^ and (^, .. .,^,0, . . .) =^.

i ... ^—f i w^;p)9n(pWp)
°° \l/p
S 1^/c; P)^) On(p)^(p)

\N-+-1 / ^A \k=N-t-l /r-V*-/ VN-+-1 / ^ A \k=N-t-l /

( it f\\\1^/ 1 /^ / 00 \2/P ^

^^ ̂ ) (^^s•(•(••^) '-(rî ri,r / w \ ̂ P \ l/2|(siu^;p)n w^(p)) •
/ A\ic=l / ./
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The third factor in this evaluation remains bounded as
A ^ X (actually it converges to a finite limit, as can be seen
from the assumptions about (17), using arguments similar
to those of Lemma 3). The second factor tends to v/o7X) as
A ^ X, and the first to zero as N -> oo. Thus we found "

d
^ S ^(E(X)u,, E(X)^) = S W^; X) W.

We turn to condition &).

^s w}u^
1 ( N |2 °° j 2 / 1 ^ °° \ / 0 0 N \ )

'^.S-I+J^-I^-^-KS-.S-^l/c=N-+-l
2=^)s,w)uf+R•

The first term will converge to S S ^Sn(^; X) '0,(X) as A ^ X .
We evaluate R. - • -" l/c=i

iRi^—.Sfs i w".;p)\(p)^(p)+
rV^A^A ra fc=N+l

^ N 2 \ 1/2

2 S 5W^;p) U°Wp))
_i " /c=l /

00 2 V/2^

S S^n(^;P) 9n(p)^(p)) {
A n N+l

2/p'1 /^ / <x> \ 2/D

^ll^ll2^/ 2( S l̂ .;p)N e,(p)^(p)
rv^ /^A n \fc==N4-l /

+ 2|K.l|..|K(N)||,p{— r s (s IU ;̂ p)^)2^^?) ̂ (p)\
Vt-v'-'/ ^ A " \fc=i / /

fJ- C v ( y ...\lp...\l'2
^(A) JA 2' ̂ i / y'

^mk^^||,p-+ 2|M|^j^
^ / 0 0 x2/?

5 S^K^;?)!" On(p)^(p).
^ A " \A=i /

The third factor remains bounded (actually by the conditions
on (17) it converges) as A \\, the second is bounded by 3||E^,
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and the first tends to zero as N —> oo. Thus we find that

^ KE(X)U,|P = S S W^^OnW.

Proposition 9 and Theorem 11 give

COROLLARY 12. — The Banach subspace ^p^iu^) of 96 is
^.-expansible.

Remark. — The question arises whether there exist such
spaces (S>p{ ̂  Uf, j ) with p -=f=^ 2 which are not contained in any other
space ^( l^kO °f ^is kind. It is conjectured that for p>2
there do exist such spaces.

Consider a sequence \u^\ c 96 for which ^ 11^/cll2 ̂  °° ? the
fc

corresponding space ̂ ( t ̂ j ) l s the range of a Hilbert-Schmidt
operator T in Wo defined by Ty^ == u^ where |(p/,j is an ortho-
normal system. Then for every arbitrary self ad joint operator
A in 96 with resolution of identity E(.) , spectral measure (x,
and generating system e we obtain

^ > S IM = S S ,C 1^; P)!20^) ^(P)
= s,Cs i^(u,;p)i^,(p)^(p),

n fc

that is, condition (16). Thus we have

COROLLARY 13. — The space ^(l1^) ls totally expansible.

DEFINITION 14. — A subset S of 96 is called U.S.-expansible
[Hilbert-Schmidt expansible) if there exist j u ^ j , SH^IP^^ oo

k

such that Sc^(^u^ j ) . A set which is contained in the union
of countably many H.S.-expansible sets is also H.S.-expan-
sible.

The results of Section 2 and the definition of expansibility
give

THEOREM 15. — Let 8 c 96 be A-expansible. Then 1° For
every x e 8

(18) lin, (E(̂ .E(̂ .) , i,(̂ )0.(X)
Atx P'l^y
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exists for all n and every \ «t Ag = \^ A^). 2<> The expansion
»eg

^i-'X^^ww)n==l

holds. 3° For /î rf X ^ Ag ̂  ̂ (rc; X) cfc/m^ by (18) are functions
of x defined everywhere on 8; they appear as generalized eigen'
functions of the operator A.

1.4. Spectral decomposition of operators commuting with E(.).

Throughout this section we keep A, E(.) and (JL fixed and
consider operators T in ̂  which are closed, have dense domain,
and commute with E( . ) :

E(X)2)(T) c ®(T) and TE(X)u = E(X)Tu for u e ®(T), and every X.

An equivalent way of saying that T commutes with every
E(X) is v

(19) E(X)TcTE(X) forall\

that is, TE(X) is an extension of E(X)T. Taking adjoints in
(19) we see that then also T* commutes with E(.). Further-
more T and T* commute with every E(A) where A is an interval.

We shall need the following well known

LEMMA 16. — Let T be a closed operator with dense domain
m 96. Suppose that the bounded operators B^ converge strongly
to an operator B and that T commutes with every B^. Then T
commutes also with B.

THEOREM 17. — Let T be closed, with dense domain, and
commuting with E(.). Then one can construct a generating sys-
tem \e^\ which is contained in ®(T).

Proof. —a) Suppose first that A has no eigenvalues (i.e.,
^ has no point masses). We make use of the one-to-one corres-
pondence between pairs of non-negative integers (/c, ;),
k, I = 0, 1, 2, . . . , and positive integers n = 1, 2, 3, ... given
by the formula (2k + 1)2^ = n. Let the sequence |4°^ c 2)(T)
be total in 96. To obtain the desired generating system \eA
we construct elements y, e 3)(T) and x^ e 3)(T) by induction
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on n and set e^ == 7,"",.- for y^ ̂  0. Our induction hypothesis
i \y^\ i

for the step n is the following:

/9fh ^y^ an^ x^ ^ave ^een constructed and belong to 3)(T)
1 u; ( for all n' < n and (2/c' + 1)2^' ̂  n.

We already have the sequence {x^^ c 2)(T). We set yi == ̂
and 4° = 0 for all I > 0. Then (20) is satisfied for n = 2.

We proceed to construct y^ from hypothesis (20). Let Y^_i
be the closed subspace generated by all elements E(A)y^
for which n' < n. Let k and ^ be determined by n === (2k + 1)2^.
Then ^°<=®(T) is known by (20). We shall decompose:

(21) 4° = hn + ̂  + ̂ +1)

'[
where ^J_Y^_i, ^ e Y^i, H^'^H^—? and all three belong

to ®(T). It ̂ e Y^_i we choose ^ = ̂  and ^ = x^ = 0.
Consider ^°^Yn_i. Let Pn-i be the projection onto Y^_i.
Then

n-l
p ^(i) _ v -/
^n—l^k — Zj ^n'?

n'=l

where ^ = / y^X) dE(X)t/^ and ^(X) e L2(<^||E(X)^|12),

since by construction the e^ form part of a generating system.
Since p. has no point masses, the measures [|E(A)t/^[|2 do not
have point masses either. We may take <pn'(X) == 0 whenever

' * v ;"/^'' == 0; then 9^(X) is also measurable rel. (JL. Since
rfp.(A)

for every n' <in — 1 the elements / fn'W d^WVn'v — ^|i9«.a)i<M| * ^ \ / \ / y n

approximate z^ as M -> oo we can find a set S^_i whose comple-
ment has a measure as small as we please and so that all
<p^(X), n' == 1, 2, . . ., n— 1 are uniformly bounded on S^_i.
The choice of S^_i will be specified later; let y^-i denote the
characteristic function of S^-i. We define

n-l

Zn=^S /9n'WXn-l(^)^E(X)^,

(21/) J^=/x,-i(X)rfE(X)4'>-^
^=f{i-y^(\)}dE{\)^
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which will give the decomposition (21). We have to prove
the desired properties. By construction y^JLY^i and z^e Y^_i.
The operators f^n-iW dE{\) and /y^(X)^(X) rfE(X) are
strong limits of finite linear combinations of operators E(A),
hence they commute with T by Lemma 16. Since y^, x^ e ®(T)
then also ^,y,e=®(T), and finally ^e^T). The set S^i
is chosen so large that y^ -=^ 0 and

IK ÎI2 == fli-Xn-x(WllE(XCT^±.
»y 7l

To complete the induction we have to show that (20) holds
for n + 1- We only have to check on x^ where
(2^ + 1)2^ == n + 1. Then (2/Ci + 1)2^-1 == ^ ̂  n,<1-1) are
given by (20) for n and x^ was obtained together with y^.

It remains to show that the set |E(A)y^A^ is total in 36,
i.e. that every us 38 is a limit of finite linear combinations
of elements E(A)^. So let 1̂  e 3ig be arbitrary. Since \x^\
is total in 96, for every £ > 0 there are numbers S;i, . . ., ̂
such that

^—iw <£.
k=l

For each fixed k (k = 1, .. ., N) we decompose

40)=yn,+^+41), ni==(2/c+l)
- 2/n, + ̂  + • • • + ̂  + ̂  + ̂ >, ^ = (2/c +' 1) 2^11,

where I is sufficiently large so that x^ = 0 or |K°|| < —-t——-
" k u N m a x j ^ j

which can be achieved by the condition on (21). Then
S l^kl ll^ll ̂  £- I11 these decompositions we obtained finitely
many elements z, and y^ The Zi can be approximated by finite
linear combinations of elements E(A)y^ as closely as we wish.
So finally u can be approximated by such linear combinations
as closely as we please.

b) If the operator A has eigenvalues let <%(X) denote the
eigenspace corresponding to the eigenvalue X. The projection
E ( ^ X | ) onto 36(\) is the strong limit of operators E(A), A ^ A ;
by Lemma 1 then T and T* commute with E ( | X ^ ) . Let A
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be the set of eigenvalues of A (there are at most countably
many) and let ^(A) be the orthogonal direct sum of the eigen-
spaces ^(X). T and T* commute also with the projection E(A)
onto 36(A). The operator A has no eigenvalues in the comple-
ment S^i == 96Q96{A.). From part a) we now see that we can
find a generating system e == e' u e"(A) in 96 where e' c 3^ n 3)(T)
is a generating system in 3 î for the restriction A[^ and e"(A)
is a union of orthonormal complete systems ^^(X)? in <%(X)
for each X e A such that {e^(\)} c3)(T).

Remark 17'. — The same construction shows that for an
arbitrary class of operators T,, closed, with dense domains,
commuting with A and such that F ^3)(Ti) is dense in S^, there

exists a generating system ^e^\ c F ^3)(T,).

DEFINITION 18. — For X e A we define the operator T^ in
36(X) as the restriction of T to <?6(X). Clearly T^ is closed with
dense domain and it is bounded if T 15 bounded. Consider now
a generating system e* = \e*n\ c 3)(T*). For every

X ^ A u UAT^,(^)
n

we define the operator T^ in 3'^ as follows:

u^ e ̂ (T^) if there exists u <= 3)^ n 3)(T) such that
P^u = u^ and Tu e 3)^>; we set T^^u^ = P^Tu.

Then we have u^=2^(u; X)<?:(X) and T^u^=S^(Tu; X)e:(X).
Consequently

(22) ^(Tu;X)e:(X)=^E^M-E^K)

d(x(A)
^d[E(^QQr^ ̂  ̂  ̂  X)^(T^;X)0;(X),

and the operator T^ is realized by the assignment

(23) ^"! -^Sfl-^ S WTe:;\)wl.
{''nW k 5

From (22) we see that u, v e 3)̂  n ®(T), Tu and TV e 3)̂  and
P^>u = P^Pp imply P^Tu = P^^Tc; hence the operator T^ is
well defined.
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THEOREM 19. — Let T be a closed operator in 36 with dense
domain commuting with E(.) Further, let e and e* be generating
systems contained in 2»(T) and 3)(T*) respectively.

a) T-y is a closed operator in 3^ for \ « I j AT.^ w
b) T^ has a dense domain in 96^ for a

X < (U^W)) u (U^^*)) u (A^*)-

c) We have the following relation between the bounds (finite
or infinite) of T and T^ :

l]T||=sup||T^|l for ^LJ^W-)-

Proof. — Let ^uP|c3)(T^) and suppose u? -> u^,
T^u^ -> w^ in ̂ ). We prove u^ e ̂ (T^") and T^V" = w(x).
We choose a subsequence of {u^^ (again denoted by the same
letters) such that for p^ = M? — u^.i (we put UQ" = 0)

(24) SljpPH < oo an^ SUT^^H < oo

hold. We have u^ = S^" and w<^ = ST^Pp^" in ^). For
every i choose a p; e 3)(T) n 3)̂  such that P^p; = p,<»,
P^^TP, = T^p^^ Then we choose a decreasing sequence of
intervals A, so small that for any A with X e A c A;

' ^\W\W) < l|E(A)p;||2 < 2(||pp[| + 2-•)2fx(A)

and
(25) . ^

, 2- IIT^M ÎIW) <||E(A)TP,| ̂ (HT^PII + 2-)2[x(A),

^ Or(X)(x(A) < ||E(A)e?||2 < 20r(X)(A(A).
N

From (24) and (25) we obtain elements u = lim ^ E(A^ and
N N i

w = lim S E(A.)T^ in 38 and by the closedness of T then
ue®(T) and w = Tu.

It remains to show that u, w e 3)̂  and P^u = u^
P^w = w^\ We use a procedure similar to the one in the proof
of Theorem 5. Let ^a) and u^ have components ̂  and ^,
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respectively. Then Sn = S ^,i. We consider
i

(26) (E(A)u, E(A)eJ ^ (E(A)E(A.)p,, E(A)eJ
(^(A) 1 (X(A)

Fix N > n. The first N terms in (26) will approximate, for

A ^ X , 0^(X) 5 ^>,r We estimate the remainder (and consider1=1 '
right-hand and left hand derivatives separately, so

A= [X ,X ' [ or A=]X",X]) .

Let i'(A) be the largest index for which A c ̂  (or A c Ar).
Take A so small that i'(A) > N. Then by (25),

•'̂ > (E(A)p,, E(A)^) _^ ^ (E(A,)p,, E(A)^) y/gg
'•=N+1 f^) ;=,-&+i \/(X(A.) \/pi(A) ^(A)

is majorated by 2\/e:(X) S {\W\ + 2-). Thus we have found
N+l

rf(E(X)u, E(X)^)/rf^(X) = ^0;(X). To show that ^lE^ull2/^)
exists and equals ^[^[^^(X) we decompose

E(A)SE(A;
V-W

H

+

I2

1
tx(A)

1
^
^

(A)

Is
IN 4-1

N

2
1 r^r

/ N

-^
00 \s

n-hl7

/ 00+ ( s '
\N+1

N

S
1

The first term on the right side of (27) converges, for A \ X,

to ^ ^a) • The second term, the remainder, is evaluated for
A c A N + i by the same procedure as before:

^L2,^"2^t^A)
" Nr 1 N |2-il/2r 1 00

+2[,(A)?EWE(A,),|] [^^EWE(A,)

< 2 S (||»i»|| + 2-')
\N-H /

+ 4( 1 (||pp|| + 2-)Y 1 (||,P|| + 2-)).
\ 1 / \N+1 /

Therefore W^M2 = \\^W
^(X) " •
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The same proof is repeated for the T(/, to find w e ®^ and
P^w = w^\

b) Under the present condition the identification of ^a)

with ̂ ) is valid and ^(X) e ̂ (T^"). Hence 3)(W is dense
inW

c) If u <= ®(T), u e 3)̂ , Tu e ̂ ) then

||E(A)Tu||^ ||E(A)u||^
y.W ^ll1 '1 (X(A) )

hence, by taking A P, we get HT^V^I ̂  ||T|| ||uW||. On the
other hand, for u e 3)(T) we have

||Tu||2 =/||T^uW||2 ̂ (X) ̂  sup 11'W/HuWll2 ̂ (X)

^supllT^iniu2!!
which finishes the proof.



CHAPTER II

PROPER FUNCTIONAL fflLBERT SPACES

ILL A-Expansibmty.

Let iS, 8^ be a proper functional Hilbert space, that is,
a Hilbert space 9 consisting of functions f defined everywhere
on a basic set § such that the evaluation f(x) for every fixed
x e 8 represents a bounded linear functional on 9. The repro-
ducing kernel of ̂  §^ is the positive matrix K{x, y} = Ky{x)
where every Ky e= 9 and x and y run through 8. The proper
functional Hilbert space \9^ %\ is determined by its reprodu-
cing kernel (7). The evaluation is given by the reproducing
formula

(1) f(x) = (/>, K^) for fe9 and ^e8.

The elements K^ e 9 where x «= 8 form a total subset 8^r in the
Hilbert space S. When there is no danger of confusion we shall
sometimes write 9 for ^,8^ and § for 8^.

If in an abstract Hilbert space 96 a total subset U is chosen
then we may take ^ll as a basic set and consider the elements
of W) as functions on U :

(1') h(u) = (A, u) for h e Wo and, u e= U

and thus obtain the proper functional Hilbert space j36, U j
where u = Ka, K(u, ^) = (^, u) for all u, ^ e U and ^^ == (U.

Consider a selfadjoint operator A in ^,8^ with resolution
of identity E(.) and a spectral measure p.. In analogy to sec-

(7) For the general theory of reproducing kernels and proper functional Hilbert
spaces, cf. N. Aronszajn [1].
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tions I.I and 1.2 we now consider the set §^r instead of a gene-
rating system \eA.

DEFINITION 1. — Let Ag he the smallest subset of Ri such
that for every X « Ag

(2) ^'^EWK.)^^^

exists and is finite for all x, y e 8.

THEOREM 2. — For fixed \ ̂  Ag, ^e function K(x, y , X)
15 a positive matrix and thus defines a proper functional Hilbert
space S^ OM 8.

Proof. — Let a;i, . . . , ^e8 and the constants Ci, . . . , € „
be arbitrary. Then

l...n _

(3) S ^K(^.,^;X)
ij 1

=l^^scic7(E(A)K-^
since for any fixed A a X, the function

(E(A)K,, E(A)K,) = (E(A)K,)^)
is the reproducing kernel for the space E(A)9? and hence a
positive matrix.

DEFINITION 3. — For every feS we introduce A^ (g) as
the smallest set containing Ag such that for \ ̂  Ay (g)

d{E(\}f, E(X)KJ ,ef ^ .. , . „ . , ,-^—^ , ' '——/===/(rc;A) exists, is finite, and equals(4) ^(X)
( zero if K{x, x\ V) = 0 for every x e 8,

ayzd

(5) /•(. ; X) e ̂ >, ^ll^yil2 (m^ aMrf ^uaZ5 | [A. ,(5) A.;^-^ ^f^2 ̂ ^^^^ IIA.O)!!^).

Then we define the mapping Pg^ : 9? -> ̂  by

(P^^-A^;^)
where /* belongs to the domain SDĝ  of P^ if X « A/^g).
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It would be of interest to study P^\ ®<g° and S^ directly,
but we shall not do this in the present paper. It would be of
interest only in case (x(Ag)==0 and pi(A/, ̂ ) = 0 for all fe 9.

From now on we consider only separable proper functional
Hilbert spaces. If the set ̂  is A-expansible in 9 then

AgcljAK^^Ag.8. 0)
.ceg

for any generating system e and consequently p.(Ag) == 0.

DEFINITION 4. — The proper functional Hilbert space
|3s 8j is called A-expansible, totally expansible, or ^.^.-expan-
sible, respectively, if the set 8g? is of that type in .9

THEOREM 5. — Let \S, 8j be ^.-expansible. Let e be a gene-
rating system obtained from some sequence \x^\ c 8^? which is
total in 3, and let e' be another generating system. Then for every
^ ^ \e',e) u Ag^) the set Py&^ is total in ̂ ), and the assignment

(6) J (g ) .W )K,)=K(.,l/;X) for ye 8

defines an isometric isomorphism of^y onto S^\ If, in particular,
e' = e then 9^ and ̂  are isometrically isomorphic for every
x ^ Ag, (,).

Proof. — PyS^ is total in ̂ ) by Theorem 8.1. The functions
K( . ; y\ X) where ye 8 form a total subset in 9^\ By the
assumptions on X we have for (6) :

(P^K,, P^K,)^> = S ^(K,;X)^(K,; X)e,(A)
_ d(E(\)K,, E(X)KJ
~ ——du^x )——— == ( ? z/; ^
= ( K ( . , 2 / ; X ) , K ( . , ^ ; X ) ) ^ )
= (J^.P^K,, JgW>K,)^

6

for all a;, y e 8. That is, J^ maps the total subset P^8^ onto
the total subset \ K(., y; X)|y e 8^ and leaves the scalar pro-
duct invariant on them. Consequently it is an isometric iso-
morphism onto.

Remark. — In view of Theorem 5 and the exposition in
Chapter i we can now say that the direct integral f9^ dy.{\)
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is canonically determined and canonically ismorphic to 9.
It consists of all functions y(a?; X) which for a-almost all X
belong to ̂  (this implies y(a;; X) == 0 for K(^, ^; X) = 0),
for which 9^; X) for all a; eg and ||9(.; X)!)^ are [Ji-measu-

rable, and for which f\\f{. $ ̂ [ll^ rf^(X) < oo. The corres-
ponding function 9 e 3? is given for every re e 8 by

y(^) =/?(^)<W).
COROLLARY 6. — TAe elements of 9^ are generalized eigen-

functions of the operator A, corresponding to the eigenvalue X.
For a function F(A) and every \ ̂  Ag.(,) u A«,(,) u Ap(A)a,(.)
one Aa5

(7) '"^ '̂"'̂  = (F(A).)(.; ,) = F(X)»(,; ̂ ).

n.2. Hilbert-Subspaces. H.S.-Expansibility.

We recall that a subspace %i of a Banach space % is called
a Banach-subspace of % if £61 is a Banach space satisfying

W 1 1 ^ 1 1 ^ * ̂  ̂ Ml^ /or 50we constant c> 0 anrf aK u e %i.

If in a Hilbert space 9 a Banach subspace ^ with its norm
|| IL is a Hilbert space then it is called a Hilhert-subspace
of 9.

Let ^ be a Hilbert-subspace of a Hilbert space 9. Then there
is a selfadjoint operator H, 0 ̂  H ̂  cl with some c > 0,
mapping 9 into ^ which is defined by

(g, h)^ == (g, H/i)^ for every g e .̂
j_

Then H 2 is an isometric isomorphism of 9Q%['H.) onto G:

||/i[|^ ==11^/1^ (%{H) is the nullspace of H as well as of H^).
If furthermore ^, 8j is a p.f. Hilbert space with reproducing
kernel Ky(ye@) then also \^U is a p.f. Hilbert space with
reproducing kernel Ly = HKy; consequently 8g == H8gr. Conver-
sely, if \9,U and ^ ,8^ are p.f. Hilbert spaces and if §c9?
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then this embedding is continuous, and consequently & is
a Hilbert-subspace of 9.

PROPOSITION 7. — Let \9,U he a p.f. Hilbert space and let
Sjf be a Hilbert-subspace of 9. If \9, 8j is H.S.-expansible, then
so is the p.f. Hilbert space |^, 8^ .

Proof. — By hypothesis there exist \u^\ c9? such that
S \M < oo and K, == S Wu, with |i;,(t/)j e P for all K,,

ye 8. Consequently Ly = ^ ^k{y)Huj, for all i /<=8, and

2 l|Hu,|li= 2 l|H^|]^c'S IN&< oo. Thus also G is
k ° ^ k k °

H.S.-expansible.
Let 8' be a subset of the basic set 8 of a p.f. Hilbert space

j^, 8j. Then we denote by 9\g. the space of functions on 8'
which are restrictions to 8' of functions in 9. The restriction
norm in 9\g' is defined by

\\g\^= min H/11.
/e3?./Ig»=^

l^jg', 8^ is a p.f. Hilbert space with this norm; its reproducing
kernel is the restriction of K(o?, y) to 8' X 8'. It is isometrically
isomorphic to the subspace ^Q6!̂ ') where U(8') consists of
all functions fe 3ft which vanish identically on 8'. Furthermore
K;c-LU(8') for every x e 8'.

THEOREM 8. — In the p.f. Hilbert space \9^ 8j let 8 == I J 8^
n==l

and let every 9\^ he contained in a p.f. Hilbert space [9^ 8^|.
If every 9^ is H.S.-expansible then9 is H. S. -expansible.

Proof. — By hypothesis every space of restrictions ^jg is
a Hilbert-subspace of the H.S.-expansible 3 ,̂ hence by Propo-
sition 7 it is H.S.-expansible. So there are u^e9\^ such that
S||^|IL<oo and K,|g, = Wx)u^ {^{x)} e> for all
k
xe^. Let <)e^?©U(8J correspond to u^ e 9\^ under the
isometric isomorphism between the two spaces. Then, since
K^U(8^) for all x^S^ we find K^ == ̂ \x)u^\ {^(^j e Z2

! )
in 9 for all ;res8^ where S IKT < oo, and hence ^U8,[
is H.S.-expansible. k n==i )

27



CHAPTER III

EXAMPLE: SPACES OF ANALYTIC FUNCTIONS

We consider proper functional Hilbert spaces \9^ §j where
the basic set § = D is a domain in complex space C" and the
functions fe. 9 are analytic in D. Two particular classes of such
spaces (8) are

1°) Spaces with Bergman^s kernel K.e{z, ^) as reproducing
kernel; 9 is a subspace of L^D):

W ll/tll2B==^l/>^)12^1^1•..^n^n<00 for f^9.

We shall denote these spaces by S^CD).
2°) Spaces with Szego's kernel Ks(z, ^) as reproducing kernel;

S^D is a subspace of L^D) :

(2) ml=f^\fW\2ds<^ for /̂ .

(These spaces are usually considered only for one complex
variable and for domains D with rather « nice » boundaries ^)D).

THEOREM 1. — Let D be the polycylinder

II^i\ < r»; i=l, .. ., n\.

Then the space ^(D) is H.S.-expansible. More precisely, a
Hilbert-Schmidt operator T can be constructed such that

t K B ^ ^ K e D ^ c T ^ D )

for e^ery /c. The space T^B^) (with its own norm) which guarantees
the U.S.-expansibility of 9^(0) will be denoted by ^(D).

(8) Cf. N. Aronszajn [I], and for an expository treatment, M. Meschkowski [14].
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Proof. — The monomials z^1-1^1-1 ... z;""-1,

m..= 1, 2, 3, ..., i= 1, ..., n

are orthogonal in S; = ̂ (D). We normalize them and obtain
a complete orthonormal system {?„,.,..., ̂ J. Then we set

(3) T^-- "^.^.^y'"..-—— = u'»..-.-"»

which defines a Hilbert-Schmidt operator T since

S 1|T9..,....J|2== 5 -r^——z<^'"(=1,2,... m,=i,2>... rnyn^ ... w^
i=l, ...,n i=l,...,B

For ^e D we have K^ = ̂ 9,,..,^) y,,.,,^ in 3?. Now we
find

(4) 2|m^ .. . m .̂... ̂ )|2 < oo /or e^ri/ /c a^ all^ e D

so that D^cT^a(D). We have $e(D) === ̂ (t^....J).

Remark. — In the same way one proves H.S.-expansibility
of?B(D)ifDisthepolycylinderD=||z,—a,|<r.;i=l, ...,n\
with center a = [aA.

COROLLARY 2. — Let D 6e an arbitrary domain and [9, Dj
any p./*. Hilbert space of functions analytic in D. Then [9, Di
is H.S.-expansible.

Proof. — The domain D can be covered by countably many
00

polycylinders D^ such that D = |j D^ and D^ c D for all /c.
fc==l

Then the space ̂ j^ of restrictions of functions in 9 to D^ consists
of functions^ which are actually analytic in some domain
containing D/,, so 9\^ is a Hilbert-subspace of ^(DJ which
is H.S.-expansible by Theorem 1. Let H^ : ̂ (DJ ->9\^ be
the operator which in the general case is described in section
11.2, so that H^L^ == K^ for ^ e D^ (where L denotes the repro-
ducing kernel for ^(D/,) and K the r.k. for S?^), and let
^B(Dfc) =^(tu^_^J) as given by Theorem 1. If we
define Y(D,) == ^(|H,<.,^J) in 9^ then ^(D), and
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¥(D^) are isometrically isomorphic under the operator H^,
and ¥(Dfc) is H.S.-expansible in \9, D j (we recall that
U(Dfc) == |0j since 9 consists of analytic functions).

THEOREM 3. — Let A be an arbitrary selfadjoint operator
in the space |9?, D}. Let ¥(0^) be the Hilbert subs paces introduced
in the proof of Corollary 2, and let Aqi^) be the corresponding
exceptional sets (determined as in Theorem 11.1). Then the gene-
ralized ei gen functions

d^W=f^^^ f^ X^U^)' f^
rv / k=l

are analytic in the whole domain D.

Proof. — We have to show that the functions f{z, X) are
analytic in each variable separately. That is

(5) lim 1 [f{z + Ac,; X) — /(z; X)] = !

h->0 fl

^^(.;,),-^[K<,^,-K?>]^>

(where the h are complex and s, denotes the unit vector in
the Zi-plane) exists for every /'(.^eS^) and every z e D .
(K^ denotes the function K( . , i : ;X) == P^K^ in W). This
is equivalent to saying that for every fixed ^ e D the elements

-̂ - (K<^ — K^) = K^ converge weakly in 9^\ We shall

actually show that they converge strongly.
Since PD^ : ¥(Djfc) •-> ̂ ) is continuous for X « A^D^) and

¥(Dfc) and ^B(D^) are isometrically isomorphic under H^,

we only have to prove that — (L^+^— L^) = L^ converge

strongly in the space ^B(D^). Without loss of generality we
merely consider the poly cylinder P = = | | ^ | < l ; i = = l , . . . , 7 i j ,
the space % = ^(P) with Bergman's kernel Lr == KB(.^),
and ^ == ^a(P). We have L^ == 2(m, ... mj^,,^)^ ,, „
(where u^...,^ is defined by (3)) and

,. = 2.(m, . . . m^ | ̂ ....^+^-^..^.(Q1^ = S(m, .. . m^ r^...^+^)-^...^
I A | "*(». . . , "»ft
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for ^ and *( + hi, belonging to P. A straightforward calculation
shows that^[=^,...^-»-^<»
and that

f\\ 112
lim 4.h — -^ = lim S(mi ... mj4

h^o 04, ||<i» h->o
^...^+^)—^,.,.^(Q .̂,;̂ a .

A ^, I - 0

which finishes the proof.
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