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LIMIT SETS OF FOLIATIONS
by Richard SACKSTEDER and Arthur J. SCHWARTZ

1. Introduction.

Let V be an M-manifold with a foliated structure of co-
dimension one. A leaf of the foliation is called proper if its
topology as an (n—l)-manifold agrees with its topology
as a subset of V. One type of theorem which is proved here
asserts that proper leaves behave much like compact leaves
with respect to certain stability properties. For example,
Theorem 1 can be viewed as an extension of a theorem of
Reeb on the behavior of leaves in a neighborhood of compact
leaf to non-compact, proper leaves. Other theorems show
that leaves whose holonomy is finite in a certain sense have
properties like those of non-periodic solutions of differential
equations on 2-manifolds. For instance, Theorems 2, 3, 4
are closely related to results concerning differential equations
on 2-manifolds contained implicitly, at least, in the papers
of Haas [I], [2] (however, see [8]).

Some examples are given in Section 9 which illustrate how
the hypotheses of Theorem 1-4 can be satisfied. Finally,
in Section 10 some sharper results, which hold only if n = 2,
are obtained.

2. Statements of the theorems.

In all of the theorems stated in this section, V denotes a
(connected, paracompact, Hausdorff) n-manifold (n ̂  2) with
a foliated structure of co-dimension one. It re is a point of V,
the leaf containing x is denoted by F^ its closure by C^. D^,
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202 RICHARD SACKSTEDER AND ARTHUR J. SCHWARTZ

called the limit set of x, is defined to be the intersection of the
closures of the sets F^ — K where K is any compact subset
of Fa;. The concept of a locally infinite holonomy pseudogroup,
which appears in the conclusion of the theorems is defined
in Section 3. Its meaning is elucidated by Propositions 3.4
and 3.5.

THEOREM 1. — Let x be a point of V such that Fa; is proper,
Cy is compact, and ¥y c Dy for some y in V. Then ¥^ has a locally
infinite holonomy pseudogroup.

THEOREM 2. — Let y be a point of V such that Cy is compact,
Cy ^f=- V, and Cy contains an open subset of V. Then there is
a leaf in the boundary of Cy with a locally infinite holonomy
pseudogroup.

THEOREM 3. — Let V contain a dense leaf, ¥ y , and a non-
dense leaf F^ such that C^ is compact. Then C^ contains a leaf
with a locally infinite holonomy pseudogroup.

THEOREM 4. — Let S1 c V be a closed curve intersecting each
leaf transversally. Suppose that the subset A of V consisting of
the leaves which intersect S1 is relatively compact. Then either
A = V or there is a leaf, Fy;j m the boundary of A which has a
locally infinite holonomy pseudogroup.

It will be clear from the proofs that very little smoothness
need be assumed in these theorems in contrast to those
obtained in [7] and [8]. A sufficient condition is that there
exist a continuous vector field on V which is never tangent
to a leaf and is such that the solution curve through each point
is unique. We shall always suppose that such a vector field
has been given. The solution curve through a point a; of V
will be denoted by T^ and called the transversal through x.

3. The holonomy group and pseudogroup.

The material in this section is, to a large extent, well known,
but we include it here in order to make our presentation as
self contained as possible. For the sake of simplicity we consider
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only foliations of co-dimension one and we assume that there
is a metric defined on each transversal curve.

We introduce first a notion that may be roughly described
as lifting a path from one leaf to another, continuously, along
transversals.

DEFINITION. — Let P : [a, b] X [0, S] -> V be a continuous
function satisfying for each {t, s).

1) P(t, s) is in FP(Q,,) n Tp^o).

2) s —> P(0, s) is an isometry.
Thus the maps gs, defined by g,(() == P((, s) determine a

family of paths, each contained in a single leaf, with initial
points in Tp(o,o)- On the other hand, the maps P(, defined by
Ft(s) = P(t, s) determine a family of transversals with initial
points in go{[a, 6]).

We call P a projector. P is said to project go onto gs, and gs
is called a projection of go by P along Po([0, S]).

PROPOSITION 3.1. — If P, Q: [a, b] X [0, S] -> V are pro-
jectors and P{t, s) = Q((, s) for (t, s) in 0 X [0, S] u [a, b] X 0,
then P == Q.

The proof is straightforward.
Thus, if go : [a? 6] -> V is a path contained in a single

leaf, and Po is a transversal interval with go(^) as one end
point, there exists at most one projection of go along Po.

PROPOSITION 3.2. — Suppose that 0 <; X <; 1. — If
g : [a, b] —> V is a path contained in a single leaf, there exists
a projector P : [a, b] X [0, S] —> V, with S > 0, such that
g(t) = P(<, XS).

The proof is straightforward.

PROPOSITION 3.3. — Let g: [a, b] —> V be a path contained
in a single leaf such that g{t) is the midpoint of a transversal
interval of length 2L > 0, for each t in [a, &]. Let 3 be a trans-
versal interval with length M <; L with one end point at g(a).
Let c be the largest number in [a, b] such that there exists a pro-
jector P : [a, c] X [0, M] -^ V satisfying.

1) P(<, 0) == g(().
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• 2) P(0 x [0, M]) == J.
3) P(( X [0, M]) has length less than or equal to L. Then

either c = b or P(c X [0, M]) is of length L.

Proof. — If c < b and P(c X [0, M]) < L it would be pos-
sible to extend P to P: [a, c + s ] X [0, M] -> V for some
positive £.

Let x be a point of V and g : [0, 1] —^ V a path in Fs; ^ch
that g(0) = g(i) = x. Let P : [0, 1] X [0, S] -> V be the
projector satisfying the conclusion of Proposition 3.2. Define
the map H, : [— XS, (1 — X)S] ̂  R1 by H,(u) = h(P^{u + XS)),
where P^(s) = P(l, s) and h: Pi([0, S]) -> R1 is the isometry
such that A(P(0, s)) = s—XS for s near XS. Then Hg is a
diffeomorphism of neighborhoods of zero in R1. The pseudo-
group generated (cf. [7] sect. 3) by the diffeomorphisms Hy
for any path g in Fy; with g(0) = g(l) = x is called the holonomy
pseudo group of Fa. at x. This pseudogroup depends, of course,
on the metric on T .̂, but only up to an inner automorphism.
The set of germs of elements of the holonomy pseudogroup
at x forms a group called the holonomy group of F^ at x. It
depends similarly on the metric on Ta;. The element of the
holonomy group of Fa; corresponding to a path g depends only
on the homotopy class of g in F;p, hence, there is a homo-
morphism from the fundamental group of F^ onto the holonomy
group.

We say that a leaf ¥3; has a locally infinite holonomy pseudo-
group if for every neighborhood N of x on T^ there is an orien-
tation-preserving element of the holonomy pseudogroup of
Fa; which is not a restriction of the identity and whose domain
corresponds to a subset of N. We do not know if a leaf can
have a locally infinite holonomy pseudogroup if its holonomy
group is finite; however, the following propositions show a
relationship between a locally infinite holonomy pseudogroup
and the holonomy group.

PROPOSITION 3.4. —-Let F .̂ have a locally infinite holonomy
pseudogroup. Then given any neighborhood N of' x, there is a
leaf which intersects N and has an infinite holonomy group.

Proof. — Let S > 0 be arbitrarily small and suppose that
g : [0, 1] -> Fa; satisfies g(0) = g(l) == x and that the element
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H^ : I —— ^ —— j —> R1 of the holonomy pseudogroup corres-

ponding to g is such that for some t, 0 < Vig(t) < ( < —-
Zi

The hypothesis implies that g and Hg with these properties
exist for any S > 0. Let Wg denote p-told composition and
define c == lim H^(() ̂  0 and z/ == Po(c). One easily verifies

P-> 00

that H^(c) = c and if c < u < t, c < Hy(u) < u < (. From
this it easily follows that Hg represents a germ of infinite
order in the holonomy group of Fy. This proves Proposition 3.4.

Another implication of the condition that a leaf have a
locally infinite holonomy group is given by:

PROPOSITION 3.5. — Suppose that n == 2 and Fa. is homeo-
morphic to R1. Then the holonomy pseudogroup of Fy; consists
entirely of maps which are restrictions of the identity map.
In particular, it is not locally infinite.

The idea of the proof is simple, but the details are tedious,
hence we only give a rough indication of the proof. Let
g : [0, 1] -> F^ be a path with g(0) = g(l) == x and P a pro-
jector as in Proposition 3.2. If the image of P lies entirely
within a distinguished neighborhood the conclusion is almost
obvious. In general, the image of P is covered by a finite
number of distinguished neighborhoods and the proposition
can be proved by induction on the number of them.

4. The main Lemma.

The following lemma is used in the proof of Theorems 1-4.

LEMMA 4.1. — Let x in N be such that Op is compact. Let
PC ; [0, bi] X [0, SJ —^V be a sequence of projectors such that
Pi(0, 0) = x for all i, P,(0 X (0, SQ) n F, = 0, S, tends to 0,
and the length of P^(^ X [0, SJ) tends to L > 0.

Then Fa. has a locally infinite holonomy pseudogroup.

Proof. — Since C^ is compact, we may assume that
P(6,, 0)->z and P(b, X [0, S;])-> T, a transversal interval
with end points z and y . Let N be a distinguished neighborhood
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containing T such that N == <p((— e, L + e) X (— £, e)""1) for
some £, 0 < ; £ < < — where 9 satisfies.

1) 9(0, ..., 0 )=z .
2) 9(^i, ^2, • . . , ^n) is in T^o.^,....^)
3) 9(^1, a;2, . . ., ^) is in the plaque through 9(^1, 0, ..., 0).
4) 9(L,0, . . . , 0 ) = y .
For sufficiently large K, we may modify P, without changing

Pi at any point whose image is outside N so that P(&i, [0, SJ)
belongs to 9((— £, L + e), 0, . .., 0) if , > K.

Now observe that for each i and t, Pi((, s) does not belong
to FS unless 5=0, since P,(0 X [0, S.]) n F^ = 0 by assump-
tion. Using this fact we shall show that there exists M suffi-
ciently large so that Pi(6», 0) = z if i >. M. In fact, choose
M > K such that for i > M, P,(6,, 0) is in

9 ( ^ - £ l L Y o , ...,0)
\\ ° / /

/ / r) \ \
and P,(6., S,) is in J(— L, L + e)' 0, . .., O). If for some

i, j > M, P.(&., 0) = 9(r., 0, ..., 0) and Pj(b,, 0) = 9(r,, 0, . .., 0)
with r, > r., P^(6/, 0) is in P..(6;, (0, S,)). But since P^, 0)
is in F^ this contradicts the assumption that

P<(< X [0,S(])nF,=0;

thus P,(fci, 0) = Pj{bj, 0) = z if i, j > M. Thus z is in F,.

( 1 \Choose Sy so that PM^M, «o) == y -7r L, 0, ..., O) .
-" /

Choose R > M so that Pn(0, Sa) is in PM(O, [0, «„]).

Choose 5i so that PR^R, 5i) = 9(— L, 0, ..., 0)-
\ 2 /

Let g: [0, &R 4- ^M] -^ V be defined by

^=PM((,O) if O<(<&M.
a u (=PR(&M+6R——(,0) if 6M<(< fcR+&M.

Let P : [0, &R + Am] X [0, Sy] -> V be the projector such that
P(0, s) == PM(O, s) and P((, 0) = g((), which exists by Propo-
sition 3.3. According to Proposition 3.1, P(t, s) = Pyi(t, s)
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for (< &M and P((, s) = Pp(&M + b^—t, h{s)) for t > b^
where PR^R, h{s)) = PM(&M, s) defines h.

Thus H^o) == 5i < ^o, which proves that the holonomy
pseudogroup of F^ contains an orientation-preserving element
which is not a restriction of the identity. Such an element can
be chosen to have an arbitrarily small domain by the condition
S» -> 0. This proves the Lemma.

5. Proof of Theorem 1.

Let L > 0 be so small that no point on the subinterval
of Ta; of length 2L centered at x is in F,p other than x itself.
Such an L exists because Fa; is proper. Moreover, it can be
assumed that L is so small that each point of Ca; is at the
center of a subinterval of an orthogonal trajectory of length 2L.

Let 0^1, a?2, ... be a sequence of points in Fy n T^ such that
the distance between x^ and x along Ta; is less than L, and
decreases to zero in a strictly monotone fashion.

Let gi: [0, 1] —> ¥y{i = 1, 2, . . . ) be a sequence of paths
satisfying gi(0) == x^ gi(l) = ^4-1. According to Proposition
3.3, there are projectors Pi, P^, ... such that:

(5.1) P,: [0, (,] X [0, s,} ̂  V, (0 ̂  t, < 1),
(5.2) P^,^)==gi( t) for 0^^,
(5.3) P , (0 ,0)===^,
(5.4) d,{t)<L for 0^«^,
(5.5) ^)==L if t ,<l ,

where di{t) denotes the length of the transversal P.(( X [0, ^]).
The following two cases exhaust all possibilities :
1) For infinitely many i, (, == 1; 2) tor all but a finite number

of i, ti <; 1. In the case 1), it is clear that, since 0 <; s^ << s,,
there is an element in holonomy pseudogroup of Fa; at x
corresponding to the path P(((, 0) (0 ̂  ( ̂  1) which is orienta-
tion preserving and not a restriction of the identity map and
since Xi —> x it can be chosen to have an arbitrarily small
domain. Thus F^ has a locally infinite holonomy pseudogroup
and Theorem 1 is valid in this case. In the case 2), the hypo-
theses of Lemma 4.1 apply to the sequence Pi, Pg, ... Thus
Theorem 1 is proved.
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6. Proof of Theorem 2.

Let x be a point on the boundary of the interior of Cy such
that for some L > 0, Tp contains an open interval of length
2L centered at x and such that one half of it, say Ii, is contained
in Cy, while the other half, Ig, contains points of V — Cy
arbitrarily close to x. Such a point is easily seen to exist. It
can be supposed that L is so small that each point of Cp is
the midpoint of a subinterval of an orthogonal trajectory
of length 2L. Let a^, x^ . . . be a sequence of points in Ii n Fy
such that ^4.1 lies between Xi and x and x^ —> x. Let
gi: [0, 1] -> Fy be a sequence of curves satisfying gi{0) = x^
.̂(1) == 4̂.1 =/= x^ Proposition 3.3 implies that there exists

a sequence Pi, Pg, ... of projectors satisfying (5.1)-(5.5).
One considers two cases exactly as in the proof of Theorem 1,
and the treatment of case 1) here is exactly the same as for
Theorem 1. In case 2) Lemma 4.1 applies as for Theorem 1,
with the minor difference that here P,(0 X (0, s^)) n F^ == 0
holds because Ii c Cy implies that l^nF^==^x^ since every
point of Fs is on the boundary of Cy. This proves Theorem 2.

7. Proof of Theorem 3.

Let x be a point of C^ which is such that for some L > 0,
a subinterval Ii of T^ with one endpoint at x contains no
points of Fy other than x. It can also be supposed that L is
so small that every point of C^ is the midpoint of a subinterval
of an orthogonal trajectory of length 2L, and there are points
of V at a distance greater than L from C,p. Let x^ x^ ... be
a sequence of points of Ii n Fy which approach x. Let
gi: [0, 1]-> Fy be a sequence of curves such that ^-(0) == Xi
and gi(l) is a point of V at a distance greater than L from C^
Such a sequence exists by the choice of L and the assumption
that Cy == V. Let Pi, Pg, ... be a corresponding sequence of
projectors which exists and satisfies (5.1)-(5.5) by Proposition
3.3. Note that the condition on ^(1) implies that ^ << 1. Now
applying Lemma 4.1 gives the desired conclusion.
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8. Proof of Theorem 4.

If A =T^=V, there is a leaf Fa; in the boundary of the interior
of A such that Cy; is at a distance greater than L > 0 from S1

and an open subinterval Ii of Tp of length L with one end
point at x is in the interior of A. Again, it can be supposed that
L is so small that each point of Cy is the midpoint of a subin-
terval of an orthogonal trajectory of length 2L. Let o^, x^ ...
be a sequence of points of A n Ii which approach x and are at
a distance less than L from x. Denote the leaf containing
Xi by F,. Let gi: [0, 1] -> F( be a sequence of curves such
that gi{0) = x, and g,(l) e S1. Let Pi, Pg be the corresponding
sequence of. projectors satisfying (5.1)-(5.5) which exists by
Proposition 3.3. The condition on g,(l) implies that (, < 1,
and Ii c Int A implies P,(0 X [0, s,]) n F^ == 0. Therefore,
Lemma 4.1 again gives the desired conclusion.

9. Examples.

The examples 1-4 below illustrate, respectively, Theorems
1-4. Similar examples have been given in articles by G. Reeb
in the Annales de PInstitut Fourier, vol. 6 and vol. 11.

Example 1. — It is very easy to construct examples in which
a compact (hence proper) leaf is in the limit set of another leaf.
It is a little more difficult to construct an example in which
a non-compact proper leaf is in the limit set of another leaf.
To construct such an example, let V == S1 X S1 X S1. Let
{x, y , z) denote a typical point of V, where x, y, and z are
real numbers mod -rc. Let f: (0, it) -> R1 be a C00 diffeomorphism.
Then co == d{f{x) + y) + sin2 (f{x) + y) dz is a completely
integrable 1-form on Vo = (0, ic) X S1 X S1. The desired
foliation of V is obtained by completing this foliation of
V o c V by adding the leaf Fo === |0j X S1 X S1. Then one
easily sees that the leaf passing through any point {x, y, z) e VQ
such that f{x) + y = 0 mod IT is non-compact, proper, and
in the limit set of every leaf through a point (x\ y , z ' ) in Vo
such that f{x') + y' ̂  0 mod TT. The leaf Fo is in the limit set
of every other leaf.
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It is perhaps also worth noting that Vo can be imbedded
in S8 in such a way that its complement consists of two disjoint
solid tori, which can be given a foliation which fits together
with the foliation of Vo to give a foliation of S3.

Example 2. — Let Vo be as in example 1 and let the form
(o = dx— (sine x) {dy + a rfz), where a is irrational define a
foliation of Vo. As above, Vo can be imbedded in S3 in such
a way that its foliation can be extended to a foliation of all
of S3. The only leaves of this foliation with non-trivial holo-
nomy groups will be two disjoint tori S1 X S1 which are the
boundary of Vo as a subset of S3. One easily verifies that
the closure of every leaf containing a point of Vo is the closure
of Vo in S3. Thus there are leaves which are dense in an open
subset of S3, but not in S3 itself.

Example 3. — Let Vo be foliated as in example 2, but imbed
it in V == S1 X S1 X S1, as in example 1. Complete the folia-
tion induced on Vo c V be adding the leaf Fo == {0} X S1 X S1.
This leaf will be compact, hence nowhere dense, but every
other leaf will be dense in V. The leaf Fo is the only leaf with
a non-trivial holonomy group.

Example 4. — It is easy to see that the Reeb foliation of S3,
cf. [3], [7], admits a transversal curve S1 which does not
intersect every leaf. The torus which bounds the set of leaves
which intersect S1 has, of course, a non-trivial holonomy
group.

10. Application to differential equations on surfaces.

Let V be a surface and a: R1 X V -> V a How on V deter-
mined by a continuous vector field X on V. If Vo c V is the
submanifold of V consisting of those points where X does not
vanish, X determines a foliation of Vo in which the leaves
are the integral curves of X. It a; is a point of Vo, we define
the sets Aa; == || closure |a((, x ) : 15^ N| dp == || closure

N^O N^O
|a((, x) : t ^N | called, respectively, the alpha and omega
limit sets of x. We use the notation, D^, Op, F^, etc., for the
foliated manifold Vo just as in previous sections.
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The main goal of this section and the following one is to
prove: 9

THEOREM 5. — Let V be a surface (== 2-manifold) and
a: R1 X V ~> V a flow generated by a continuous vector field,
X, on V. Let Vo c V be the foliated manifold consisting of all
points of V where X does not vanish. Suppose that x is in Vo
and Cy is compact. Then every leaf in A^ (or dp) is everywhere
dense in A^ {or Q^) and either

a) C^ = A^ = Q^ = V. or,
b) Ca; is nowhere dense.
This can be viewed as a strengthening of Theorem 1 for the

case n === 2 in the sense that, in the terminology of topological
dynamics, Theorem 1 (or more precisely, Lemma 10.4) is
easily seen to imply that A^ and dp are Poisson stable, while
Theorem 5 asserts the stronger condition that these sets are
minimal.

We need to recall some preliminary results and definitions
before proceeding to the proof of Theorem 5. An orbit (== leaf)
Fa; c Vo c V is called periodic if a(^, x) = x for some ( > 0
and x is then called a periodic point. Fy;ls compact if and only
if Fy, is periodic, in which case F^ is proper, D^ = 0, and
Fs == dp == Ay;. If Fy; is not periodic, D^ = A^ u Q^, F^ is
homeomorphic to R1, and if Qp is compact, both Ay: and Qy
are non-empty.

LEMMA 10.1. — If As (resp, dp) contains a periodic pointy y,
then Ay; = Fy (resp. Qy; = Fy).

Proof. — See [1].
The next two lemmas are partially due to Haas [I],

LEMMA 10.2. — If for some x in Vo, Op = Vo, is compact,
then V === Vo = S1 X S1 and every leaf is dense in V.

Proof. — Since F^ is dense in V = Vo, ¥^ is not proper and
F^cC,=A^uQ, .

We now claim that V contains no periodic leaf. Suppose,
on the contrary, that V contains a periodic leaf, Fy. Then
Fy c A^ or Fy c [Ip. Say Fy c A^, then according to Lemma 10.1,
Fy=A^. But then Q^ = V, FycQ^ and Fy = 0, which
yields V = Fy which is absurd.
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Thus every leaf has a trivial holonomy group and it follows
from Theorem 4 and Proposition 3.4 that every leaf is dense.

Now, Ca; == V is a compact surface. It carries a non-vanishing
vector field and therefore the Euler characteristic of V must
vanish. Thus it follows that V must be homeomorphic to
S1 X S1 or a Klein bottle. V cannot be a Klein bottle for,
according to Kneser [4], V would then contain a periodic
leaf.

LEMMA 10.3. — Suppose that for some x in Vo, Cp is compact.
Then either V is homeomorphic to S1 X S1 and each leaf is dense
in V, or Ca; is nowhere dense.

Proof. — If Ca; = V, the desired result follows from Lemma
10.2. Suppose that Op =i^= V, but Op contains an open subset
of V. Then Fa; is not proper, hence Da; == Aa; u dp == Ca;. Da;
does not contain a periodic point y in this case, because if
Fy c Da. is periodic, Fy == Aa; (or Qa;) by Lemma 10.1. But then
Da. === Qa; (or Aa;) and Fy == dp (o1* Aa;), which is impossible if
D^ contains an open set. This shows that Da. contains no
periodic points. Now Theorem 2 implies that there is a leaf
with a locally infinite holonomy pseudogroup in Ca;. Proposi-
tion 3.5 then implies that this leaf is periodic. But this contra-
dicts what has been proved and completes the proof of the
lemma.

LEMMA 10.4. — Let Ca; be compact. Then if x e Qy (or Ay)
then x e Qa;.

The proof is clear if x is a periodic point. Otherwise the argu-
ment goes almost exactly like proof of Theorem 1. We omit
the details.

11. Proof of Theorem 5.

Lemma 10.3 gives all of the assertions of Theorem 5 except
that « if Ca; is nowhere dense, every leaf in Aa; (or Qa;) is dense
in Aa; (or Qa;) ». To verify this, suppose that Ca; is nowhere
dense.

Let y be a point in Qa;- Let y : [— £, e] —> V be an isometry
into Ty such that y(0) == y, ^(—-s) and 9(6) are not in Qa;.
For each z == 9(^), there exists h^ > 0 such that a((, z) is not
in <jp([— £, &]) if 0 < ( < h^. Thus according to Lemma 10.4
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for each z in J == <p([—£, s ] )n Q^, there exists a smallest
positive number ^ such that a(^, z) is in J. Since J is compact
there exists a number, M, such that ^ ̂  M for all z in J,
hence there is an M' such that if t ̂  0, a([^, ( + M'], x) n J ^= 0.
Let N = ja(^ w) :^ w^({— £, e)), |(| < I j . Let ^ > 0 be such
that q is in N if dist {q, z) <; d for some z in J. Let § > 0 be
sufficiently small so that dist (a((, q), a((, p)) <; d if

0 < ( < M ' + 1,

y is in Ca;, and dist(^, p) <; §.
Now, for any p in Q^, there exists to > 0 such that

dist (a(<o, ^), p) < S and for some m, 1. ̂  m ̂  M' + 1,
a(<o + ^5 ^) is in J. Then a(m, p) is in N, hence a(w', p) is
in y((— £, £)) for some m', where 0 ̂  m — 1 <; w'.

Thus for every psQ^, a([0, oo), p) intersects y((—e, e)).
Since y and p were arbitrary points in dp and £ may be arbi-
trarily small, the theorem is proved.
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