LENNART CARLESON Maximal functions and capacities

Annales de l'institut Fourier, tome 15, nº 1 (1965), p. 59-64 <http://www.numdam.org/item?id=AIF_1965__15_1_59_0>

© Annales de l'institut Fourier, 1965, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble 15, 1 (1965), 59-64.

MAXIMAL FUNCTIONS AND CAPACITIES by Lennart CARLESON

1. Let f(x) be periodic with period 2π and assume $f(x) \in L^{p}(-\pi, \pi)$, some $p \ge 1$. The maximal function $f^{*}(x)$ associated with f(x) was introduced by Hardy and Littlewood through the definition

(1.1)
$$f^{*}(x) = \sup_{t} \frac{1}{t} \int_{x}^{x+t} f(u) \, du.$$

The inequalities

(1.2)
$$\int_{-\pi}^{\pi} |f^{*}(x)|^{p} dx \leq A_{p} \int_{-\pi}^{\pi} |f(x)|^{p} dx, \qquad p > 1,$$

and

(1.3)
$$m\{x|f^*(x) \ge \lambda\} \le \frac{A}{\lambda} \int_{-\pi}^{\pi} |f(x)| dx$$

are basic in the theory of differentiation. (1.2) can alternatively be given as a theorem on harmonic functions. Assume f > 0 and let u(z) be harmonic in |z| < 1 with boundary values $f(\theta)$. Then clearly

(1.4)
$$\operatorname{const.} f^*(\theta) \leq \sup u(re^{i\theta}) \leq \operatorname{const.} f^*(\theta)$$

The inequality (1.2) follows if we can characterize those non-negative measures μ for which

(1.5)
$$\iint_{|z|<1} u(z)^p \, d\mu(z) \leqslant A_p \int_{-\pi}^{\pi} f(x)^p \, dx.$$

It is sufficient to consider p = 2 and the complete solution was given in [3]: a necessary and sufficient condition on μ , is

$$\mu(S) \leq \text{const. } s$$

for every set S: 1 - s < |z| < 1, $|\arg(z) - \alpha| < s$.

The corresponding linear problem, i.e., to describe those μ for which

(1.6) $\int \int u(z) \, d\mu(z)$

is bounded for $f \in L^p$ is clearly much simpler and the solution is that

(1.7)
$$\varphi(\theta) = \iint \frac{1 - |z|^2}{|e^{i\theta} - z|^2} d\mu(z)$$

belongs to L^{q} .

Although this result is in principle sufficient for differentiation purposes, it is of little help since no simple geometric characterization of μ seems to be available.

We shall now consider the corresponding problem for the class of functions f(x),

$$f(x) \sim \sum_{-\infty}^{\infty} c_n e^{inx},$$

such that

$$\|f\|_{\mathbf{K}}^2 = \Sigma |c_n|^2 \lambda_{|n|} < \infty.$$

Here $\{\lambda_n\}$ is a positive sequence such that

$$\mathbf{K}(x) \sim \sum_{0}^{\infty} \frac{\cos nx}{\lambda_{n}}$$

is a convex function $\in L^1$. The following theorem is quite easy to prove.

THEOREM 1.—If $\lambda_n = (n + 1)^{1-\alpha}$, $0 \le \alpha < 1$, (1.6) is bounded if and only if

$$\begin{split} \mathbf{E}_{\alpha}(\mu) &= \int \int \frac{d\mu(a) \, d\mu(b)}{|1 - \bar{a}b|^{\alpha}} < \infty, \qquad 0 < \alpha < 1, \\ \mathbf{E}_{0}(\mu) &= \int \int \log \left| \frac{1}{1 - \bar{a}b} \right| \, d\mu(a) \, d\mu(b) < \infty, \qquad \alpha = 0. \end{split}$$

The bound of (1.6) is $\leq \text{const. } \sqrt{E_{\alpha}}$.

If we specialize $d\mu$ to have the form $d\sigma(\theta)$ placed at a point on the radius from 0 to $e^{i\theta}$ we find using (1.4) and observing that $E_{\alpha}(\mu)$ essentially increases if we push the masses out to |z| = 1

(1.8)
$$(\int f^*(x) \, d\sigma(x))^2 \leq A_{\alpha} ||f||_{\mathbf{K}}^2 \mathbf{I}_{\alpha}(\sigma)$$

where I_{α} is the energy of σ with respect to the kernel $|x|^{-\alpha}$, resp. $\log \frac{1}{|x|}$. This inequality implies easily the existence of derivatives

and boundary-values except on sets of capacities zero. This is a result by Beurling [1] and Broman [2].

The proof of Theorem 1 in the case $\alpha = 0$ is particularly simple. Consider first the case when μ has its support strictly inside |z| < 1. Consider the harmonic function

$$u_0(z) = \iint \log |1 - z\bar{\zeta}| d\mu(\zeta)$$

and let (u, v) denote scalar product in the space of harmonic functions with finite Dirichletintegral and with u(0) = 0. Then by Poisson's formula

$$(u, u_0) = \int_{|z|=1} u \frac{\partial u_0}{\partial n} ds = 2\pi \iint u(z) d\mu(z).$$

Hence

$$2\pi \left| \iint u \, d\mu \right| \leq \| u_0 \| \, . \| \, u \|$$

with equality if $u = u_0$, and the linear functional (1.6) has norm $(2\pi)^{-\frac{1}{2}} \sqrt{E_0(\mu)}$. The case of a general μ follows immediately.

The restriction u(0) = 0, i.e., $\int f dx = 0$, is clearly inessential. Let us also observe that we here (as well as in Section 2) also may restrict ourselves to f > 0 since |f(x)| has a smaller norm than f(see (2.1)).

In the case $0 < \alpha < 1$ we write

$$\int u(a) d\mu(a) = \int f(\theta) d\theta \frac{1}{2\pi} \int \frac{1-|a|^2}{|e^{i\theta}-a|^2} d\mu(a) = \int f(\theta)g(\theta) d\theta.$$

The function $v(r, \theta)$ harmonic in |z| < 1 with boundary values $g(\theta)$ is

(1.9)
$$v(r,\theta) = \frac{1}{2\pi} \int \frac{1-|a|^2 r^2}{|e^{i\theta}-ar|^2} d\mu(a) = \Sigma b_n r^{|n|} e^{in\theta}.$$

We wish to prove

(1.10)
$$\iint v(r,\theta)^2(1-r)^{-\alpha}\,dr\,d\theta < \infty,$$

since this inequality is equivalent to $\sum |b_n|^2 (|n| + 1)^{\alpha - 1} < \infty$. Inserting (1.9) in (1.10) we see that (1.10) holds if $E_{\alpha}(\mu) < \infty$.

2. It is clearly possible to use the same method for general kernels K(x) and corresponding weights λ_n . However the formulas become so involved that they cannot be used to deduce inequalities of the form (1.8). Of particular interest is the case

$$\lambda_n = (\log(n+2))^{\alpha}, \qquad 0 < \alpha < \infty.$$

LENNART CARLESON

For functions f with corresponding $||f||_{\mathbf{K}}$ finite and $0 < \alpha < 1$, nothing is known on convergence of Fourier series and no better result on existence of derivatives than Lebesgue's theorem. The kernel K_{α} that is associated with this sequence is

$$\mathbf{K}_{\alpha}(x) \sim \frac{1}{|x|(\log 1/|x|)^{1+\alpha}}, \qquad x \to 0.$$

The following theorem holds

THEOREM 2. — There is a constant B_{α} such that

$$\mathbf{C}_{\mathbf{K}_{\alpha}}\left[\left\{x\big|f^{\ast}(x) \geq \lambda\right\}\right] \leq \frac{\mathbf{B}_{\alpha}}{\lambda^{2}} \|f\|_{\mathbf{K}_{\alpha}}^{2}, \qquad 0 < \alpha < \infty.$$

By standard methods this implies that the primitive function of f has a derivative except on a set of K_{α} -capacity zero. It is interesting to compare this result with what is known on convergence of Fourier series. It has been proved by Temko [4], that if $||f||_{K_{\alpha+1}} < \infty$ then the Fourier series converges except on a set of K_{α} -capacity zero, while we here get a stronger result on existence of boundary values.

In the proof we use the equivalent norm

(2.1)
$$\iint_{-\pi}^{\pi} \frac{|f(x) - f(y)|^2}{\varphi(x - y)} \, dx \, dy, \qquad \varphi(t) = |t| \left(\log \frac{8}{|t|} \right)^{1 - \alpha}$$

and the following potential theoretic lemma:

LEMMA. — If σ is an interval of length d on $(-\pi, \pi)$, denote by $T\sigma$ an interval of length 3d and having the same midpoint as σ . We assume that $\{\sigma_v\}$ are disjoint and denote by $E = \bigcup \sigma_v$ and $E' = \bigcup T\sigma_v$. Then there is a constant Q only depending on K such that

$$C_{\mathbf{K}}(\mathbf{E}') \leq \mathbf{Q}C_{\mathbf{K}}(\mathbf{E})$$

provided $\mathbf{K}(x) = \bigcirc (\mathbf{K}(2x)), x \to 0.$

In an outline, the proof of theorem 2 proceeds as follows. Let σ_{vn} denote the 2^n disjoint intervals of length $2\pi \cdot 2^{-n}$ on $(-\pi, \pi)$. Let λ be given and denote by $M_{\alpha}(f)$ the mean value of f over the interval α . We choose intervals $\sigma_1, \sigma_2, \ldots$, such that

(2.2)
$$M\sigma_{v}(f) \ge \lambda$$

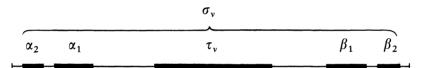
by first choosing those σ_{v1} that satisfy (2.2), then $\sigma_{\mu2}$ disjoint from those chosen before, etc. It follows easily from the lemma that it is sufficient to prove $C\{\cup \sigma_v\} \leq \text{const. } ||f||^2 \cdot \lambda^{-2}$.

Let τ_{ν} be intervals such that $T\tau_{\nu} = \sigma_{\nu}$. We want to construct $f_1(x)$ such that $||f_1|| \leq \text{const.} ||f||$ and $f_1(x) \equiv M\sigma_{\nu}(f)$, $x \in \tau_{\nu}$. We first modify f on each σ_{ν} according to the following rule where we have normalized σ_{ν} to (-1, 1):

$$f_2(x) = \begin{cases} f(2x), & -\frac{1}{2} < x < \frac{1}{2} \\ f(-x - \frac{3}{2}), & -\frac{3}{4} < x < -\frac{1}{2} \\ f(x), & -1 < x < -\frac{3}{4} \\ \text{analogously on } (\frac{1}{2}, 1). \end{cases}$$

Outside $\cup \sigma_{v}$ we define $f_{2}(x) = f(x)$. From (2.1) it follows that $||f_{2}||_{K} \leq \text{const.} ||f||_{K}$.

Let 4δ be the length of the shortest of the intervals σ_{ν} . We have the following picture:



where we construct α_i and β_i until their length $< \delta$. α_i and β_i have lengths = 3^{-i-1} (length σ_v). We define

$$f_1(x) = \begin{cases} M_{\tau_v}(f_2) = M_{\sigma_v}(f), & x \in \tau_v; \\ M_{\alpha_i}(f_2), & x \in \alpha_i; \\ M_{\beta_i}(f_2), & x \in \beta_i; \\ \text{linear between the intervals.} \end{cases}$$

We do the same construction on each σ_v and each complementary interval. A computation in (2.1) shows that $||f_1|| < \text{const.} ||f_2||$.

To complete the proof, let μ be a distribution of unit mass on $E'' = \bigcup \tau_{v}$. Then

$$\lambda \leqslant \int_{\mathbf{E}''} f_2(x) \, d\mu(x) \leqslant \| f_2 \|_{\mathbf{K}} \cdot \mathbf{I}_{\mathbf{K}}(\mu)^{\frac{1}{2}} \leqslant \text{const.} \| f \|_{\mathbf{K}} \cdot \mathbf{I}_{\mathbf{K}}(\mu)^{\frac{1}{2}}.$$

The lemma now yields theorem 2.

LENNART CARLESON

BIBLIOGRAPHY

- [1] A. BEURLING, Ensembles exceptionnels, Acta Math., 72 (1940), 1-13.
- [2] A. BROMAN, On two classes of trigonometrical series, Thesis, Uppsala (1947).
- [3] L. CARLESON, Interpolations by bounded analytic functions and the Corona problem, Ann. of Math., 76 (1962) 547-559.
- [4] K. V. TEMKO, Convex capacity and Fourier series, Dokl. Akad. Nauk, 110 (1956).

Lennart CARLESON, Department of Mathematics, Uppsala University, Sysslomansgatan 8, Uppsala (Suède).