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MARTIN BOUNDARY AND POSITIVE SOLUTIONS
OF SOME BOUNDARY VALUE PROBLEMS

By Evgeny B. DYNKIN

In 1941 R. S. Martin [1] proposed a method of describing all
positive harmonic functions in an arbitrary domain D of an n-
dimensional Euclidean space. Our aim is the investigation of all
positive harmonic functions satisfying some boundary conditions.
It will be proved that the Martin method is valid for a wide class
of such boundary value problems. We will employ it for the Neumann
problem with oblique derivative.

Let D be a tw^o-dimensional domain bounded by a smooth closed
contour C and let v(z) be a Holder continuous vector field on C.
We shall investigate harmonic functions in D subject to the condi-
tion that

(1) ^ = 0
on C. (Here

^(20) = Ui(zo)^,(zo) + v^{zo)h^{zo)

and h^(zo) is the limit of
(5

hxi(z) = ̂ -/l(z) as z ̂  ̂Cy^Vf

The exact statement of the question is the following. We suppose
that there exist only a finite number of points at which the vector
field v(z) is tangent to the contour C. We call a boundary point a
exceptional if the projection of v{z) on the exterior normal changes
its sign at a. The set of all exceptional points will be designated by
r. Harmonic functions h in the domain D satisfying condition (1)
at all points a e C \ F w^ill be called solutions of the boundary value
problem (1). (No restrictions will be imposed upon the behaviour
of h as z -^ a e F.) We want to describe all positive solutions of the
boundary value problem (1).
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The extension of the Martin theory to a class of boundary value
problems (including the problem (1)) will be given in § 1. The Martin
boundary associated with the problem (1) and all positive solutions
of this problem will be described in § 2. The probabilistic interpreta-
tion of the results obtained and. some unsolved problems wdll be
formulated in § 3.

1. Boundary value problems for the Laplace equation and Martin boundary.

Let D be an arbitrary domain of an ^-dimensional Euclidean
space. We shall investigate harmonic functions in the domain D
satisfying a certain boundary condition M. The concept of the
boundary condition is defined in the following w^ay. A set D \ JT
(Jf is any compact contained in D) will be called a boundary
neighborhood. Let us consider all the functions defined in the
boundary neighborhoods. Let a set ^? of such functions satisfy the
following conditions:

A. If/i and/2 coincide in a boundary neighborhood and if/i e^
then /2 ^ ^'

B. If/i,/2 e^?, then c^/i + c^f^eSf for any real numbers c^,c^.
C. If a sequence of harmonic functions/„ converges to a function/

in a boundary neighborhood and if/^e.^(n == 1,2,...), then/e^?.
Then ^ defines a boundary condition. The phrase «/satisfies the

boundary condition ^?» has the same meaning as «/e^?». Har-
monic functions satisfying the boundary condition ^ w^ill be called
solutions of the boundary value problem SH.

Let us suppose that the set ^ contains a subset ^?+ subject to the
following conditions:

D. If /i and f^ coincide in a boundary neighborhood and if
/i e^?+, then/^e^.

E. If/i,/2 e^?+, then c^f^ + c^f^ e^?+ for any nonnegative num-
bers C i , c ^ .

F. If/,, —> /uniformly in a boundary neighborhood and if

fnE^(n= 1,2,...),

/e^,then/e^+.
G. If/e ̂  and if/ ^ 0 in a boundary neighborhood, then/e^?+.
H. (Minimum principle) Let Jf be a compact contained in D and

let Do == D \ ^ Assume that a function/e^?+ is continuous on the
set Do u 5JT and is harmonic on Do. Then either/(z) ^ 0 for any
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z e Do or there exists a point ZQ e 5jf such that/(zo) < f(z) for an)
z e D o .

We denote the set of all functions/such that/e^?+ and -/e^+
by^o- Suppose that the following two conditions are fulfilled:

I. For any w e Q there exists a function h^(z) harmonic in D
and such that the function gjz) = h^(z) + y(w - z) belongs to ^o-
Here y(z) = - z| for n = 1, y(z) = -In |z| for n = 2 and y(z) = z]2""
for n > 2.

J. The function gjz) has partial derivatives with respect to the
coordinates of the point w, w^hich are continuous wdth respect to w
and z for w 7^ z.

The minimum principle implies that the function gjz) is uniquely
defined by the condition I. We shall call it the Green function.

THEOREM \.—Let the conditions A-J be fulfilled. Put

uz) = f^ (W, ZG^, W + Z, W ^ Zo),
6wV~0/

w/iere ZQ 15 a point of the domain D. A compactification E o/ r/i^
domain D can foe constructed such that:

a) for any z e Q), the function fejz) of the variable w can be extended
continuously to the set E \ {z};

b) D is an everywhere dense subset ofE. Every nonnegative solution
/(z) of the boundary problem M can be represented as an integral

(2) f{z)= f k^z)v(dw) (zeQ)
JB

where B == E \ D and v is a finite measure on Borel subsets of the
set B.

Formula (2) is a generalisation of the w^ell-known Martin expan-
sion. (The case of Martin is obtained if we select St as the set of all
functions defined near the boundary of D.)

It is possible that some of functions k^ (w e B) don't belong to Si.
Put w e B if w e B and k^ e ̂ . Is the formula (2) true with the set B
instead of the set B? We prove that it is if there exist sets ̂  (w e B)
subject to conditions:K- n ̂  = ̂

weB

L. If a sequence of harmonic functions /„ e J?^ converges to a
function/in D n V (wdiere V is a neighborhood of w), then/e^.
(This is a «localization » of the condition C.)
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The set B will be called the Martin boundary associated with the
boundary value problem Sf.

A point we B is called minimal if the equality k^(z) =/i(z) + f^(z)
(/i and /2 are nonnegative solutions of the boundary problem SV)
implies that/i = c^k^f^ = c^k^ (c^, c^ are real numbers). The set of
all minimal points w e B will be denoted by Bg. The following
strengthening of the Theorem 1 can be proved with the aid of the
Choquet theorem on convex cones in linear topological spaces.

THEOREM 2 .—Every nonnegative solution f[z) of the boundary
value problem (under the conditions A-L) can be represented as an
integral

(3) /(z)= | Wv(dw)
JBe

\vhere v is a finite measure on Borel subsets of the set Bg.

2. The Martin boundary associated with the Neumann problem with
oblique derivative.

We will now apply the general theorems of § 1 to the boundary
value problem (1).

Let a be a point of the set r. Let s be a canonical parameter (the
arc length) on the contour C reckoned from the point a in the
direction of the vector r(a). Let c(s) be a point of C corresponding to s
and let 0(s) be the angle between v[c(s)] and c'(s). The function 0(s}
changes sign at a. Set a e F_ if the sign changes from minus to plus,
and set a e r + if it changes from plus to minus. The numbers of
points of r_ and F+ will be denoted by n_ and n+ . We assume that
the function 0(s) has a Holder continuous derivative 0\s) in a neigh-
borhood of 0 and set a e F0. if a e F+ and K •== 0\0) = 0.

It is proved that the boundary value problem (1) satisfies the
conditions A-L (ifn+ > 0). Without loss of generality we may assume
that the domain D is a unit circle (the general case can be reduced
to the case of the unit circle with the aid of conformal mapping).
The most difficult parts are the proof of the minimum principle H
and the construction of the Green function. The latter may be divided
into the following stages:

1. We build a pair of analytical functions S(z), T(z) which are
regular in D except at the point 0 where they can have a pole; these
functions are Holder continuous near the boundary C of the circle D;
they are connected by the relation S(z)T(z) = 1 and satisfy the
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following condition: the value of S(z) for z e C differs from e16 by a
positive factor (here 0 is the angle between v(z) and the positive
direction of the tangent at the point z).

2. For any a e F + w^e construct a bounded solution pjz) of the
boundary problem (1) such that p^a) = 1, p^(y) = 0 for y e F+, y ^ a.

3. The Green function g^(z) is defined by the formula

g,(w) = q(z, w) - ^ g(a, w)^(z)
aer+

w^here

q{z, w) = Re T(z)z- '[Sfw^z, w- ̂  - S(w)L(z, w)] rfz.
J o

Here L(z, w) == - ——— i f n + ^ n _ . I f n _ > n + , we put m = n_ - n. ,z z — w

w^e select an arbitrary subset r_ of the set F_ containing 2m - 1
points, w^e form the functions

P/w) = y--1^1-- ]~[ (w - W7 - P)~1 (7^r_)
^ e r _ , ^ ^ y

and w^ define the function L(z, w) by the formula

. / . i z + w i v ^ ^ / x - ^ + y
^•"'^^.-^J.Wr-^-

By studying the asymptotic behavior of the Green function as
w -> a e r we arrive at the following result.

THEOREM 3.—Let n+ > 0. L^ B be the Martin boundary associa-
ted with the boundary value problem (1). Then the connected com-
ponents of B are in one-to-one correspondence mth the points a of the
set r. For ae r^ the component B^ consists of one minimal point ^.
For a e F+ the component B^ 15 a closed interval. The ends ̂ + and %7
o/ r/u's interval are minimal points. If a e F0. ^n an interior point ̂
o/ t/i^ interval B^ fs minimal too.

Let us introduce special designations for the solutions fejz) of the
boundary value problem (1) corresponding to the minimal points
of the Martin boundary. Let us set

k^(z)=u^z) (aer.uF0),

4^00 = a^p^(z\ k^-(z) = a,-p,-(z) (a e FJ.
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Here the positive constants a^ and a^ are selected so that p ^ ( z ) -> 1
as z tends to a along the contour C from the positive side, and
P a ( 2 ) —)> 1 as z tends to a along C from the negative side.

We shall describe the behavior of the solutions u ^ , p ^ , p ^ near a
point a e r. We assume that D is a unit circle. Consider the functions

(p^(z) = Im In ( l - z ) = arg (l - z ) = arc tan ~ x,
\ a/ \ a/ y

^(z) = Reln(l - ̂  == In 1 - ̂  = ̂ ln[(l - x)2 + y2],

_ „ /, z \ - 1 1 - x t z\
^z)=Re(l--^ -(i-TxTTT2 ('^'a}

These functions are positive harmonic in D and continuous in
D u C except a. Let us agree to write / = g if the difference f — g
can be represented as the sum of a harmonic function, continuous
in Q) u C and a linear combination of functions (p^(z)(a e F_).

THEOREM 4. — The following relations

u,(z) = a,K(z) - ^a(^)] (a e r_ u H),

Pa"^) EE -^a^2). Pa )̂ = ^a<Pa(^) (aeF+)

are fulfilled with positive constants a^ and c^.
Using the Theorem 2 it is not difficult to describe the general form

of nonnegative solutions of the boundary value problem (1).

THEOREM 5.—Ifn^ = 0 then the only nonnegative solutions of the
boundary problem (1) are constants. If n+ > 0, then every non-
negative solution/is uniquely represented in the form

f(z) = ^ a^{z) + ^ (c;p;(z) + 0,-(z)),
aer-uF^ aer+

where a^, c^, c^ are nonnegative constants. A solution f is bounded if
and only if a^ = 0(a = T - u F0.). //a e F+ \ r°., ?/zen t/i^ solutions
k^(z) corresponding to the points w of the interval B^ are linear com-
binations ofp^ and p ^ . Ifo(.e F0., then fe^(z) is a linear combination of
py, and u^for we [^^ ^J, and k^(z) is a linear combination ofu^ and
p;/orwe[^,^].

Let us introduce notations for points of the interval B^(ael\).
In the case a e F+ \ F0. we set w = ̂  if

/c, = c[(2 + A + |A|)^ + (2 + \A\ - /)p,-]
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(c is a constant depending on /I). In the case a e r°. we set
^ = ̂  0 ^ 0)

ifk^ = c[u^ + /Ip^] and we set w = ^^\A ̂  0) if k^ = c[u^ + ̂ }.
In addition, w^e set %^°° = ^+, ^-00 = %7, <^.= ̂ .

Let ae r+ and let s be the canonical parameter introduced at the
beginning of § 2. Let n(s) be the unit vector directed along the in-
terior normal to C at the point c(s) and let w(s, t) = c{s} + tn(s\
Considering only sufficiently small values of 5 and t w^e obtain a local
coordinate system in a neighborhood of a. Put

0(5, t) == 0(5),

^(Inst-^nis2 + t2)}-1 for aer\ \ r°,

^ -2n^l0(s,t) for aeF^ .
THEOREM 6. — J/a e r_ , then the convergence w to ̂  m r^ Martin

topology is equivalent to the convergence w to a m ̂  topology of the
Euclidean plane. In the case a e F ^ , w tends to ^ m ^e Martin
topology if, and only if, w -> a and C -^ ^.

3. Probabilistic interpretation. Some unsolved problems.

It is possible to give the following probabilistic interpretation to
the results obtained in § 2. Consider the Wiener process in the domain
D and suppose that the trajectory of the process is reflected at the
boundary point z e c \ F in the direction of v(z) (or - v(z\ if v(z) is
directed outside D). We assume that the process terminates when the
trajectory hits the set F. It may be proved that the movement starting
from the point z terminates at the point ae F+ with the probability
P^} = P^(z) + Pa" (4 The probability of hitting the set F_ is equal
to 0. The probability of nontangential approach to a e r + is equal
to 0 too. The quantities p^{z} and p ^ ( z ) are equal to the probabilities
of tangential approach to a e r + from the positive and negative
sides, respectively. These probabilistic conclusions were obtained
earlier in a different way by Malyutov [2]. Using the Theorem 6 it is
not difficult to obtain more precise information concerning the
behavior of the trajectory near the terminal point a.

It would be very interesting to study the behavior of the trajectory
of a many-dimensional Wiener process with reflection near the
boundary points where the direction of reflection is tangential.
As in the two-dimensional case, this problem is closely connected
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with the structure of the set of all positive solutions of the boundary
value problem (1). The many-dimensional boundary value problem
(1) in the classical statement (where solutions continuous in a closed
domain are sought) meets considerable difficulties. In our statement
the problem is actually local, therefore it is possibly simpler.

We conclude with an open problem in the general theory of
Martin boundaries. Under very broad assumptions the measure v
in formula (3) is uniquely determined by the function / Hence, to
every point ? of the Martin boundary B there corresponds a measure
Vp on the set B^, which is defined by the formula

W = f /c,(z)v^(w).
•/Be

Let us agree to say that the point /?i is subordinate to the point R^
if the measure v^ is differentiable with respect to the measure v^.
The points ̂  and ̂  are called equivalent if the measures v^ and v^
are differentiable with respect to each other. The Martin boundary
falls into the classes of equivalent points, and there exists a definite
relation of subordination between these classes. Each minimal point
is a separate class. In the case investigated in § 2 the remaining classes
are open intervals. It would be very interesting to study the set of
classes in the general case, to learn when this set is a finite complex,
etc.

The following question is closely connected with the last one:
what continuous functions on the Martin boundary B are limits of
the harmonic functions under consideration? Apparently these
boundary functions must be in some sense harmonic on each class of
equivalent points. The exact definition of this harmonicity is now
clear only for some special cases.
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