MASANORI KISHI A remark on a lower envelope principle

Annales de l'institut Fourier, tome 14, nº 2 (1964), p. 473-484 <http://www.numdam.org/item?id=AIF_1964__14_2_473_0>

© Annales de l'institut Fourier, 1964, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A REMARK ON A LOWER ENVELOPE PRINCIPLE by Masanori KISHI

Introduction.

Let Ω be a locally compact Hausdorff space, every compact subset of which is separable, and let G(x, y) be a positive continuous (in the extended sense) function defined on $\Omega \times \Omega$, which is finite at any point $(x, y) \in \Omega \times \Omega$ with $x \neq y$. This function G is called a positive continuous kernel on Ω . The kernel \check{G} defined by $\check{G}(x, y) = G(y, x)$ is called the adjoint kernel of G. For a given positive measure μ , the potential $G\mu(x)$ and the adjoint potential $\check{G}\mu(x)$ are defined by

$$G\mu(x) = \int G(x, y) d\mu(y)$$
 and $\check{G}\mu(x) = \int \check{G}(x, y) d\mu(y)$

respectively. The G-energy of μ is defined by $\int G\mu(x) d\mu(x)$. Evidently this is equal to $\int \check{G}\mu(x) d\mu(x)$.

We shall say that G satisfies the compact lower envelope principle when for any compact subset K of Ω and for any $\mu \in \mathcal{E}_0$ and $\nu \in \mathfrak{M}_0(^1)$, the lower enveloppe $G\mu \wedge G\nu(^2)$ coincides G-p.p.p. on K with a potential $G\lambda$ of a positive measure λ supported by K(³). It is seen by an existence theorem obtained in [4] that if the adjoint kernel \check{G} satisfies the continuity

(2) $(G\mu \wedge G\nu)(x) = \inf \{G\mu(x), G\nu(x)\}.$

(3) We say that a property holds G-p.p.p. on K when it holds on K almost everywhere with respect to any μ in \mathcal{E}_0 .

⁽¹⁾ \mathcal{M}_0 is the totality of positive measures with compact support and \mathcal{E}_0 is the totality of positive measures in \mathcal{M}_0 with finite G-energy.

principle (4) and G satisfies the ordinary domination principle (5), then G satisfies the compact lower envelope principle (cf. [6]). In this paper we examine what we can say about the converse.

We consider a positive continuous kernel G satisfying the continuity principle and we assume that any open subset of Ω is of positive G-capacity (⁶). We shall show that such a kernel satisfies the ordinary domination principle if it is not a finite-valued kernel on a discrete space, provided that G or \check{G} is non-degenerate (⁷) and G satisfies the compact lower envelope principle. The exceptional kernel G satisfies the invere domination principle (⁸).

1. Elementary weak balayage principle.

1. We say that G satisfies the elementary weak balayage principle, if for any compact set K and any point $x_0 \notin K$, there exists $\mu \in \mathfrak{M}_0$, supported by K, such that

$$G\mu = G\epsilon_{x_0}$$
 G-p.p.p. on K,

where ε_{x_0} is the unit measure at x_0 .

First we show that the compact lower envelope principle is stronger than the elementary weak balayage principle.

LEMMA. — If a positive continuous kernel G satisfies the compact lower envelope principle, then it satisfies the elementary weak balayage principle.

Proof. — Without loss of generality, we may suppose that \mathfrak{E}_0 is not empty. Let K be a compact set and x_0 be a point not on K. Since $G_{\mathfrak{E}_{x_0}}$ is bounded on K and $\mathfrak{E}_0 \neq \emptyset$, there exists a positive measure λ in \mathfrak{E}_0 such that $G\lambda \geq G_{\mathfrak{E}_{x_0}}$ on K.

(4) This means that if $\check{G}\mu$ is finite continuous as a function on the support S μ of μ , then $\check{G}\mu$ is finite continuous in Ω .

(5) Namely the following implication is true for G: $G\mu \leq G\nu$ on $S\mu$ with $\mu \in \mathscr{E}_0$ and $\nu \in \mathscr{M}_0 \Longrightarrow G\mu \leq G\nu$ in Ω .

(*) This means that for any non-empty open subset ω of Ω there exists $\lambda \neq 0$ in \mathcal{E}_0 such that $S\lambda \subset \omega$.

(?) We say that G is non-degenerate when for any two different points x_1 and x_2 , $G_{\varepsilon_{x_1}}/G_{\varepsilon_{x_1}} \neq any$ constant in Ω , where ε_{x_i} is the unit measure at x_i , (i = 1, 2).

(8) Namely the following implication is true for G: $G\mu \leq G\nu$ on Sv with $\mu \in \mathcal{E}_0$ and $\nu \in \mathcal{M}_0 \Longrightarrow G\mu \leq G\nu$ in Ω . Then, by the compact lower envelope principle, there exists a positive measure μ , supported by K, such that

$$G\mu = G\lambda \wedge G\varepsilon_{x_0}$$
 G-p.p.p. on K.

Hence $G\mu = G\varepsilon_{x_0}$ G-p.p.p. on K and G satisfies the elementary weak balayage principle.

2. In [5] we obtained the following results concerning the elementary weak balayage principle.

PROPOSITION 1. — Let G be a positive continuous kernel on Ω such that G or \check{G} is non-degenerate and G satisfies the continuity principle. Assume that every open subset of Ω is of positive G-capacity. If G satisfies the elementary weak balayage principle, then it satisfies the ordinary domination principle or the inverse domination principle.

PROPOSITION 2. — Under the same assumption as above, G satisfies the ordinary domination principle, if it satisfies the elementary weak balayage principle and there exists a point x_0 in Ω such that $G(x_0, x_0) = +\infty$.

By these propositions and Lemma 1 we have

THEOREM 1. — Assume that a positive continuous kernel G on Ω satisfies the continuity principle and that every open subset of Ω is of positive G-capacity. If G satisfies the compact lower envelope principle and G or \check{G} is non-degenerate, then it satisfies the ordinary domination principle or the inverse domination principle.

THEOREM 2. — Assume the same as above. If G satisfies the compact lower envelope principle, G or \check{G} is non-degenerate and there exists a point x_0 in Ω such that $G(x_0, x_0) = +\infty$, then G satisfies the ordinary domination principle.

From these theorems follows

COROLLARY. — Assume the same as above. If G satisfies the compact envelope principle and dose not satisfy the ordinary domination principle, then it is a finite continuous kernel (⁹) satisfying the inverse domination principle.

(9) Namely it is a finite-valued and continuous kernel.

2. Finite continuous kernels.

3. Throughout this section we consider a finite continuous kernel G on Ω . We shall prove several lemmas on G.

LEMMA 2. — Let G satisfy the inverse domination principle. Then it is non-degenerate if and only if

$$\Gamma(x_1, x_2) = G(x_1, x_1)G(x_2, x_2) - G(x_1, x_2)G(x_2, x_1) < 0$$

for any two different points x_1 and x_2 in Ω .

Proof. — Since G satisfies the inverse domination principle, $\Gamma(x_1, x_2) \leqslant 0$ for any two different points x_1 and x_2 in Ω . In fact, the identity $G_{\varepsilon_{x_1}}(x_1) = aG_{\varepsilon_{x_2}}(x_1)$ with

$$a = \mathrm{G}(x_1, x_1)/\mathrm{G}(x_1, x_2)$$

and the inverse domination principle yield

(1)
$$\operatorname{Ge}_{x_{1}}(x) \geqslant a\operatorname{Ge}_{x_{2}}(x)$$

for any x in Ω . Therefore $G_{\varepsilon_{x_1}}(x_2) \ge aG_{\varepsilon_{x_2}}(x_2)$ and hence $\Gamma(x_1, x_2) \leqslant 0$.

Now suppose that $\Gamma(x_1, x_2) = 0$. Then

$$\mathrm{Ge}_{x_{\mathbf{1}}}(x_{\mathbf{2}}) = a\mathrm{Ge}_{x_{\mathbf{2}}}(x_{\mathbf{2}}).$$

Hence by the inverse domination principle

 $\operatorname{Ge}_{x_*}(x) \leqslant a\operatorname{Ge}_{x_*}(x)$

for any x in Ω . This together with (1) shows that G is degenerate. Consequently $\Gamma(x_1, x_2) < 0$ if G is non-degenerate. The converse is evidently true.

COROLLARY. — Under the same assumption as above G is non-degenerate if and only if its adjoint kernel \check{G} is non degenerate.

Proof. — This is an immediate consequence of Lemma 2, since G satisfies the inverse domination principle when and only when \check{G} satisfies the principle (see Theorem 2' in [5]).

LEMMA 3. — If G satisfies the inverse domination principle, then G satisfies the compact upper envelope principle, i.e., for any μ , $\nu \in \mathfrak{M}_0$ and any compact subset K of Ω , there exists $\tau \in \mathfrak{M}_0$, supported by K, such that

$$G\tau = G\mu \vee G\nu$$
 on $K^{(10)}$.

Proof. — Put $u = G\mu \lor G\nu$. Then by the inverse existence theorem (cf. Theorem 4' in [5]) there exists a positive measure τ , supported by K, such that

$$\begin{array}{ll} \mathrm{G}\tau \leqslant u & \mathrm{on} \ \mathrm{K}, \\ \mathrm{G}\tau = u & \mathrm{on} \ \mathrm{S}\tau. \end{array}$$

By these inequalities and the inverse domination principle we obtain

$$G\tau = u$$
 on K.

COROLLARY. — If G satisfies the inverse domination principle, then its adjoint \check{G} satisfies the compact upper envelope principle.

LEMMA 4. — If G is non-degenerate and satisfies the inverse domination principle, then it satisfies the unicity principle $(^{11})$.

Proof $(^{12})$. — Let K be a compact subset of Ω and \mathcal{C} be the space of all finite continuous functions on K with the uniform convergence topology. We put

$$\mathfrak{D} = \{ f \in \mathcal{C}; f = \check{\mathbf{G}} \mu_1 - \check{\mathbf{G}} \mu_2 \text{ on K with } \mu_i \in \mathfrak{M}_0 \}.$$

First we show that \mathfrak{D} is dense in \mathcal{C} . By the corollary of Lemma 3 we easily see that \mathfrak{D} is closed with respect to the operations \vee and \wedge , *i.e.*, if $f_i \in \mathfrak{D}(i = 1, 2)$, then $f_1 \vee f_2$ and $f_1 \wedge f_2$ belong to \mathfrak{D} . Let x_1 and x_2 be different points on K. Since G is non-degenerate, $\Gamma(x_1, x_2) \neq 0$ by Lemma 2. Hence for any given real numbers a_1 and a_2 , there exists f in \mathfrak{D} such that

$$f = t_1 \mathring{\mathrm{G}} \varepsilon_{x_i} + t_2 \mathring{\mathrm{G}} \varepsilon_{x_i} \quad (t_i, \text{ real})$$

$$f(x_i) = a_i \quad (i = 1, 2).$$

(10) $(G\mu \vee G\nu)(x) = \max \{G\mu(x), G\nu(x)\}.$

(¹¹) Namely the equality $G\mu = G\nu$ in Ω with μ , $\nu \in \mathcal{M}_0$ implies $\mu = \nu$.

(12) Cf. [3] and [6].

Thus we can apply the theorem of Weierstrass and Stone (cf. [1], p. 53) and we obtain that \mathfrak{D} is dense in \mathcal{C} .

Now let $G\mu_1 = G\mu_2$ in Ω with $\mu_i \in \mathfrak{M}_0$ and take a compact set K which contains $S\mu_1 \cup S\mu_2$. We shall show that

$$\int f \, d\mu_1 = \int f \, d\mu_2$$

for any f in \mathcal{C} . By the above remark there exists, for any positive number ε , a function g in \mathfrak{D} such that $|f(x) - g(x)| < \varepsilon$ on K. Then

$$\left|\int f d\mu_i - \int g d\mu_i\right| < \varepsilon \int d\mu_i \quad (i = 1, 2).$$

Since $\int g d\mu_1 = \int g d\mu_2$,

$$\left|\int f d\mu_1 - \int f d\mu_2\right| < 2\varepsilon \max\left(\int d\mu_1, \int d\mu_2\right)$$

Consequently $\int f d\mu_1 = \int f d\mu_2$. This completes the proof.

LEMMA 5. — Assume that G is non-degenerate and satisfies the compact lower envelope principle and the inverse domination principle, Let λ_0 be a positive measure such that

$$G\lambda_0 = G\mu \wedge G\nu \quad on \ S\mu \cup S\nu, \\ S\lambda_0 \subset S\mu \cup S\nu.$$

Then for any x in Ω

$$G\lambda_0(x) = (G\mu \wedge G\nu(x)).$$

Proof. — Let K be a compact set containing $S\mu \cup S\nu$ and λ be a positive measure supported by K such that

$$G\lambda = G\mu \wedge G\nu$$
 on K.

By Lemma 3, there exists a positive measure τ , supported by K, such that

$$G\tau = G\mu \vee G\nu$$
 on K.

Then

$$G\lambda + G\tau = G\mu \wedge G\nu + G\mu \vee G\nu = G\mu + G\nu$$

on K. Since $\lambda + \tau$ and $\mu + \nu$ are supported by K, we obtain by the inverse domination principle that

$$G(\lambda + \tau) = G(\mu + \nu)$$
 in Ω .

Hence by Lemma 4, $\lambda + \tau = \mu + \nu$ and λ is supported by $S\mu \cup S\nu$. Consequently again by the inverse domination principle, we have $G\lambda = G\lambda_0$ and hence $\lambda = \lambda_0$. This shows that

$$G\lambda_0 = G\mu \wedge G\nu$$
 in Ω .

LEMMA 6. — Assume that G is non-degenerate and satisfies the compact lower envelope principle and the inverse domination principle. Then for any points x_1 , x_2 and x in Ω either

$$\frac{G(x, x_1)}{G(x, x_2)} = \frac{G(x_1, x_1)}{G(x_1, x_2)}$$

or

$$\frac{G(x, x_1)}{G(x, x_2)} = \frac{G(x_2, x_1)}{G(x_2, x_2)}.$$

Proof. — Without loss of generality we may assume that G(x, x) = 1 for any x in Ω , since G'(x, y) = G(x, y)/G(x, x) is a non-degenerate finite continuous kernel which satisfies the compact lower envelope principle and the inverse domination principle. We take three different points x_1 , x_2 and x_3 in Ω and put

 $g_{ii} = \mathrm{G}(x_i, x_i).$

By Lemma 2

(2) $g_{12}g_{21} > 1.$

Hence we can take positive measures $\mu = a_1 \varepsilon_1 + a_2 \varepsilon_2$, $\nu = b_1 \varepsilon_1 + b_2 \varepsilon_2$ such that

(3)
$$G\mu(x_1) < G\nu(x_1)$$
 and $G\mu(x_2) > G\nu(x_2)$,

where ε_i is the unit measure at x_i . Then by our assumption there exists a positive measure $\lambda = c_1 \varepsilon_1 + c_2 \varepsilon_2$ such that

$$G\lambda(x_i) = (G\mu \wedge G\nu)(x_i) \quad i = 1, 2.$$

By Lemma 5 this equality holds at x_3 . Suppose that

$$\mathrm{G}\lambda(x_3) = \mathrm{G}\mu(x_3).$$

Then

$$c_1 + c_2 g_{12} = a_1 + a_2 g_{12},$$

$$c_1 g_{21} + c_2 = b_1 g_{21} + b_2,$$

$$c_1 g_{31} + c_2 g_{32} = a_1 g_{31} + a_2 g_{32}.$$

Therefore the following determinant vanishes;

$$\begin{vmatrix} 1 & g_{12} & a_1 + a_2 g_{12} \\ g_{21} & 1 & b_1 g_{21} + b_2 \\ g_{31} & g_{32} & a_1 g_{31} + a_2 g_{32} \end{vmatrix} = 0.$$

Hence

$$(g_{32} - g_{12}g_{31})\{(a_1g_{21} + a_2) - (b_1g_{21} + b_2)\} = 0,$$

namely $(g_{32} - g_{12}g_{31})(G\mu(x_2) - G\nu(x_2)) = 0$. Hence by (3), $g_{32} = g_{12}g_{31}$, that is,

$$G(x_1, x_1)G(x_3, x_2) = G(x_1, x_2)G(x_3, x_1).$$

Similarly we obtain

$$G(x_2, x_2)G(x_3, x_1) = G(x_2, x_1)G(x_3, x_2)$$

if $G\lambda(x_3) = G\nu(x_3)$. This completes the proof.

4. We are still making preparations.

LEMMA 7. — Let K be a compact subset of Ω , x_0 a point on K and put

$$h(z) = \inf \{ G\mu(z); \mu \in \mathfrak{M}_0, S\mu \subset K, G\mu(x_0) \ge 1 \}$$

for any $z \in \Omega$. If G satisfies the compact lower envelope principle, there exists a positive measure μ , supported by K, such that

$$\begin{split} h &= \mathrm{G}\mu \text{ on }\mathrm{K}.\\ Proof \ (^{13}). & - \mathrm{Put}\\ \Phi &= \big\{\mathrm{G}\mu; \ \mu \in \mathfrak{M}_0, \ \mathrm{S}\mu \subset \mathrm{K}, \ \mathrm{G}\mu(x_0) \geqslant 1 \big\}. \end{split}$$

We first show that for any *n* given points x_1, \ldots, x_n on K, there exists a potential $G\mu \in \Phi$ such that

$$\mathrm{G}\mu(x_i) = h(x_i) \ (1 \leqslant i \leqslant n).$$

By the definition of h(z), to each x_i corresponds a sequence $\{G\mu_k^{(i)}\}\$ of potentials in Φ in such a way that $G\mu_k^{(i)}(x_i) \rightarrow h(x_i)$ as $k \rightarrow \infty$. We may assume that $G\mu_k^{(i)}(x_0) = 1$ and hence the total masses of $\mu_k^{(i)}$ are bounded. Therefore a subsequence $\{\mu_{k_p}^{(i)}\}\$ converges vaguely to $\mu^{(i)}$. Then $G\mu^{(i)} \in \Phi$ and

(13) We assume the separability of K in the proof. However this assumption is not essential. We can verify our lemma without the separability (cf. Lemma 3 in [7]).

 $G\mu^{(i)}(x_i) = h(x_i)$. By the compact lower envelope principle, $G\mu^{(1)} \wedge G\mu^{(2)} \wedge \ldots \wedge G\mu^{(n)}$ coincides with a potential $G\mu$ on K. This potential fulfills our requirements.

Now let $\{x_i\}(i = 1, 2, ...)$ be a dense subset of K. By the above remark there exists a positive measure μ_n , for each n, such that

$$\begin{array}{l} \operatorname{G}\mu_n \in \Phi \\ \operatorname{G}\mu_n(x_0) = 1 \\ \operatorname{G}\mu_n(x_i) = h(x_i) \quad i = 1, 2, \ldots, n. \end{array}$$

Then a subsequence $\{\mu_{n_k}\}$ of $\{\mu_n\}$ converges vaguely to a positive measure μ , supported by K. Evidently $G\mu$ belongs to Φ and $G\mu(x_i) = h(x_i)(i = 1, 2, ...)$. By the upper semicontinuity of h, $G\mu(z) \leqslant h(z)$ for any $z \in K$. Therefore $G\mu = h$ on K.

LEMMA 8. — Let G be a non-degenerate kernel on Ω which satisfies the compact lower envelope principle and the inverse domination principle, and let Ω_0 be a compact subset of Ω . Then there exists a mapping φ from Ω_0 into Ω_0 such that

(4)
$$\varphi(x) \neq x$$
 for any x in Ω_0 ,
(5) $G(y, \varphi(x))G(\varphi(x), x) = G(y, x)G(\varphi(x), \varphi(x))$

for any

$$x \neq y \text{ in } \Omega_0.$$

Proof. — Without loss of generality we may assume that G(x, x) = 1 for any x in Ω . We take an arbitrary fixed point x in Ω_0 , and we put

(6)
$$h_x(z) = \inf \{ G\mu(z); \mu \in \mathfrak{M}_0, S\mu \subset \Omega_0, G\mu(x) \ge 1 \}$$

for any z in Ω . Then by Lemma 7 there exists $\mu \in \mathfrak{M}_0$, supported by Ω_0 , such that

$$h_x(z) = \mathrm{G}\mu(z)$$
 for any z in Ω_0 .

By Lemma 4, μ is uniquely determined by a given point x. We shall show that there exists a unique point x' in Ω_0 such that $\mu = a\varepsilon_{x'}$ with $a^{-1} = G(x, x')$. If the assertion is false, $S\mu$ contains different points x' and x''; take a compact neighborhood K of x' such that $K \Rightarrow x''$. We put $\mu = \mu_K + \mu_K$, where $\mu_{\mathbf{x}}$ is the restriction of μ to K and $\mu'_{\mathbf{x}} = \mu - \mu_{\mathbf{x}}$. Then we can put

(7)
$$G\mu_{\mathbf{k}}(x) = \theta$$
 and $G\mu_{\mathbf{k}}'(x) = 1 - \theta$

with $0 < \theta < 1$. By (6) and (7)

$$\begin{array}{ll} \mathrm{G}\mu_{\mathbf{K}}(z) \geqslant \theta \ h_{x}(z) & \text{for any } z \in \Omega \\ \mathrm{G}\mu_{\mathbf{K}}'(z) \geqslant (1-\theta)h_{x}(z) & \text{for any } z \in \Omega. \end{array}$$

Since $G\mu(z) = G\mu_{\mathbf{K}}(z) + G\mu'_{\mathbf{K}}(z) = h_x(z)$, it follows from the above inequalities that

$$G\mu_{\mathbf{K}} = \theta h_x$$
 and $G\mu_{\mathbf{K}}' = (1 - \theta)h_x$

in Ω . Hence $\theta^{-1}G\mu_{\mathbf{k}} = (1-\theta)^{-1}G\mu'_{\mathbf{k}}$ in Ω , which contradicts the unicity principle. Therefore there exists a unique point x' in Ω_0 such that

(8)
$$h_x(z) = a \operatorname{Ge}_{x'}(z)$$
 for any z on Ω_0 ,

with $a^{-1} = G(x, x')$. Thus we define a mapping $\varphi \colon \Omega_0 \to \Omega_0$ by $\varphi(x) = x'({}^{14})$.

Now we shall show the validity of (4). Contrary suppose that $\varphi(x) = x$, and take a point $x'' \neq x$ in Ω_0 . Then by (6)

 $\mathrm{G} \mathfrak{e}_x \leqslant \mathrm{G}(x, x'')^{-1} \mathrm{G} \mathfrak{e}_{x'}$ on Ω_0 .

On the other hand by the inverse domination principle

$$\mathrm{G} \mathfrak{e}_x \geqslant \mathrm{G}(x, x'')^{-1} \mathrm{G} \mathfrak{e}_{x''}$$
 in Ω .

Therefore G is degenerate. This is a contradiction.

Next we shall show the equality (5). Take different points x and y in Ω_0 . Then by (6)

$$\mathrm{G}(x,\, \mathrm{p}(x))^{-1}\mathrm{Ge}_{\mathrm{p}(x)}(y) \leqslant \mathrm{G}(x,\, y)^{-1}\mathrm{Ge}_{\mathrm{y}}(y),$$

that is

$$\mathrm{G}(y,\, \mathrm{\mathfrak{p}}(x))\mathrm{G}(x,\, y) \leqslant \mathrm{G}(x,\, \mathrm{\mathfrak{p}}(x)).$$

Hence by (2)

$$rac{\mathrm{G}(y,\, \mathrm{\phi}(x))}{\mathrm{G}(y,\, x)} < \mathrm{G}(x,\, \mathrm{\phi}(x)).$$

(14) This mapping was first defined by Choquet-Deny [2].

Therefore Lemma 3 yields

$$\frac{\mathrm{G}(y,\,\varphi(x))}{\mathrm{G}(y,\,x)}=\frac{1}{\mathrm{G}(\varphi(x),\,x)}$$

This completes the proof.

Remark. — Just as Choquet and Deny did in [2], we can show that $\varphi^{-1}(x)$ is uniquely determined.

3. Main theorem.

5. We now prove the following main theorem.

THEOREM 3. — Let G satisfy the continuity principle and the compact lower envelope principle. Assume that Ω is not discrete that any open subset of Ω is of positive G-capacity and that G or \check{G} is non-degenerate. Then G satisfies the ordinary domination principle.

Proof. — By the corollary of Theorems 1 and 2 it is sufficient to show that if G is a non-degenerate finite continuous kernel which satisfies the compact lower envelope principle and the inverse domination principle, then Ω is discrete. We take an arbitrary fixed point x_0 and its compact neighborhood Ω_0 . Then by Lemma 8 we have a mapping $\varphi: \Omega_0 \to \Omega_0$ such that

for any $x \neq y$ in Ω_0 . Then x_0 is an isolated point of Ω_0 . In fact, if $\{y_n\}$ converges to x_0 , then

$$\begin{array}{l} \operatorname{G}(x_{0},\,\varphi(x_{0}))\operatorname{G}(\varphi(x_{0}),\,x_{0}) = \lim \operatorname{G}(y_{n},\,\varphi(x_{0}))\operatorname{G}(\varphi(x_{0}),\,x_{0}) \\ = \lim \operatorname{G}(y_{n},\,x_{0})\operatorname{G}(\varphi(x_{0}),\,\varphi(x_{0})) = \operatorname{G}(x_{0},\,x_{0})\operatorname{G}(\varphi(x_{0}),\,\varphi(x_{0})). \end{array}$$

This contradicts the non-degeneracy of G. Therefore Ω is discrete.

6. Remark 1. — When G is a non-degenerate finite continuous kernel satisfying the compact lower envelope principle and the inverse domination principle, so that Ω is discrete,

the mapping φ in Lemma 8 maps Ω_0 onto Ω_0 and the kernel G^{φ} on Ω_0 defined by

$$\mathbf{G}^{\mathbf{\varphi}}(x, y) = \mathbf{G}(x, \mathbf{\varphi}(y))$$

satisfies the ordinary domination principle. This corresponds to Choquet-Deny's theorem on «Modeles finis» (cf. Theoreme 3 in $\lceil 2 \rceil$).

Remark 2. — Let Ω be discrete. Then there always exists a non-degenerate finite continuous kernel G on Ω which satisfies the compact lower envelope principle and the inverse domination principle. For example, G defined by

$$G(x, y) = \begin{cases} 1 & \text{for } x = y \\ 2 & \text{for } x \neq y \end{cases}$$

fulfills all the requirements.

BIBLIOGRAPHY

- [1] N. BOURBAKI, Topologie générale, chap. X, Paris, 1949.
- [2] G. CHOQUET and J. DENY, Modèles finis en théorie du potentiel, Jour. Anal. Math., 5, 1956-1957, pp. 77-135.
- [3] M. KISHI, Unicity principles in the potential theory, Osaka Math. Jour., 13, 1961, pp. 41-74.
- [4] M. KISHI, Maximum principles in the potential theory, Nagoya Math. Jour., 23, 1963, pp. 165-187.
- [5] M. KISHI, Weak domination principle, Jour. Sci. Hiroshima Univ. Ser. A-I, 28, 1964, pp. 1-17.
- [6] M. KISHI, On the uniqueness of balayaged measures, Proc. Japan Acad., 39. 1963, pp. 749-752.
- [7] M. NAKAI, On the fundamental existence theorem of Kishi, Nagoya Math. Jour. 23, 1963, pp. 189-198.

Masanori Kıshı, Mathematical Institute Nagoya University Chikusa-ku, Nagoya (Japan).