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GLOBAL PHASE-PORTRAIT
OF A PLANE AUTONOMOUS SYSTEM

by Czeslaw OLECH (Krak6w).

Introduction.

Consider an autonomous system on the plane R2

(S) x9 = f(x) (f = dldt),

where x == (a^, ^), f{x) = {f^x), f^x)}.
The purpose of the present note is to study the global

structure of (S) under the main assumption that the diver-
gence of the right-hand side of (S) in nonpositive everywhere
on R2; that is we assume the following condition
Hi./^o;), in (S), is of class C1 and

div f{x) = b/i/^i + 6/2/^2 < 0 on R2.

Some other restrictions of f{x) will be also introduced
below, one concerning the behaviour of f{x) in a neighbour-
hood of infinity and the other concerning the number of
singular points of (S).

This note is a continuation of the author's paper [1]. In
particular Theorems 5 and 6 of [1] are special case& of the
situation we are going to discuss here.

1. Further introductory remarks and propositions.

Let x{t, P) denote the unique solution of (S) satisfying
the initial condition x{0, P) = P. Let D be a region of R51

with regular boundary C. An important and well known
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consequence of Hi is that the area of D(() == x(t, D) is non-
increasing function of f. This may suggest that solutions of
(S), if Hi is assumed, should exhibit some stability property
as t increases as well as instability for negative (. However
for establishing such properties of solutions of (S), the fact
that the area of D(<) is decreasing seems to be rather useless
since the shape of a particular D(() may change considerably
with (. Thus we shall make use of H^ rather through the
Geren's formula

(1.1) ff^ div f(x) dx, dx, = /, A dx, - f, ̂ .

Notice that the right-hand side of (1.1) is zero along those
parts of C which are segments of solution curves of (S). Consi-
der now the system

(s*) ^'=m
where f*(x) === {f^(x), —/i(rr)). (S*) is a system for orthogonal
trajectories to solution curves of (S). Let x*(t) be a solution
of (S*) and suppose P = x*(tp) and Q = ^((p), tp < (p. By
I*(P, Q) we denote the set ix: x == x*(t), tp < t <; <QJ and
will call it a segment of solution curve of (S*). Suppose now
that r\P, Q) c C, where C is as in (1.1). Then it is easy to see
that

(L2) y^Q/i ̂ -^ ̂  =±K i/W))r ̂
where the sign « — » should be choosen if solution curves of
(S) crossing I*(P, Q) enter D as ( increases and « + » in the
opposite case. (Notice that the way of crossing I^P, Q) by
solutions of (S) is the same at each point of the segment).
The absolute value of the integral in the right-hand side of
(1.2) we denote shortly by L(P, Q). Therefore L(P, Q) is a
function of two points of R2 defined for such pairs P, Q which
can be joined by a solution curve of (S*) and unless the solu-
tion curve of (S*) passing through P and Q is a closed orbit,
L(P, Q) is well defined. However we shall use L(P, Q) also
in the case I*(P, Q) is a segment of a closed orbit and the
context will exclude any misunderstanding.

The following two propositions can be obtained from (1.1)
and (1.2) if H^ holds.
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PROPOSITION 1.1. — Suppose the boundary C of D in (1.1) can
be decomposed into disjoined parts

C = r ( P , Q ) u C i u C 2
where Q is composed of segments of solution curves of (S) and

\f^dx,~ f,dx, <L(P, Q).

Then, if Hi holds on D, solution curves of (S) crossing I*(P, Q)
enter D as ( increases.

The other proposition involves the following construction.
Suppose we have given a segment I*(P, Q); that is there is a
solution x*(t) of (S*) such that, say, ^*(0) == P and x*{to) == Q
for some <o > 0- Consider solutions x{t, P) and x{t, Q) of (S)
defined by initial conditions x{0, P) == P and x{0, Q) = Q,
respectively. Put P{t) = x(t, P) for (> 0, hence P(0) === P.
There is £ > 0 such that for any 0 ̂  ( < e, the solution
a;*(T, P(<)) (a;*(0, P(()) === (P(()) of (S*) crosses x{t, Q); more
precisely, there is r(() and s(t) for any 6 <^ < £ such that
^*(T((), P(()) == x{s(t), Q) and if we require s(t) and r(<) to be
continuous functions of t satisfying conditions s(0) === 0 and
r(0) == <o? then s{t) and r(<) are uniquely defined and s{t) is
increasing function of (. Since s{t) can be defined locally it
can be continued to the maximal interval [0, co) open to
the right. Put Q(<) == x(s{t}, Q) for 0 < ( < co, of course
Q(0) === Q, and we can consider segments

r(P((), Q(())= [ X : X=X\^ P(()), 0 < T < T ( ( ) j .

We have now the following.

PROPOSITION 1.2. — If Hi is assumed then the function

(1.3) 9(t) == L(P(<), Q(^)) = /^ |f(^(T, P(())|^ rfT

is continuous and non-increasing for ^e[0, co).

2. Negative limiting sets and singular points.

In the sequel we shall use the following notations. x{t, P),
as above, will stand for the solution of (S) satisfying the ini-
tial condition x(0, P) == P. The maximal interval on which
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x(t, P) exists we denote by {a(P)y b(P)). By I(P) we denote
the set of R2 defined by \x: x= x{t, P), a(P) < t < b{P)}.
I(P) will be called solution curve or trajectory of (S) passing
through P. Correspondingly, I^P) and I~(P) will stand for
the positive and negative half trajectory of (S) issuing from
P. We shall write I, I4' and I~ for trajectory, positive half
trajectory and negative half trajectory respectively, if we
do not wish to indicate any particular point they initiate from.
By a(I) and co(I) we denote, as usual, the negative and the
positive limiting set of I respectively.

We wish to discuss in this section some results concerning
the negative limiting sets and isolated singular points of (S).
We start with the following theorem which can be obtained
using Proposition 1.1.

THEOREM 2.1. — Assume Hi holds. Let a(I^P)) •=/=- yf (^ stands^
for the empty set) for some non-singular P{f(P) =7^= 0). Then
for all Q, Q e I*(P), Q =^= P, with one possible exception we
have

a(I(P)) n a(I(Q)) == ^

In other words, it follows from Hi that non-singular tra-
jectories of (S) with non-empty negative limiting set are
isolated in the sense that its neighbouring trajectories have
negative limiting set either empty or disjoined with that
of I(P). In particular, such trajectories are orbitally unstable
for ( < 0.

As a consequence of Theorem 2.1 we have

THEOREM 2.2. — If Hi holds and if for a given non-singular
trajectory I of (S) the negative limiting set a(I) is not empty
then either a(I) == I, hence I is a closed orbit, or a(I) is composed
of singular point of (S) only.

To see this theorem from Theorem 2.1, notice that if a(I)
contains a regular point P which does not belong to I then
I*(P) has to be crossed by I at least in three different points,
but this contradicts Theorems 2.1.

In the case singular points of (S) are isolated we have

THEOREM 2.3. — Assume Hi and suppose the singular
points of (S) are isolated. Then for any trajectory I of (S) we
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have: either a(I) is empty, or a(I) == I == closed orbit or
a(I) = |P|, where P is a singular point of (S).

Suppose now XQ is an isolated singular point of (S). XQ is
said to be stable if for any £ > 0 there is S > 0 such that for
any solution x(t) of (S), \x(0)—XQ\ < § implies that

\x{t) — XQ\ < £ for ( > 0.

Let us notice that XQ is not stable if and only if there exists
a trajectory I of (S) such that a(I) = \XQ\. Suppose the last
is the case for XQ, then by Theorem 2.1 there is a finite number,
at the most, of trajectories of (S) having XQ as negative limi-
ting set, since any of them must be isolated. Thus also eliptic
sectors in a neighbourhood of XQ are excluded (cf. for termi-
nology [2]). Between two trajectories of (S) approaching XQ
as t—> — oo there must exist a trajectory I for which

^(1) = \XQ\

or an attractive fan (cf. [2], p. 208). Therefore in a neigh-
bourhood of an isolated and unstable singular point of (S)
we have the following picture. There is a neighbourhood N
of XQ which can be decomposed into disjoined parts

N i u N ^ u N a U \XQ\ = N

in such a way that 1) if P e N1 then I~(P) c N1 and a(I(P)) == XQ,
and NI is contained in a union of finite number of trajectories
of (S), 2) N2 is composed of a finite number of half trajectories
or attractive fans and if P e N3 then I-^P) c N3 and

<I(P))=^o,

3) N3 is composed of finite number of hyperbolic sectors
(cf. [2]) and if P e N3 then neither I+(P) c N nor I-(P) c N,
4) N^and N3 are closed in N — \XQ\ while N3 is open, but
^o e N3 — the closure of N3. Such a singular point we shall
call in the sequel a generalised saddle point. Manifestly a
saddle point in the usual sense is a generalized saddle point,
too.

Consider now the case when XQ is stable isolated singular
point of (S). Then either XQ is asymptotically stable or any
neighbourhood of it contains a closed orbit of (S). Suppose the
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second possibility is the case and let I be a closed orbit of (S)
containing inside XQ as only one singular point of (S). Then by
Hi it follows that div f{s) = 0 inside I. On the other hand it
follows from Theorem 2.2 that any solution curve inside I
has to be a closed orbit. Therefore XQ is a center in that case.
We have the following result.

THEOREM 2.4. — Assume Hi. Then the singular points of
(S) if they are isolated, fall under the following categories: gene-
ralized saddle points, points of attraction and centers.

A stable singular point of (S) is a center if and only if there
is a neighbourhood of it on which div f{x) ̂  0.

3. Positive limiting sets and behaviour at infinity.

In order to avoid some undesired behaviour of trajectories
near infinity we adopt the following hypothesis in which
follows. Hg. There is a finite number of singular points of
(S), if any. Hs. For any fixed P and any Q^ e r(P) {n = 1, 2, . . . )
the boundness of L(P, Qn) implies boundness of [P — Q^j,
where | | indicates any norm on R2.

Let us remark that H3 will be satisfied if

(3.1) .^mm \fW\dr=ao.

The following result is a crucial point of our argument.

THEOREM 3.1. — Suppose Hi, Hg and Ha hold true. Let
I(P) be a non-singular trajectory of (S) and assume O)(I(P))
does not reduce to a singular point, hence is empty or contains
regular points.

Then
i) there is an open segment I*(Qi, 02) of the orthogonal

trajectory I*(P), containing P and such that for any

Q^(Q.i,Q^ <o(l(Q))
does not reduce to a singular point,

ii) for each Q e I*(Qi, Qg) the function s(t) of section 1
(cf. p. 3) can be defined for (e[0, &(P)) and s{t) -> 6(Q) as
(-» 6(P), and the function <p(^) in (1.3) in non-increasing.
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Theorem 3.1. can be derived easily from Proposition 1.2.
Let us remark that assumption Ha is needed only in the case
I(P) is unbounded for t > 0. For such trajectories the above
result has been proved in slightly less general form in [1]
(cf. Lemma 2). For a generalization of it to n-dimentional
case cf. [3].

In the case I(P) is a closed orbit, hence x(t, P) is periodic,
it follows from Theorem 3.1 that for any neighbouring solu-
tion x(t) there is a function s{t) such that either

\x(s(t)) — x{t, P)|

is periodic in t or \x{s{t)} — x{t, P)| tends to zero as t —> + oo.
The first case is the only possible for x{t) from inside I(P).

The second case takes place if and only if div f(x) is not
identically zero in any neighbourhood of I(P). If this is the
case then I(P) is a one side limit cycle.

Thus we have for any closed orbit I of (S): either I is a one
side limit cycle for positive ( or there is a neighbourhood of I
filled up by closed orbits.

Notice that inside of each limit cycle there must be at least
one singular point of (S) and there cannot be any other limit
cycle. Hence if H^ is assumed, then there is a finite number
of limit cycles if any.

As for a neighbourhood of infinity we have the following
concequence of Theorem 3.1. Following V. V. Niemytskii
(cf. [4], p. 434) we say that (S) has a saddle point at infinity or
an improper saddle point if there is a sequence of points P^
and two sequences t^ and T^ of reals, 0 < T^ < („ such that
P» -> P, x(t^ Pn) -> Q while x(^^ PJ does not contain any
convergent subsequence, hence \x(^^ PJ| -> oo.

We have the following result.

THEOREM 3.2. — If Hi — Ha hold then there is no saddle
point at infinity.

Theorem 3.1. shows that the generalized saddle points and
the trajectories of (S) which tend to a saddle point as ( —> + oo
are exceptional in the sense that the neighbouring trajectories
may behave differently as t —> 4- °o. This is the very property
of system (S) which leads to the global phase-portrait des-
cribed in the next section.
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4. The global structure of (S).

Le us assume Hi — H3. Denote by Z the set composed by
the union of all generalized saddle points of (S), of all trajec-
tories of (S) tending to a saddle point as t —> + oo and of
all limit cycles of (S). Since there is a finite number of saddle
points and limit cycles, if any, therefore Z is closed in R2.
Let W be the complement of Z. Therefore W is open. One can
prove that W is a union of a finite number of regions, connected
components, say, Wi, . . . , W^. Of course each

W,(i==l, .... m)

is invariant for (S), that is if P e W, then I(P) c W,.
Let us fixe W,, for simplicity we shall write simly W

without any subscript. Let us distinguish three cases
A. W. is bounded.
B. W is unbounded and contains a singular point of (S).
C. W is unbounded and does not contain any singular point

of (S).
In the case A we have two subcases.
AI. W contains a singular point. Then it contains exactly

one singular point and it is a center. In this case W can be
mapped topologically onto a two-cell \x\ << To in such a way
that the singular point goes into x = 0 and any other tra-
jectory contained in W is mapped onto a circumference
\x\ == r < 7-0.

Ag. W does not contain any singular point of (S), then W
is filled up with closed orbits and topologically it is an annulus
0 <; FI <; \x\ <; r^ with trajectories beeing the circumferences
M = r, r^<r< r^

In the case B we have also two subcases.
BI. The singular point contained in W is a point of attrac-

tion, then W is the set of attraction to this point, that is the
union of all trajectories tending to the point of attraction as
t-> + oo.

Bg. W contains a center, then div f(x) == 0 on W and any
trajectory of (S) within W is a closed orbit. Actually, W must
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be identical with R2 in this case and there is a homeomorphism
of R2 onto R2 mapping the center into 0 and any trajectory
of (S) onto a circumference \x\ = r.

At last, let us consider the case C. The picture now may be
as follows.

Ci. W contains a solution curve I of (S) such that co(I) = ^,
then the same holds for any trajectory contained in W and W
can be mapped topologically onto R2 such that each trajec-
tory of (S) contained in W has as the image a straight line
parallel to a fixed direction. Hence the family of trajectories
of (S) composing W is, as we say, parallelizable.

Cg. W contains a trajectory I of (S) for which co(I)=^^.
Then (x)(I) is bounded and we have two subcases :

Cgr co(I) -=f=- I. Hence co(I) is either a limit cycle or a closed
trajectory-polygon and W is identical with the union of all
trajectories of (S) which spirals towards co(I) as (-> + °°
(W is the set of attraction of co(I), as one may say).

Cgg. o)(I) = I, then each trajectory of (S) within W is a
closed orbit and the boundary of W reduces to a bounded
trajectory-polygon. Hence the complement of W is bounded.
Again as in Aa, topologically W is an annulus 0 <C ro < M
with trajectories beeing circumferences \x\ == r, r > ro.

Among seven posibilities we have listed for the phase-
portrait of a connected component W, of the set W, Bg excludes
any other and €32 excludes all but Ai and Ag. Notice also
that AI, Ag, Bg, Cgi and Cg2 (either one of them) implies the
existence of a center for (S). Therefore if there is no center
then only B^ and Ci are possible cases for the picture within
any W,.

If either one of Ai, Bi, Bg or Q is the case for a particular
Wi, then Wf must be simply connected. In the remaining
cases Wi is always homeomorphic to an annulus. It follows
from the above discussion also that each W^ can contain one
singular point of (S), at the most and it does contain in the
cases Ai, BI and Bg. Therefore the number of stable singular
points of (S) can be evaluated if we are able to estimate the
number m of connected components of W.

We may state now the following theorem.
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THEOREM 4.1. — Assume Hi, Hg and Ha and consider three
cases : i) div f(x) = 0 on R2, ii) div f(x) ̂  0 on R2, iii)

divf(x)^=0

on any neighbourhood of each singular point of (S). Let Z and
W be as defined above. Then Z is closed. W is open and com-
posed of a finite number of components W, each of them is
homeomorphic either with ^ x : \x\ < I j or with

{ x : 0 < \x\ < Ij.

Moreover in the case i) we have : there is no limit cycle
of (S), if there is a closed orbit inside which are all singular
points of (S), then Z is bounded and if Z is empty then B^
holds for W = R2, if Z is not empty, then there is exactly one
component of W, say Wi, which is unbounded and for Wi, Cgg
is the case while for any W^ (i == 2, . . ., m) either Ai or Ag
holds. If there is a solution curve I of (S) such that co(I) = ^,
then on any unbounded W; the picture is as in Ci and of course
for each bounded Wi Ai or A^ holds.

In the case (ii) the phase portrait within any W, is one of
Ai, A;g, BI, Ci and Cgi.

Finally, in the case (iii) any stable singular point has to be
asymptotically stable, thus there is no center of (S), each
Wi is unbounded and the phase-portrait within W, is either
that of BI or that of Ci.

We close up the discussion with a special case in which we
are able to evaluate the number m of components of W pro-
vided we know the number of saddle points. We have the
following.

THEOREM 4.2. — Suppose Hi—H3 hold and let x^\ .. .^x^
are the singular points of (S). Assume additionally that

(4.1) div f(x) < 0, det J[x) =/= 0 for x = :r<°, i = 1, . . . , N,

where J ( x ) is the Jacobian matrix for f(x).
If the number of saddle points of (S) is n(n ̂  N), then

the number m of components W, of W is equal m == n + 1»
and each W» is a set of attraction to a singular point of attrac-
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tion or the family of trajectories contained in W^ is paral-
lellizable. We have also the inequality

N < 2n + 1,

therefore if N = 2n + 1 then each W^ contains a singular
point and each W^ must be a set of attraction. In the last
case the system (S) has the following property : for any solution
curve I of (S) the positive limiting set co(I) == |^oj? where
XQ is a singular point of (S).
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