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DE RHAM THEOREMS
AND NEUMANN DECOMPOSITIONS ASSOCIATED

WITH LINEAR PARTIAL DIFFERENTIAL EQUATIONS
by D. C. SPENCER (Stanford)

1. Introduction.

Our purpose is to associate, to a (homogeneous) system of
linear partial differential equations, a resolution of its sheaf
of germs of solutions defined in a canonical manner, the terms
of which are connected by a linear differential operator of
order 1. If the system is regular, i.e., if it has constant rank,
the resolution is a sheaf of germs of differential forms with
values in a vector bundle. A procedure is thus defined for
extending the classical resolution of de Rham to arbitrary
systems of equations and, if the system is regular, the exact-
ness of the resolution has been established in the analytic
case, in the elliptic case, and in various special cases which
are simple enough to examine directly.

This procedure also provides a means of generalizing, to
arbitrary elliptic systems of equations, the theory of harmonic
differential forms. In particular, it enables us to generalize
the Neumann problems recently solved by Kohn [5] and Ash [1]
to arbitrary elliptic systems, and it provides a method for
associating with each elliptic system a class of domains gene-
ralizing the pseudoconvex domains associated with the Cauchy-
Riemann equations — namely the class of domains on which
the Neumann problem for the elliptic system is solvable.

Finally, as an application of the generalized de Rham-
Hodge theory, we obtain a theorem (see [9(&)]) for the exis-
tence of local coordinates compatible with structures on
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manifolds defined by elliptic pseudogroups. An elliptic pseu-
dogroup is a transitive, continuous pseudogroup whose Lie
pseudoalgebra of infinitesimal transformations is defined
by an elliptic system of equations. Thus we generalize the
complex Frobenius theorem of A. Newlander and L. Niren-
berg [7] (see also Nirenberg [8]) to structures defined by
elliptic systems. We remark that any complex transitive,
continuous pseudogroup is elliptic (see [9] (a)]). However,
there is some resaon to believe that this theorem remains
valid for transitive, continuous pseudogroups without the
assumption of ellipticity.

2. Jet forms.

Our principal task is to define the jet forms associated with
a system of linear partial differential equations.

By « differentiable » we shall always mean « differentiable
of class. C00 ». Let p = (pi, . . . , ?„ ) denote an ordered set of n
non-negative integers pi, . . . , p^ and write

IPJ = Pi + P2 + • • • + Pn.

Moreover, if x == (x1, . . . , ocf, . . . , x71) is a coordinate, we
define ^ = (e)/^1)^^/^2)^ ... (^^n. Finally let

O^R"), v > 0,

be the v-tuple symmetric product of (real) n-space R", and
write

F ^ = H o m / ® OW, R^ ® F^i
\0<V^ / O^V^

where
F;Li == Horn (O^R"), R")

and F°.i = FO = R-. Let ^ == |̂ |1 < / < m, 0< |p| < (xj
be the coordinate of F^ where o- == o-° = (o-1, . . ., (T'', (^m) is
the coordinate of R7".

Now let M be a differentiable manifold of dimension n, and
let Q be a differentiable vector bundle over M with fibre R^
For each non-negative integer (JL, we denote by S^ = S^(Q) the
differentiable vector bundle over M, with fibre F^, of all jets
of order (J, of differentiable sections of Q over M. Let U be



DE RHAM THEOREMS AND NEUMANN DECOMPOSITIONS 3

a neighborhood of M, covered by a differentiable coordinate
x=(x1, . . . , xj, . . . , ^), such that Q|U ̂  U X R7". Then
S^jU ̂  U X FE1 is covered by the coordinate (^, cr) == (Xy (T^).

A differentiable section s : M -> Q induces, for each (JL,
a differentiable section ^(s): M —> S^ which, expressed in
terms of a local coordinate (x, a), sends x into

t^)(rr)=(rr, (b^))
where

b5 = ̂ 5 == |<^|1 < / < m, 0 < [p|< pi^.

DEFINITION 2.1. — A linear partial differential equation
on M of virtual order VQ 1s the kernel E^ = E^Q, R) of a dif-
ferentiable map a^°: S^°(Q) —> R, where Q, R are differentiable
sector bundles over M, and a^° maps each fibre of

^ = SS»(Q) -^ M
linearly onto a fibre of R —> M anJ induces the identity map
on the base space M. A solution of the equation E^ == E^Q, R)
is a differentiable section s : M —> Q which induces a section
^(s) : M -^ E^.

A linear partial differential equation E^ = E^Q, R) is
defined locally, in terms of a local coordinate (x, a") for S^°,
by a finite number of equations

/^,(T)=O, / c = l , 2 , . . . , A ,

each of which is linear in o". Therefore, a solution s of E^,
expressed locally in terms of a coordinate {x, <r), satisfies the
equations

f\x, ̂ s){x)) = 0, / c = = l , 2, . . . , / L

Let E^ = E^Q, R) be a partial differential equation
(of virtual order Vo)- Then E^ can be prolonged, by differen-
tiation, to a linear partial differential equation

gvo+i = ^(E^)

of virtual order Vo + 1 where E^^ is defined locally, in terms
of a coordinate, by the equations

^(^)=0,
^f^,^1) =0, / c = = l , 2 , . . . . A ,



4 D. C. SPENCER

where

^"(x, ^)==Wx, <rt^)= {^{x, aH-i)|/==l, 2, ..., ^
^/•fc m ^fk

and y-^+S 5 L-^
<^ <=io^ip|^^p

where ly is the set of n integers all of which are zero except
the j-th and it is equal to 1. For each non-negative integer pi,
we define E^ = E^E^) as follows :

EV,^O(EVO), p,= "o?
E^ = î E )̂ === ^(^-^(E^)), [x > vo,

(pr^o), 0<(x<vo,

where pr^E^) denotes the projection of E^ in S^. Set

s^n^w-
v^^

For each non-negative integer pi, we then have the projection
SH-i -> Sl1 whose kernel we denote by S^4'1, i.e.,

(2.1) 0 -> Sĵ 1 -> S^+1 --> S^ -̂  0
where

(2.2) S^cE^cS^.
We denote by S = S(EVO) = pr lim S^ the projective limit

of the system ^|(^, S^| over the (directed) set [^\ of non-
negative integers (with the natural order).

DEFINITION 2.2. — We call S = S(EV<') the (canonical)
prolongation of the linear partial differential equation

gv, = E^Q, R).
For each p, |p| === pi — v ̂  pi, we have the map

Sp: F^-^F^
sending the element o- of F^ i , with components

(T,== t^|l</< m, |r|=={^,

into the element SpO- of Fi;_i, with components (SpT)^ == (jp^
For each p, |p| == pi—v<; pi, we there fore have the local map

^p : ^d.^—i "̂  ^i.v—i*
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DEFINITION 2.3. — We say that the linear partial differential
equation E^ = E^Q, R) is regular if the following conditions
hold:

(i) S^ is a {differentiable) vector sub-bundle of S^°.
(ii) For a > Ye? we ha^e locally

s^ - n ̂ (s^-i),
IPl^-Vo

i.e., the element (T of S^_i, pi > VQ, belongs to Sji_i i/' and
onZt/ i/*, ^or eacA p, |p| == pi — Vo, §p(7 belongs to S^_i.

Suppose that condition (i) of Definition 2.3 is satisfied.
Then for 0 ̂  (JL ̂  Vo, S^ and S ^ i are (differentiable) vector
bundles. If, in addition, condition (ii) of Definition 2.3 holds,
i.e., if E^ is regular, the argument used to establish Lemma 5.6
of [9(a)] shows that, for (x > Vo? S£-ils a (differentiable) vector
bundle and we then infer from (2.1), by recursion, that S^
is a (differentiable) vector bundle for p. > Vo ^d hence for
all pi. Thus we have :

PROPOSITION 2.1. — If E'* is regular then, for m ̂  0, S^
and S^ i are (differentiable) sector bundles.

DEFINITION 2.4. — Suppose that E^ = E^Q, R) is regular.
We then denote by p-o ^e smallest positive integer VQ fo7' which
condition (ii) of Definition 2.3 holds, we set ̂  = S^0, and we
call ̂  a regular partial differential equation of order [XQ with
prolongation S == pr lim S^. W^ 5ay (/ia( the (differentiable)
manifold M 15 an d^-manifold if a regular partial differential
equation ^° of order y»o is defined over it.

Let M be an ^-manifold, denote by T*(M) the dual of
the tangent bundle T(M) of M, and let AT*(M) be the i-tuple
exterior product of T*(M). We let

S^= S^A^M)

for pi ̂  0, and we define S^'l == 0 for pi <; 0. Moreover, we let
S^M.! be the kernel of the projection S^' ' '—> S^~"1'l. Let U
be a sufficiently small neighborhood of an arbitrary point of
M; then

S^|U^U X iF^Hon^R71), R ) {
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and S^'(i_i is covered by the coordinate (re, o-) where

^ = W=^. ^= M l < / < m j
and

^==2<,....,,^.A...A<;A
where the summation is over k^, • • • , ki satisfying

1 < fti < • • • < A". < n.
We have the map

(2.3) S: S^'^S^
sending <j into S(T where So" has the components

KH>llpl=t^
and

(2.4) (S^= S^-A^.
J=l

where p + ij = (pi, . . ., py + 1, . . ., pj. Clearly we have
§ 2 = g o § ^ 0 .

Define S""1 in the same way as S^'1 with S^- replacing S .̂
Then S^^cS^'1 and, in particular, S^'1 = 0 for p. < 0. If
^ ̂  i^o? we infer from (ii), Definition 2.3, that the restriction
of S to S^1'1, the kernel of the projection SH-1'1 -> S^'1, defines
a map

(2.5) S: S^^-^S^,

and we denote the kernel of (2.5) by L^1'1.
The proof of the following theorem is the same as that of

Theorem 5.1 of [9(a)] :

THEOREM 2.1. — If M is an iS^-manifold, there is an integer
y-i == ^1(^0? ^)? depending only on the order pio of ^° and the
dimension n of M, where p4 > (Xo, such that the sequence

(2.6) 0 -^ L|T1'l -^ S^1'l -^ L^1 -^ 0

i5 ea;ac( for ^^. ̂  (and all i, 0 <; i ̂  n).
Suppose that M is an ^-manifold, and let 2>=©,2^1

where 2>1 is the sheaf over M of germs of (differentiable)
sections of S^'1. Moreover, let J^'1 be the sheaf of pairs u == (o-, ^)
where, for some element o^4'1 of SH-1*1, o- === o-^ is the projec-
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tion of cr^4"1 in S^'1 and ^ == So-^4'1 has components defined
by (2.4) for 0 ̂  |p| <^ (JE.. For each i, 0 ̂  i ̂  n, we have the
surjective map

#y-: SM-i'1 -> J^'1

sending o-^4'1 into u == (o", S;), and its kernel is the sheaf
A&4"1'1 of germs of sections of Lj^4"1'1, i.e.,

0 -^ A^111 —^ S^1 -^ J^1 —^ 0.

We have the map (see [9(a)])
D : jv-'i -^ j^i+i

sending u •==• (or, ^) into Du = D(a-, ^) = {da' — S;, — c?S).
Clearly we have D2 = D.D = 0.

DEFINITION 2.5. — We call J^ = eJ^'1 ̂  5/ieajf (o^r M)
of jet forms of order p. belonging to .̂

The regularity implies that J^ is a sheaf of germs of diffe-
rentiable sections of a (differentiable) vector bundle over M
and therefore, in particular, J^ is a fine sheaf.

Finally, let D^: S"-4-1'1 -> S^1 be the map sending (T^+I
into D^4-1) = d^ — Scr^-1. For v < pi, let ^+1'1 be the
kernel of the projection S^1'1 —> S^1. The restriction of D^
to y1 maps S?4-1 into ^-i, where S^i == S^, and we denote
by S^1 == ©E^4"1'1 the maximal subsheaf of S^4'1 which is
mapped by D^ into S^. Then (see [9(a)], page 383)

S^ = A^,

where A ^ i == ®A&'^.i, and we have the exact commutative
diagram

0 0

o -^ n^ -^ ̂  -^ A^_i — o
0 —^ ̂ +1 -^ ^il+l -^ ̂  -^ 0

1 1
Jl1-1 == J^-1

( 1
0 0
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Moreover, denoting by J&_i == (S Jfc-li the kernel of the pro-
jection Jv- —> Jv'~1, we have the exact commutative diagram

0 0

1 \
0 — A^ — S^I #- JjLi — 0

II 1 1II t #f. T
0-^M+l-^^+l-^Jv• -^0

1 1
J^-1 === Ji1-1

i t
0 0

Now let M be an ^-manifold of dimension n, and let 6
be the sheaf over M of germs of solutions of the regular partial
differential equation of order (XQ. Moreover, let

i == ̂ : e -> j^°
be the injection sending 6 into

,(9) = ^(9) = (^(9), o^(9)) == (i^(9), A^(9)).
If p. ̂  (AO — 1, it is easily seen that the sequence

(2.7) 0 —^ 6 -^ J^0 -D^ J^1 -D^ J^'2 -D^ . . . ̂  J^ —^ 0

is exact at J^'0.

DEFINITION 2.6. — We call (2.7) tAe resolution (by jet forms)
of order y. of the sheaf 0 of solutions of ^{AO.

Examples. 1) (de Rham's theorem). — Let M be an ff1-
manifold, where ^ is the equation df == 0 for the real-valued
function /'. Then 0 = R (real numbers) and J^'1 = A1 for
a ̂  0 and 0 ̂  i <^ n, where A1 is the sheaf of germs of (real-
valued) differential forms of degree i. In this case (2.7) coin-
cides (for arbitrary pi ;> 0) with the classical (exact) resolution
of de Rham, namely

0 -^ R —— AO -^ A1 -^ A2 -^ . . . -̂  A" —— 0.

2) Let M be a differentiable manifold with a foliate struc-
ture whose sheets are real m-dimensional manifolds. This
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structure is represented by a covering ^ll = j U a j , where
Ua is a domain of the local coordinates

(^c, 2/a) == (^a, . . ., ̂  y^ • . ., yST"), n > m,

and the transition functions for these coordinates have the
form

(23) ^ = /a?(^ ̂ )

(2/a= ^(yp),
where /ap is differentiable in x^ y^ the jacobian matrix

^a)/^)

is non-singular, and gap ls differentiable in z/p and the jacobian
matrix ^(ya)/^(2/s) ls non-singular. Then M is an ^-manifold,
where ^f1 is represented, in terms of the coordinates (a;a? 2/a)?
by the equations

(2.9) ^=0, / = = 1 , 2 , ...,m,

for the real-valued function f. It is now convenient to write
!Km+l == y1, . . ., re" == t/71""771. The equations (2.9) (which remain
unchanged) imply that an element (r^1 of S114'1 = (D^S^4"1'1
has the components dp, where Op == 0 unless p = (pi, . . ., pn)
where pi == 0, . . ., pm = 0. In this case J011 is composed of
the pairs u == (a-, ^), where or is a (real-valued) differential
form of degree i and ^ is locally equal to a (real-valued)
differential form of degree i + 1 which belongs to the ideal
generated by dx"1'^1, . . . , dx11. The sequence (2.7) is exact for
[x>0(see[4] , [9(a)]).

3) (Cauchy-Riemann equations). Let M be a complex
analytic manifold of (complex) dimension TO, and let

z==(z1 , ..., ^, ..., z'»)

be a local holomorphic coordinate on M. Write

z-i == a;27-1 +\/^ix^,

] = 1, 2, . . . , TO, where x = (a;1, . . ., x1, . . . , a;"), n == 2 m, and
define

' ' l/^+^^> /=1^...^
^ - 6 _ 1 ̂ _^_4.v/-^:_^-\ 7 - 1 2

^ J ~ ^ ~ ~ 2 [ ^ - l + y l ^ ) ) J - 1 ' ^
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The equations

(2.10) -^.=0, / = 1 , 2 , . . . , m ,
^zJ

for the complex-valued function /*, have as solutions the func-
tions holomorphic in z = (z1, . . ., z^ . . ., Z71). Introduce the
self-conjugate coordinate

(z, z) - (z\ . . ., '̂, . ... z-, ̂  . . ., ̂  . . ., z^)

where zJ == z-7, and write

r = p + p == (pi, . . ., p ,̂ . . ., p", pi, . . . , p7, . . ., p71)

where p-' and p^ are non-negative integers. An element o-H"1

of ^H"1 ===©^^+i'1 has the components o^p, where a-p^-p == 0
unless p = 0. In this case J°'l is the sheaf of germs of pairs
u == ((T, $), where o" is a (complex-valued) differential form of
degree i and S; is a (complex-valued) differential form of degree
i + 1 which belongs to the ideal generated over the (diffe-
rentiable) functions by dz1, . . . , dz^ . . . , ck71. The sequence
(2.7) is exact for pi > 0 (see [4], [9(a)]). Finally, let A0'1 denote
the sheaf over M of germs of (complex-valued) differential
forms of type (0, i), and let TC : J°'1 -> A0'1 be the projection
sending u = (o-, ^) into the component of (T of type (0, i). The
differential operator D on J° splits into the sum of two opera-
tors D', D", where

D'((T, ^) = {^—^ —^), D"(a, ^) = (bo, —^)

and rf == ^ + 6 is the usual splitting of the exterior differen-
tial operator d into operators ^), b of types (1,0), (0,1), respec-
tively. The following diagram is exact and commutative:

0->e->JO 'o-D^JO ' l-^JO '2-D^ • • • -^J017"-^ . . . -^J0'71-^

I I 1̂  I71 1^ I71|[ Y _ T _ ^ _ _ y
0^e^Aolo-'-AO•l^AO•2-^•••-^AO•m->0.

The second line of this diagram is the classical Dolbeault
resolution of the sheaf 6 of germs of holomorphic functions
on M.
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3. Elliptic systems of equations.

Let M be an ^-manifold, choose a metric, let S*(M) be
the corresponding unit cotangent sphere bundle and let IT :
S*(M) —> M be the projection. Denote by T^S^.!_i the bundle
over S*(M) which is induced from the bundle S^'ii over M
by the map 11.

If (x ̂  [jio, we have the map

(3.1) ^:S^~>2^,
where dS = d^S is the composition of formal and actual
exterior differentiation and dS == — Sd. The symbol s(rfS) of
the differential operator dS then defines a homomorphism
of vector bundles, namely

(3.2) s(dS) : 71'S^1'0 -> ̂ S î.

The map s(dS) is described in terms of a local coordinate as
follows. Let o- be a vector belonging to the fibre of ir^S^4"1'0,
and let the point of S*(M) over which a" lies be (x, E;), where
x =-• {x1, . . ., ^fc, . . ., X11) and

^ = 2 W./c=i
Denote by ^(T the vector of iT;*S^_°i lying over the same point of
S*(M), which has the components (S^o-)? == ^+1 |1 </< w ^ .
Then the map (3.2) sends (T into s(dS)(j where

(3.3) s{d^ = \/^~1 S (^ — ̂ ) dx^ A dx\
J<k

The following definition of ellipticity is a natural one in
the present context:

DEFINITION 3.1. — We say that ^° is elliptic if and only
if the map (3.2) is infective for pi. ̂ . pii = (Jt.i((^o? n)'

Examples. (1) (Cauchy-Riemann equations). — Let M be a
complex analytic manifold of (complex) dimension m, and let
if1 be the system of Cauchy-Riemann equations (2.10). We
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suppose that [x ̂  0. Let a" be a vector of 'n;*S^1'0 lying over
the point (z, ^) of the real unit cotangent sphere, where

z={z\ ...,^, ..^z"),

s=i(^+^),
fc=l

and E^ == ,̂ cfe^ == ^fc. Then (see Example (3), § 2) we have
S^j == 0, and hence
s{dS)d ==

\/iri ( ̂  (^cr—^S,cr)^A^—S^^
0'<A j.fc 5

Therefore, the vanishing of s(dS)(T implies that

E .̂(T =0, /, A- = 1, 2, ..., m.

Since E^ =7^= 0 for one value of A*, at least, we conclude that
.̂(7 = Q, / == 1, 2, . . ., m, i.e., <r == 0. Thus the map (3.2) is

injective and hence the Cauchy-Riemann equations are ellip-
tic.

(2) Let M be a subdomain of euclidean n-space with coor-
dinates x == (re1, ..., xk, . . ., *r71), and let tf2 be represented
by the usual laplacian

.K^0-
We suppose that (A. ̂  1, and let (T be a vector of it*S^1'0 over
(a;, S). Let ^(T == ^fc(SjtO') be the element with the components
(^)p = <Tp+2,, where 2,, =1,, + !„. Then

(3.4) S ^a = 0.
fc=l

Now suppose that s{dS)(7 = 0, i.e.,
(3.5) ^-^(T, / , / c = l , 2 , . . . ,n .

Operating on (3.5) with S^Sy, we obtain

W,^ = y^
and hence, by symmetry,

^ == y^
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Summing on k from 1 to M, we have by (3.4)

(^).^=E?.M^=0
and, since S^ =^ 0, we conclude that SJ(T == 0, / = 1, 2, . . ., n.
Applying Sy to (3.5), we therefore have

(3.6) ^^=^^=0.

Choose / such that ^ -=f^ 0. Then we infer from (3.5) that
^(T == 0 if ^ == 0, and hence Sy^o- == 0 if either ^ or ^ is
equal to zero. If E;y ^= 0, we infer from (3.6) that SyS^o- == 0.
Thus ^o- === 0 for all /, k, i.e., cr == 0 and the map (3.2) is
injective. We have thus verified that the laplacian is elliptic !

Let D* be the (formal) adjoint operator defined in terms
of a metric, and let D == DD* + D*D be the corresponding
laplacian. We have the following theorem (see [9(6)]), which
justifies Definition 4.1.

THEOREM 3.1. — The system ̂  is elliptic {in the sense of
Definition 4.1) if and only if the laplacian D == DD* + D*D
zs an elliptic operator (in the « interior » sense) on the sections of
^=0^^ for p.>(J4.

4. Neumann decompositions.

We say that a manifold M is finite if it is a subdomain of
a differentiable manifold M' where M has compact closure in
M' and a boundary M which is a regularly imbedded differ-
entiable submanifold of M' of codimension 1. We say that
M is a finite ^-manifold if it is a finite subdomain of an
^-manifold M'.

Suppose that ^° is elliptic, and let M be a finite ^-mani-
fold, i.e., M is a finite subdomain of an ^-manifold M'.
Let p. be a fixed integer and suppose that ^>.p4, where
P-i == ^1(^0? ^)- We have over M' the sheaf J^ =©^'1, and
we denote by A == e fA1 the restriction to M of the space
of sections over M' of J^ = e ̂ J^ *. Thus A is the space of
sections of J^ over M which are differentiable up to and inclu-
ding the boundary of M.

Choose a metric on M', which fits the structure as closely
as possible, denote by (u, ?) the scalar product, defined in
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terms of the metric, of the elements u, p of A, and let D*
be the formal adjoint of the differential operator D, i.e., if
u has compact support on M, D* is the operator satisfying
(Du, ^) = (u, D*^) for all elements v of A. Let N = ® ,-N,
(Neumann space) be the (graded) subspace of A composed
of the forms u which satisfy the following pair of boundary
conditions :

Wu^)={u,D^(4.1) {(D'Du,^) = (Du,D^),
for all v of A. Denote by H == © ,H1 the (graded) subspace of
N composed of the forms which are annihilated by the lapla-
cian DD* + D*D or, equivalently (in view of (4.1)), H is
the subspace of N composed of the elements u satisfying
Du = 0, D*u ==0. If H is finite dimensional, we denote by
H : A -> H the orthogonal projection of A onto H. If H is
infinite dimensional, let A, H be the completions of A, H,
respectively, and let H : A —> H be the orthogonal projection
of A onto H.

DEFINITION 4.1. — Wa say that the Neumann problem is
solvable for a finite ^-manifold M if the following assertions
are true.

I) The restriction of H to A. is a projection
(4.2) H: A-^H

of A onto H.
II) The Neumann operator N exists, i.e., there is the sur-

jective map, of degree 0,
(4.3) N : A - > N

which is characterized by the following conditions :
i) HN == NH == 0.

ii) DN = ND.
iii) (Neumann decomposition). For u e= A, we have the

orthogonal decomposition
(4.4) u = DD'Nu + D'DNu + Hu,

which, in view of (ii), can be written in the form
(4.5) u == D(D'N)u + (D'N)Du + Hu.
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The Neumann decomposition therefore has the form of a
cochain homotopy. In fact, let Z^A) == e iZ(^A1) be the kernel
of the map D : A -> A; then

(4.6) Z(A)/D(A) = Z(AO) e Z(A l)/D^Ao) © . . . e Z^^A^)

is the D-cohomology of A, where Z(A°) is the space of sections
of 0 over M which are differentiable up to and including the
boundary of M. The Neumann decomposition (if it exists)
provides a representation of the D-cohomology of A by the
space H = ©^H* of harmonic forms, i.e., it gives a linear
isomorphism (of graded vector spaces)

(4.7) H ̂  Z(A)/D(A).

The solvability of the Neumann problem for a given finite
manifold M depends only on tf^, i.e., it is independent of the
choice of metric. We denote by (°(^°) the set of finite ^-
manifolds for which the Neumann problem is solvable. Our
program is to solve the following problem:

Problem. — Determine (° = (° (^) for each elliptic 9^>.

Examples 1. — if1 is the system of equations df = 0 (see
Example (1), § 2). Then (°(^1) is the set of all finite manifolds
(see Duff and Spencer [3], Conner [2], Morrey [6]).

2) ^1 is the class of the Cauchy-Riemann equations in m
variables, i.e., the system of equations in Example (3), § 2.
Then C^P) is the class of all strongly pseudoconvex (finite)
manifolds (see Kohn [5]).

3) Let x = \x\ . . ., r^, . . ., ^), z= (z\ . . ., z\ . . ., z"),
where x1 is real, zk complex, and write z = {z1, .. ., ^, . .., z"),
where ^ == ^ is the complex conjugate of zfc. Let ^ be the
system of equations

(4.8)
^=0, ,=1,2,...,^,

_^/ _ f) L _ /| 9 „- — U, K — .1, Z, . . ., 71,
^

for the complex-valued function f (compare (2.10)).
Now let M' be a differentiable manifold with a foliate

structure whose sheets are real m-dimensional manifolds
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with a complex analytic structure transverse to them. This
mixed structure is represented by a locally finite covering
V == ^ Va j , where Va is an open set covered by the coordinates
(^a? ^a)? 8Ln(^ the transition functions have the form

^<x ==/ap(^ z^ ̂
(Za = gap(zp),

where /as is differentiable in a?p, zp, zp, the jacobian matrix
b(rca)/^p) == ^(/ap)/^p) ls non-singular, and gap is a biholo-
morphic transformation. Through each point of 1VT there
passes a real m-dimentional sheet, which is defined in Va by
setting the Za equal to (complex) constants, and the local differ-
entiable coordinate along ths sheet is

Xy. == (^a? • • • ? ^a? • • -^a.)'

Let T(M') be the tangent bundle of M', and denote by T,(M')
the sub-bundle of T(M') of tangent vectors along the sheets.
Then the restriction T,(Va) of T^(M') to Va is covered by
the coordinates (x^ Za, ^/^a)? where

0/^a == (^/^a, . . •, ̂ /^a', • . •, ̂ M.

The equations (4.8) are defined on M', i.e., M' is an ^-mani-
fold where tf1 is represented, in terms of local coordinates
(x^ ^a), by a system of the form (4.8). Let M be a finite sub-
domain of M', and denote by bM the boundary of M. The
boundary bM is tangent to a sheet, at the point XQ, if T/M')|^
is contained in the tangent space of ^)M at XQ. We denote by
b^M the (closed) set of boundary points of M at which bM
is tangent to the sheets. The works of Ash [1] and Kohn [5],
together with an observation of L. Nirenberg, yield the fol-
lowing result:

(°(tf1) is the class of finite ^-manifolds M such that, at each
point of ^M, the boundary is strongly pseudocowex in the
sense of the complex structure transverse to the sheet and strongly
convex along the sheet trhough the point.

The method of Kohn [5], in the form applied by Ash [I],
can be generalized to establish the following result:

PROPOSITION 4.1. — Suppose that ^ is elliptic. Then
(°(̂ >) contains all sufficiently small, sufficiently convex (finite)
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subdomains of euclidean n-space and, for these domains, H1 ===0
for i > 0.

Suppose that ̂  is elliptic, and let M be an ^-manifold
of dimension n. The exactness of the sequence (2.7), for
{A ̂  (J4, follows at once from Proposition 4.1. In fact, suppose
that p. is a fixed integer, pi ̂  p4, and let u be a germ of J^\
where i > 0, which satisfies DM = 0. Then u is respresented
by a section u of J^*1, which is defined over a neighborhood
containing the closure of a sufficiently small coordinate ball
and satisfies Du = 0. By Proposition 4.1, the Neumann
problem is solvable on the coordinate ball and Hu = 0.
Hence, by formula (4.5), u = = D w where w==D*Nu, i.e., the
Poincare lemma for D is valid and the sequence (2.7) is
exact.

Now let L(J^) = ©,L(J^'1) be the graded vector space of
sections of J^ over M, and let Z(J^) == ©,Z(J^1) be the kernel
of the map D: L(J^) ~> L(J^). Then

(4.9) Z(J^/DL(J^)
= ZtJ^^eZfJ^^/DLfJ^0)® ... eZfJ^VDL^--1)

is the (graded) D-cohomology of sections of J^ over M. Moreo-
ver, let

(4.10) H'(M, 6) === HO(M, 6) © H^M, 0) e • • • e IP(M, 6)

be the (graded) cohomology of M with values in the sheaf
6 of germs of solutions of the system ̂  of linear partial
differential equations on M.

We denote by p^ == ^2 (^? n) the smallest positive integer
for which the sequence (2.6) is exact for pi ̂  ̂  ^d

0 < i < n — 1,

and we denote by Vi == Vi (^, n) the larger of the two integers
y-09 ^2-The following theorem is an immediate consequence of
Proposition 4.1.

THEOREM 4.1. (Theorem ofde Rham for elliptic systems). —
Let M be an ^-manifold of dimension n, and suppose that

Colloque Grenoble. 2
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^ is elliptic. Then, for p. ̂  Vi — 1, a fortiori for p. ̂  p4 — 1»
the sequence

0->e^^J^o^J^l__D^...^J^n^o

is an exact sequence of fine sheaves, and we have the isomor-
phism of grated vector spaces

(4.11) H*(M, 6) ̂  Z^/DL^)

which is derived from the exact sequence of sheaves in a
canonical manner.

In fact, suppose that pi ̂  ^i — 1, i > 0, and let u be a local
section of J^'1 satisfying Du ==0. If (x <; p4, then u can be
lifted up to a section v of J^1 satisfying D^ = 0 (see [9(a)], § 5).
By Proposition 4.1, v == D(D*N^), and it follows that u = Dw,
where w is the projection of D*N^ into a (local) section of
J^1-1.
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