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THEORY OF BESSEL POTENTIALS. PART I. (1 2)
by N. ARONSZAJN and K. T. SMITH

INTRODUCTION

The present paper is the second in a series, the purpose of
which is to give a basis for a treatment of differential eigen-
value and boundary value problems.

In the first paper [I], a general theory of functional spaces
and functional completion was developed. Now, this general
theory is applied to special spaces which are most important
for the study of differential problems, especially of elliptic
type.

Many results of this paper were announced several years
ago and the paper was then referred to as « Theory of Poten-
tials ». It was decided that the original title was misleading
since we treat only potentials corresponding to special types
of kernels and not those corresponding to more or less arbi-
trary kernels as has been done for instance in [7 a], [13 a],,
and [13 c].

Originally, the authors used the Riesz potentials of order o^
i.e. potentials corresponding to kernels

y/n^_a\

W R^)-2^^2(a/2)l"la"n? °<-<^

in n-dimensional Euclidean space R".
Despite the fact that many elegant and important results

(1) Paper written under contract Nonr 58 304 with Office of Naval Research.
(2) Part II to appear in the next volume of this journal.
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386 N. ARONSZAJN AND K. T. SMITH

were obtained for these potentials by Riesz, Frostman, Cartan,
and others, their application to differential problems was
sometimes awkward. The reason for this was the limitation
on the order, a <; n, whereas for differential problems we
need potentials of arbitrarily high order. We were thus led
to consider potentials based on the kernels

(2) G^x)= ^_/ K^M^
2~———^r(^\ 2

\z /
where K^_g is the modified Bessel function of third kind. It

2

therefore seems appropriate to call the corresponding potentials
« Bessel potentials of order a ».

The kernels (2) which are defined for all a > 0 have the same
basic properties as Riesz kernels, i.e. positiveness, compo-
sition theorem, etc., and in addition they converge to zero
exponentially at infinity. This makes for much greater ease
in the development of the theory. For a < n, Ra represents
the principal part of Ga at the origin with the result that the
corresponding Riesz and Bessel potentials form the same
classes of functions in every bounded portion of the space.
The classes of potentials P01 which form the main object of
research in this paper are exactly the Bessel potentials of
order a of L2 functions. The potentials of L/ functions would
be of interest in themselves (in the case of Riesz potentials
they were considered by B. Fuglede [11 a]), but they do not
enter into the framework of our applications to differential
problems which are based on Hilbert space or « quadratic »
methods (3).

The first part of the paper (Chapters I and II presented
here) gives the theory of potentials of order a in the whole
space R". The second part will deal with these classes in
subdomains of R71 and also on differentiable and Riemannian
manifolds.

The contents and main results of Chapters I and II can be
summarized as follows.

(3) This means they are based on the use of quadratic norms in functional spaces,
or more generally, vector spaces; by some authors they are referred to as a L2

methods ».
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In Chapter I we recall the main results of the theory of
functional spaces and functional completion [1] and add a few
results not given before.

In the first section of Chapter II we consider functions
u e C? and define the Dirichlet integral of order a, dy,(u) for
arbitrary a ̂  0. This is done at first by using Fourier trans-
forms (as in [8] and [1]), after which a direct form for dy,{u)
is given in terms of derivatives of u of orders ̂  a. In [1]
we showed that tor a < — ? C?, with norm \^dy,(u), has a perfect

Z
functional completion which coincides with the Riesz poten-
tials of order a of L2 functions. We show now that for a ^>—.

2t
Cfl° with this norm has no functional completion. We then
consider the norm |u|^ == [|u[[[» + dg,{u), and the norm ||u|]a
(equivalent to u|a) which is first expressed by Fourier trans-
forms and then directly in terms of derivatives of u.

In Section 2 we show that CS°, with the norm |u[a, has a
functional completion for all a relative to the class 3lo of excep-
tional sets of Lebesgue measure 0. We study the basic pro-
perties of all (imperfect) functional completions of this space
relative to a class of exceptional sets contained in 3lo- This
space has a perfect functional completion (shown in § 5 to be P31).

In order to study the properties of the perfect completion P01,
it was found convenient to replace u|a in C<3° by the equivalent
norm |]u||a, and this last norm is maintained in the remainder
of the chapter.

In Sections 3 and 4 the basic properties of the Bessel func-
tions Ky are collected, and the resulting properties of the
kernel Gy, are given.

In Section 5, as was mentioned above, we prove that P^
is the perfect functional completion of Co° with norm [|u||a?
and the basic properties of P01 and of its class of exceptional
sets 34a (4) a^6 given in so far as they are obtainable from the
general theory of functional completion. For a > n/2, P01

is a proper functional Hilbert space (its reproducing kernel
is G^{x—y)).

In Section 6 we define and investigate the capacities of
(4) This is in accordance with established notation: for a <^ n/2, the sets in ^a.

are the sets of outer capacity 0 of order 2<x in the sense of Frostman.
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order 2a in a manner similar to that used by Frostman [11]
and Cartan [6] in their study of Riesz potentials. The outer
capacity yga? of order 2a, thus defined, coincides with the capa-
city Cg == c\ as defined for P01 by the general theory of functional
completion. It is worthwhile noticing that the logarithmic
capacity y^, which for Riesz potentials requires special treat-
ment with definitions and proofs somewhat changed, does not
present any exceptional character tor our potentials.

Sections 7 and 8 contain the most important results from the
point of view of applications to differential problems. In
Section 7, Theorem I gives differentiability and continuity
properties of functions u e P01 which allow |[u[|^ and dy,(u)
to be defined by the same direct formulas which were
used in Section 1 for functions in C?. In conjunction with
Theorem I, Theorem II gives necessary and sufficient conditions
for a function u to belong to P01. Remarks 2 and 3 which
follow Theorem II weaken these conditions quite considerably.

The theorems in Section 8 concern the restriction of a func-
tion u e P01 in R" to a subspace R^ C: R". Theorems 1 a and
1 b show, essentially, that for a function u' defined on R^ to
be a restriction of a function u e P01 (R"), it is necessary and

sufficient that u' e P 2 (R^). Theorem 1 ogives a basis for
what we call the compensation method which is very useful
in the study of elliptic differential problems. In Chapter IV
(which is to appear shortly in Part II of this paper) these
theorems, are extended to restrictions to submanifolds of R71.

Section 9 treats functions u defined in an open set D C R"
which are locally in P01; the class of these functions is denoted
by Pi^D). These classes form a first step to the introduction
of the classes P01 on a Riemannian manifold.

In Section 10, we study the relations between Y? and P'*
classes. We depart from our general restriction and consider
Bessel potentials of L^ functions (the proofs do not differ from
those in the case p ==• 2). We obtain the following theorem:
^ 9 ̂  P ̂  1 an^ one of the two conditions holds :

lo^->-1———^ with p > i and -^—^^O;q — p n p n
<^ 1 1 oc . , - 1 a ^2° — > — — — with p == 1 or — — — == 0,

q p n p n
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then/e 1̂  implies Ga/'<= IA For Riesz potentials, by Soboleffs
theorem we can consider only the case when condition 1 is satis

A \ n
fied and then we have Ra/* e L^ in general only for — == — — —.v q P n

In Section 11 — the last section — we compare our classes P^
with the corresponding classes of Riesz potentials, B-L classes,
W^ and H771 classes. These classes, introduced by different
authors, have similarities either in definition or purpose to
our P01 classes.

Before finishing the Introduction we mention the recent
papers of L. Slobodetzky [14 a] [14 b] where expressions
similar to our direct formulars for da{u) are introduced and
applied.

We should also mention that many of the results of the
present paper and of its second part were referred to and applied
in several papers by the authors, in particular in [O], [15 a],
and [2]. In these references, however, we were considering
the corresponding results for Riesz potentials.
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CHAPTER I

SUMMARY OF THE GENERAL THEORY
OF FUNCTIONAL COMPLETION

This Chapter contains a short summary of the definitions
and results from the general theory of functional completion
which are needed in the rest of the paper. It is taken from [1]
but it also contains a few minor observations which are
not included in [I], For simplicity, only complex spaces
are considered. The changes which must be made in the real
case are quite trivial.

§ 1. — Functional spaces and functional completion.

An exceptional class on a set § is a hereditary and o-additive
class of subsets of 8, that is, a class 81 of subsets of § with
the two properties: (a) If AcB and B e 81, then Ae8l$ (&)
if each member of a sequence of sets belongs to 81, then the
union belongs to 81. Henceforth 31 denotes an exceptional
class on a set @.

A property of points of 8 is said to hold except 81 (to be
written exc. 81) if the set where it fails to hold belongs to 81.
If u and v are complex valued functions defined on 8 — A
and 8 — B, respectively, and a is a complex number, then
u + v denotes the function defined on 8 — (AUB) by point-
wise addition and OLU denotes the function defined on 8 — A
by pointwise multiplication. It is obvious that if u and v
are defined exc. 81, then u + p and au are defined exc. 81.

A linear functional class relative to 81 (rel. 81) is a class 9
of complex valued functions defined on § exc. 81 such that
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if u and v belong to 9 and a is a complex number, then u + ^
and OLU belong to 9. 21 is the exceptional class for 9, The
saturated extension of 9 is the class of all functions defined
on 8 exc. 2t which are equal exc. 21 to some function in 9^ and
9 is saturated if it is identical with its saturated extension.

A normed functional class 9 rel 21 is a linear functional
class 9 rel 21 on which there is defined a norm |]^||^0 with
the properties: 1° [|u[[ === 0 if and only if u[x) = 0 exc. 21$
2°|]au||== al|H| for any complex a; 3° |[u||^||M—^[|+||^|| (5).
From 3° and 1° it follows : 4° if u[x) == v[x) exc. 21 then
|]u[| == ||^([. The saturated extension of a normed functional
class rel 21 is also a normed functional class rel. 21 (when the
norm is extended in the obvious way).

If in a functional class 9 we introduce the equivalence rela-
tion/>^^/>/ -<==> f(x) = f(x} exc. 21, the set of equivalence classes
obviously forms a vector space V. If 9 is normed, V becomes
a normed space (since f^f implies \\f\\ = [[/''H). In this case
we transfer without further explanation all the notions usual
in a normed vector space to the class 9. For instance:
fn —> f {fn converges to fin norm) $ \f^\ is a Cauchy sequence;
a subset of 9 is dense in 9\ 9 is complete or separable, etc.

A functional space rel 21 is a normed functional class rel 21
in which there is the following relation between the norm and
the values of the functions ;

1. 1. THE FUNCTIONAL SPACE PROPERTY. — Every sequence
which converges (in norm) to 0 contains a subsequence which
converges to 0 pointwise exc. 21.
The saturated extension of a functional space rel. 21 is also

a functional space rel. 21.
A functional completion of a normed functional class 9

rel. 21 is a functional space 9 rel. 21 such that:
(a) 21:321.
(&) Each function u^9 belongs to 9 and has the same

norm in both classes.
(c) 9 is dense (in norm) in 9.
(d) 9 is complete.

(5) The usual form of Minkowski's inequality, \\u 4- v\\ ̂  \\u\\ + \\v\\, is not ade-
quate here since in general F is not a vector space : (u -f- ^) — ds not identical with
u (u may have a smaller exceptional set than (u + v) — ?).
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We say that 9 is a functional completion of 9 rel. 31. The
saturated extension of a functional completion of a normed
functional class is also a functional completion of the given
normed functional class. Since it is technically convenient
to work with saturated completions, and it involves no loss
in generality ,it will be assumed that all functional completions
are saturated.

A functional completion is perfect if its exceptional class
is contained in the exceptional class of every functional
completion.

The main problems in the theory of functional spaces and
functional completion are : (i) to determine when a normed
'functional class is a functional space; (ii) to determine when
a normed functional class has a functional completion; (iii) to
determine when a normed functional class has a perfect func-
tional completion (6) ; (iv) to describe the exceptional class
for the perfect completion.

It is easy to see that if a normed functional class has a func-
tional completion relative to one exceptional class, then usually
it also has a functional completion relative to infinitely
many others. In this connection, however, the following
result holds, and is easily proved.

1) Relative to a given exceptional class there is at most one
(saturated) functional space which is a functional completion
of a given normed functional class. In particular, the perfect
completion, when there is one, is uniquely determined.

It is clear that the properties of a normed functional class
which have been defined so far remain the same if the norm
on the class is replaced by an equivalent norm. In parti-
cular, if there exists a functional completion rel. 31 with respect
to one of two equivalent norms, then there exists a functional
completion rel. 81 with respect to the other, and the two com-
pletions are composed of the same functions. A converse
of this also holds.

2) If a linear functional class 9 rel. 31 is a complete func-
tional space with respect to two norms, then the two norms are
equivalent. More generally.

(6) It is not known whether the existence of some functional completion implies
the existence of a perfect functional completion.
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3) If 9 is a complete functional space rel. 31, and if 9' C 9
is a complete functional space rel. 81 with respect to a norm^
| H]', then there is a constant c such that for all u e 9?', ||u||<lc||M(|\

PROFF. — The identity mapping from 9' into 9 is a closed
mapping. In fact, if Un -> u in 9 and u^ -> v in 9 then by
the functional space property some subsequence \u^\ con-
verges pointwise exc. 21 to both u and v. Hence u = v exc. 81.
By using the closed graph theorem we obtain the statement.

§ 2. — The set functions S and 8 and capacities.

In this section we describe certain functions and classes
of sets which lead toward solutions, partial or complete, to
the problems listed in section 1. The classes provide explicit
bounds for the exceptional class of a perfect completion; in
every example where a perfect completion has been found,
its exceptional class coincides with the bounds given. Throu-
ghout the section, 81 is a fixed exceptional class and 9 is a
fixed normed functional class rel. 81$ U is an exceptional
class containing 81.

The class 8 is the class of all sets Berg for which there is
a function u e 9 satisfying \u{x)\ ̂  1 on B exc. 81. For each
B e 8, S(B) is the infimum of |]u|| over all such M.

The class 8 is the class of all sets Beg for which there is
a Cauchy sequence \u^\ in 9 satisfying lim inf |Un(^)| ^> 1
on B exc. 81. For each B e§, 8(B) is the infimum of lim[|u^||
over all such Cauchy sequences.

REMARK. — If 9 is a complete functional space, then clearly
g == S. ^

If S° and 8° are the classes of null sets of S and 8, respecti-
vely, then obviously 8lc:&° C:S°. Conversely, there is the
following result.

1) If 9 is a functional space rel. 8t, then 81^ 8'S* If ^ has
a functional completion rel. 8t, then 81^8^ (7).

Upper bounds for the exceptional class of a perfect comple-
tion are provided by additional set functions called capacities.

(7) &S is the class of countable unions of sets in 8°.
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An admissible capacity for a normed functional class 9 is a
set function c on the hereditary or-ring 8'g with the following
properties.

(a) c is an outer measure on &<y (8).
(&) For each B e 8, c(B) is finite.
(c) To each £ > 0 corresponds an Y) < 0 such that if S(B) ̂  Y],

then c(B)^£.
Each real valued, non-decreasing function (p((), defined for

(^ 0 and satisfying 9(0) = lim (f(t) = 0 and y(t) > 0 for ( > 0,
t-^o

determines an admissible capacity c® as follows : For each
B e &,

00

c,(B)=inf^y[S(B,)]
n=l

where the infimum is taken over all sequences |B^j in 8 such
00

that B C ^J B^. The most important of the admissible capa-
n=l

cities are the capacities Cy, determined by the functions

9(() = (a, a > 0.

We use especially Ci and c^.
In the following propositions c is an admissible capacity

for 9 and Sic is its class of null sets.
2) Every Cauchy sequence in 9 contains a subsequence which,

for each £ > 0, converges uniformly outside some set of capa-
city << £.

3) ^c:3tc.
4) 9 is a functional space rel. 8lc if and only if \\u\\ == 0 whe-

never u[x) = 0 exc. Sic- ^ ^las a functional completion rel. 3lc
if and only if \\u^\—>Q whenever \u^\ is a Cauchy sequence
which converges pointwise to 0 exc. Sic-

5) If 9 is a functional space rel. 31 or if 9 has a functional
completion rel. 81, then the same is true rel. Sin Sic-

6) If Cm and c<p are the y capacities formed for 9 and 9 where
S is a functional completion of 9 rel. 3lC:3lc ? ^en Cy == c®.

Propositions 1) and 5) give.

(8) Measurability with respect to c plays no role in this theory.
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7) If S has a perfect functional completion, then its exceptional
class 81 satisfies 8; C: ̂  C: ̂

In every example where a perfect functional completion
has been found, it has turned out that in fact 8^ == Sl^-
Conversely, if % == 3l<;< holds, then if there is any functional
completion, there is a perfect functional completion, and its
exceptional class is % == 8l̂

§ 3. Majoration properties.

The object of the section is to describe three majoration
properties and a few of the results that can be derived for
normed functional classes that possess them. All of the func-
tional spaces which are commonly used in differential problems
do possess at least the weakest of the three. The majoration
properties are as follows.

POSITIVE MAJORATION PROPERTY. — The set S can be written
00

as 8 == I J §„ and constants M^ can be chosen in such a way that

for every function u e 9 and every n there exists a function
u'n e 3s satisfying

\\Un\\ ̂  MJ]u[| and Re u'n(x) ̂  \u{x)\ for x e &n exc- 3l*

GLOBAL MAJORATION PROPERTY. — There is a constant M
such that for every function u e 9 there exists a function u9 e 9
satisfying

\\u\\ ̂  M |H| and Re u\x) > \u{x)\ exc. 81.

STRONG MAJORATION PROPERTY.— For every function u e 9
there exists a function u' e 9 satisfying

|H| ̂  |lu|l and Re u\x) > \u{x)\ exc. 21.

In so far as the general theory of functional completion is
concerned, the main interest in the majoration properties
lies in the next proposition.

1) Let 9 have the positive majoration property. Then
y<s = 2lci? a^d the following statements are equivalent.
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(a) 9 has a functional completion.
(fc) 9 has a perfect functional completion^ and the exceptional

class for the perfect completion is ^°y == 2lc^
(c) [|u^||->0 whenever \u^ is a Cauchy sequence which

converges pointwise to 0 exc. Sic,-
It is not difficult to see that if 9 has the global maj oration

property, then B e § if and only it Ci(B) <; oo, and if B e= S

then S(B)>Ci(B)>—8(B).

2) If 9 has the strong majoration property^ then S == c^;
if 9 is also complete^ then S ===§=== q.

3) If 9 has the strong majoration property and is reflexive^
then the infimum in the definition of S is attained. Moreover,
if B is the union of an increasing sequence ^B^, then

Ci(B) = lim Ci(B^).

PROOF. — Let FB denote the closed convex set of all u e S
satisfying Re u{x) ̂  1 on B exc. 81. From the strong majo-
ration property it follows immediately that S(B) is the distance
from the origin to Fa, and in a reflexibe space this distance
is attained.

Since a reflexive space is complete, it follows from 2) that
§ == q. Therefore, in order to prove the second part of the
proposition, it is sufficient to show that if lim S(BJ -< oo
then S(B) ̂  lim S(B^). For each n, let u^e 1̂  be such that
[]^|| = S(BJ. Then, since lim \\u^\\ < oo, there is a subse-
quence | u^} which converges weakly to some u es 9. For every
i ̂  k, u^ e FB^ . Therefore, since FB^ is closed and convex,

1 nk k oo

u e FB^ , and, since this holds for every /c, u e FB = C\ FB^ •
Hence' fc==l

S(B) ̂  ||u|| ̂  lim ||u,j| == lim S(B^).

The main interest in the strong majoration property, howe-
ver, comes from its application in another connection, namely,
in the theory of pseudo-reproducing kernels and in the theory
of balayage and classical type capacities. It has been shown
in [2] that if 9 is a real functional Hilbert space with a pseudo-
reproducing kernel, then the kernel is non-negative if and
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only if 9 has the strong majoration property. It will not
be necessary to make use of this result in the later chapters,
since the kernels are given by explicit formulas from which
their properties can be derived. Nevertheless, the result
underlies many of the developments. In particular, it is
the need for the strong maj oration property and positive
pseudo-reproducing kernels which is responsible for the choice
of the norm \\u\\y. in Chapter II.

In many questions a change from one norm, \\u\\, to an
equivalent one, |]u|]', is immaterial. The classes S, 8, &°,
and 8° are unchanged; S and § are replaced by §' and S',
Ci and ^2 by c[ and Ca, where

^_ ^ c[_ ^
S ? § ) C t 9 c^

all lie between two positive constants. Admissible capacities
remain admissible capacities. The validity of the positive
and global majoration properties is unchanged. However,
the validity of the strong majoration property is dependent
on the particular norm used, and the need for this property
can impose a particular norm, even one which is more compli-
cated than some equivalent norms.

§ 4. — Propre functional spaces.

A proper normed functional class is a normed functional
class rel. |0i ; a proper functional space is a functional space
rel. |0|.

The complete functional spaces occuring in analysis arise
most often as functional completions of proper normed func-
tional classes. This does not mean, however, that the com-
plete spaces are proper functional spaces, for in the process
of completion it usually happens that some sets become excep-
tional. This cannot happen if the original proper normed
functional class is a proper functional space.

1) A proper normed functional class 3ft is a proper functional
space if and only if for each x e § there is a constant My; such that
for every function u e 9?, \u[x}\ ̂  M^ ||u||.
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It can be shown that if 9 is a proper functional space, then
Ci( \x\) =/= 0, provided there is at least one function in 9 which
does not vanish at x. More precisely, if pia. denotes the set-
function which takes the value 1 on every set containing x
and the value 0 on every set not containing x, then for each
set B e &(„ (J^(B) ̂  Ma;Ci(B). The main result on functional
completion of proper functional spaces is obtained easily
from this fact and the results of the precedings section. Also
it can be obtained directly.

2) A proper functional space 9 has a functional completion
if and only if \\u^\—>Q whenever \u^\ is a Cauchy sequence
which converges to 0 at each point. If a proper functional space
has a functional completion^ then it has a proper functional
completion.

§ 5. — Restrictions to a subset of 8.

Let 9 be a normed functional class rel. 51, and let D be a
subset of 8 which does not belong to 31. Let 8l(D) denote
the class of all subsets of D which belong to 81. If u e 9?,
let u' denote the restriction of u to D. Each function u' is
then defined on D exc. 3l(D), and the class ^(D) of all u' is
a linear functional class on D rel. 8l(D). There is a natural
norm on ^(D) given by

||u'||o=mf|H|,

the infimum being taken over all v e 9 for which v ' = u'
exc. 8l(D). In general, ^(D) is not a normed functional class
rel. 8t(D). However,

1) If 9 is a functional space rel. 81 then ^(D) is a functional
space rel, 2l(D). Moreover, the set functions S', S', and Cy
corresponding to ^(D) are the restrictions to D of §, S, and Cy.
If c is any admissible capacity for 9 then the restriction of c
to D is an admissible capacity for ^(D). If 9 is complete^ so
is 3?(D).

PROOF. — If u = 0 exc. 8l(D), then u' = 0' exc. 2l(D), so
that |H!D^|]O[| == 0. On the other hand, if \\u^ = 0.
then there is a sequence [v^\ in 9 such that v'n == ^' exc.
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3l(D) and such that |]^n||-^0. By choosing a subsequence
if necessary, it can be assumed that ^ -> 0 pointwise exc. 81.
This obviously requires that uf = 0 exc. 8l(D). Hence ^(D)
is a normed functional class rel. 3l(D). A similar argument
shows that ^(D) is a functional space rel. 8l(D).

It is evident that §' is the restriction of S to D, and also
that if A C: D then S'(A) ̂  S(A). On the other hand, if A C= D
and S'(A) < rf, then there exists a Cauchy sequence \u\\ in
3(D) satisfying

lim inf |un(rc)| ̂  1 on A exc. 8l(D) OTIC? lim ||U^[JD <; d.
By picking a subsequence if necessary, it can be assumed

that
00

|H|D+2|lu;.+i——U;,||D<rf.
n== 1

Functions ^ in 9 exist such that v\ == u[ exc. 3l(D) and

^ = u'n^ - u'n exc. 3l(D) and J; |1 |̂] < d. If^ = S ̂
71== 1 fc= 1

then clearly w'n = u'n exc. 3t(D). Therefore,
lim inf |^(a;)(^ 1 on A exc. 31

and in addition {w^} is a Cauchy sequence such that
71=1

imiM^^lHKd.
00

Hence S(A) < d.
The assertions about capacities are immediate consequences

of the fact that §' is the restriction of S to D.
Finally, if 9 is complete, the argument above shows that

^(D) is complete. Indeed, the sequence \w^\ converges to
some we 9, and, therefore, the sequence \u'n\ = \w'n\ conver-
ges to w'e^D).



CHAPTER II

SPACES OF POTENTIALS

§ 1. — Definition and elementary properties
of the Dirichlet integral.

In this section the Dirichlet integral over the Euclidean
space R", da.(u) = ̂ a.R»(^)? of arbitrary order a^O, is defined
and expressed in terms of the function u and its derivatives.
The following notation is used : if i = (i\, ..., ij where i\

m
is an integer between 1 and n, then |i| == w, ^=TT^
when $ = (Si, . . . , S n ) , and

^u ^uD,u=^ ... ̂ '" (^)1

If a is an integer, the Dirichlet integral of order a is com-
monly defined by the formula

(1, 1) d^u) = d^ K"(U) = ̂  f\D^ dx.
|i)=a

If u is the Fourier transform of u, that is. if

u($) = {2^fe-^f^u{x) dx,

then d^{u) is expressed in terms of u by the formula

(1,2) ^{u)=fWu{^d^.

Formula (1, 2) can be used to define dy.(u) for arbitrary
26



402 N. ARONSZAJN AND K. T. SMITH

a ̂  0. However, it is convenient to have an expression for
dy.(u) which, like (1, 1) involves u and its derivatives, but not
the Fourier transform. This will make it possible (in Chapter
III) to define the Dirichlet integral of order a not only for
functions on the whole space R", but also for functions on
an open set D c R", and it will simplify a number of proofs.

If 0 < a < 1, then by ParsevaFs formula we have

// u(.r)—«(y)P /Y-|u(;r+z)—u(a^
\x—y^ d x d y - j j ^ — — ^ i o d x d ^

-f\Wf^^dzd^=fF{W^.

It is easy to see that F(S;) is homogeneous of degree 2a
and is invariant under orthogonal transformations. Hence
F(^) = C(n, a)|̂ , where if z = (z', zj,

/» \fti2n__\ |2

^ ^-l —ic——-t^^2-
(l^'l2 + ^) '

/- le^—lla ^ rf^
= ( ' i.p,^' ̂  ( .—————

J-» !̂ | -;R'-1/4 IL. /H
I I- |»a+i ""•" » „+»«J- w ^^-(I+I^F)-!-
03-2a r^^fj r ° ° p""* -i=232a(r i»-<j ^-T dr ——^——^dp-

Jo Jo (1 + p2)-^
The last two integrals and cu^_i (the area of the unit sphere

in R71""1) can be evaluated in terms of the Gamma function
to give

n+2
o—aa-n 2

(1, 3) C(n, a) = —————2 TC ————.
r ( a+ l ) r ( a+^ - ) smna

\ 2 /
Thus

f1 '4 ' ̂ c^//^^^ i/ ^^i-
It is important to notice that for a \ 0 or a / 1, ——1—

C(n,a)
converges to 0 like a or 1 — a respectively. In general,
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if for arbitrary a > 0, a* denotes the largest integer strictly
less than a, then (9)

^ -^ /•
da{u) = Jj J |D^|2 dx if a is an integer',

( 1 ^ d ( u } - i V ^mu(^)—D^(y)|2(1?5) da(u) - C(n, a - a*),̂ JJ ^ - y|-a^ ^ ̂

o(/ierwi5e.
It is obvious from the expression (1, 2) of dy,(u) by Fourier

transforms that for every function u such that u and \^\^u
are square integrable, dy,{u) is continuous in a in the range
Or^a^ao (10). If U is an orthogonal transformation on
R" and v[x) = u(Urc), then clearly ^) == u(U^), so that by
(1, 2) dy,{v) = dy,(u). In other words dy,(u) is independent of
the (orthogonal) coordinates which are used in R/1.

1) The Dirichlet integral d^{u) is continuous 'in a and inde-
pendent of the (orthogonal) coordinates which are used in R".

In the classical potential theory of Frostman and Riesz,

which is valid for 0 < a < —? it is shown that the functionsz
on R" which are representable as potentials

(1,6) ^x)=f\x—y\——g[y}dy,

where g is square integrable, form with the norm \/dy, a com-
plete functional space relative to the exceptional class composed
of the sets of (outer) capacity 0 of order 2a. (See [1].) This
complete space is the perfect functional completion of the
space CS^R"), It is a space with a positive pseudo-reproducing
kernel, namely the Riesz kernel

r(i-«)
(1, 7) R^{x - y) = -^———I- \x - y\^-\

Tc^I^a)

Spaces with positive pseudo-reproducing kernels are the
natural setting for the classical type theory of capacity. With

(9) In formula (1, 5) the notation a* is needed only when a is not an integer;
it will be needed later, however, for all a.

(10) It is not obvious from (1, 5) that dy.{u) is continuous at a = integer; the corres-
ponding result for domains ̂  R", which will be considered in chapter in, is deeper.
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this particular space there are associated two kinds of capa-
cities, the classical capacity of order 2a and the capacities
defined in Chapter I for arbitrary functional spaces. It is
proved in [1] that the classical capacity of order 2a is identical

with the functional space capacity Cg. For a >. -^-the situation
— n

is quite different: the potentials in (1, 6) cannot be formed
for all square integrable g, since 1 -̂" is not square integrable
at oo; the pseudo-reproducing kernel in (1, 7) is not usable;
and, as we shall now show, the space CS°(R") normed by \/4
is not a functional space.

2) If a ̂ -j- the space Q°(R71) normed by y/rfa is not a func-

tional space relative to any exceptional class.

PROOF. — Let u be a function in Co^R") which is identically 1

on a neighborhood of 0. If u^^{x) = uf-^V then
\ P /

^(S) == P^(p^) and (̂u(p)) = p^d^u).

Thus, if a > -^-, then as p ->oo, d^^} -> 0, while, for each x,

'u<^{x) —> 1- This shows that the space in question cannot be
a functional space (for the whole R" would have to be an

exceptional set). If a = -n choose £ so that 0 < £ < a and
2i

let ceC^R"). Then, if d^(u, ?) is the bilinear form corres-
ponding to the quadratic form c?a(") we have

<^("(p),p) ̂ ISI201"^)^)^ =f\^a+^){W-SW)^
^ (^(^p))1'2^^2,

so, by what has been proved, ,̂(1^), v) -> 0. Since this holds
for each peCS°(R") and since d^^)) is bounded, it follows
that M(?) -> 0 weakly in the Hilbert space which is the abstract
completion of C?(R») with the norm \/<^. Therefore, by a
well known theorem there is a sequence p* -^ oo such that
the arithmetic means of the sequence [it(^)[ converge strongly
to 0. The sequence of arithmetic means converges pointwise
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to 1 everywhere, so, as before, the space cannot be a functional
space.

This suggests the problem of defining an a-norm with the
following properties : (a) On the subspace of C;T(R71) of functions
vanishing outside any fixed compact set the a-norm is equi-
valent to y^a. (6) The space (^(R71) normed by the a-norm
is a functional space which has a perfect functional comple-
tion. (c) The completion has a positive pseudo-reproducing
kernel, (d) The classical type capacity for this kernel coin-
cides with the functional space capacity Cg.

One of the simplest norms on C^R71) for which (a) and (b)
are true is the norm

(1, 8) |u& = d,{u) + d^u) ==/(!+ OT|u($)|2^.

In the next section we prove the existence of a functional
completion relative to the class of sets of Lebesgue measure 0
and derive some properties of the completion relative to any
smaller exceptional class. Later we shall replace \ui by the
equivalent norm

(1.9) IHI^/O+I^2)!^)!2^
for which all the properties (a) — {d) hold.

There is a direct expression for |[u[|a in terms of the function
u and its derivatives, similar to the expression for dy..

Suppose first that 0 < a < 1, and consider

i- r r r ^l^o^)-^Tt\(.v)2 , ,~" J JpJp" ——————ra+i+2a ^dy ^o-J —OOtY R"^ R» r , ,3 .-,————-—————[ l-^—yl+^j 2

If we put x — y =z, and write z for the point (zo, z) e R""1"1

and ^ for (1, ^), then

1= r r ^ e^'^—e^-Ll—w^—TOWZ
'R-.^ JZI"*1-2" l1^' """"
r r' Ip'-'o^'?)_'ll2=J,.L.IJr-•ll°'8l•'^•

=J,,.J,-,i^;̂ = '̂l"(s)̂ 'ii^=c("+l•a)^(l+lEr)1"^ll̂
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by the formulas which were used to express ds. Therefore
we can write

(1,10) |[u||S=J'|u|2^;
for 0 < a < 1,

i_ r r r ^u^—e'^u^, ,12 ___1 r r r e u(a;)—e 2 u(y) , , ,
^-C^+^^LLi1 , _^d.dyd^

' -QO^R^R" .I 12 I 2 - 1 — — — 20—yl +4] 2

i/* m is the greatest integer <^ a,

vi/ m\ v up. 1 1 2
'iA * /A""'""--

, , p _v/ ̂ Viin,^
1^' a

The last formula in (1, 10) is obtained from the expressions
of the various norms by Fourier transforms.

Another formula will be given later (formula (4, 9)) which
does not use an extra integration.

§2. — Functional completion with respect to |uL.

In this section we investigate the normed functional class
3^ obtained by giving the class C^R") the a-norm u|a. Using
the results quoted in Chapter I we show that 9y, has a functional
completion relative to the class of exceptional sets of Lebesgue
measure 0, and we establish some properties of the completion
relative to any smaller exceptional class.

It is obvious that the class & of sets B on which some func-
tion in ^a is ̂  1 is the class of all bounded subsets of R/1,
and, therefore, that the class &<j is the class of all subsets of R71.
Consequently, an admissible capacity for 9?a is an outer measure
c on R" such that

(a) Each bounded set has finite (outer) measure.
(&) To each £ > 0 corresponds an r\ > 0 such that if

B 6 8 and S(B) ̂  Y], then c(B) ̂  e.
(2.1)

If c denotes the (outer) Lebesgue measure on R", then
obviously (a) is satisfied, and since |^|a^ |]^HL» it follows that
for each bounded set B, c(B) ̂  S(B)2. Hence (&) is also satis-
fied, and the Lebesgue measure is an admissible capacity
for 9?a.



THEORY OF BESSEL POTENTIALS 407

1) ^a has a functional completion relative to the exceptional
class of sets of Lebesgue measure 0 (n).

PROOF. — It has been shown that the Lebesgue measure
is an admissible capacity for S^- Therefore, by virtue of
proposition 4, § 2, Chapter i, it is sufficient to prove that if
{u^\ is a Cauchy sequence in ^ which converges pointwise
to 0 almost everywhere, then \Uny.—>0. Since \u\q ^>. \\u\\y,
the sequence j u ^ j is a Cauchy sequence in L2, and so by the
usual Lebesgue theory, ||uJ|L»—^0. Therefore the sequence
\u^\ of Fourier transforms is Cauchy in the L2 space formed
with the measure (1 + ^2a)^? smd converges to 0 in the ordi-
nary L2 space. It follows from the usual Lebesgue theory
that \u^\ converges to 0 in the L2 space formed with the mea-
sure (1 + l^l201)^? that is, that [uja -> 0.

In the rest of the section 9^ will denote any saturated func-
tional completion of 9y, relative to an exceptional class Stga?
which is contained in the class of sets of Lebesgue measure 0 (12).

2) If u e ̂ , then u e L2, and \u^ ==J\1 + lOT^S)]2 d^.

PROOF. — If u e 9^, then there is a Cauchy sequence \u^\
in ^a which converges pointwise to u exc. ^Iga? hence almost
everywhere. It follows that ueL 2 . The sequence {u^ of
Fourier transforms is Cauchy in the L2 space formed with the
measure (1 + l^l201)^ s^d converges to u in the ordinary L2

space. It follows that |uJ converges to u in the L2 space
formed with the measure (1 + l^l201)^. Thus,

lu^^l+l^01)^)2^.

At the same time, by definition [u|a == lim|uja"

COROLLARY. — If two functions in Sy, are equal almost every-
where^ then they are equal exc. ^a.

PROOF. — By 2) their difference has norm 0.

(n) It is easy to see that if a = 0 the class of sets of Lebesgue measure 0 is the
exceptional class for the perfect completion of ^a; the perfect functional completion
of ^Q is simply L2.

(12) The notation $(2« is chosen to agree with the notation which will be used later.
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3) If B is a set of finite measure, then on the subspace of 9y,
of junctions which vanish outside B exc. ̂  the norms \u\^ and
V^a are equivalent. In fact, there is a constant c such that if
u vanishes outside B exc. ^a then

d^^c^'-d^u).

PROOF. — If u vanishes outside B, then for every ^
(2,2) \W^W^W,{u).
Hence, for every r > 0,

W ̂  C (2T;)-ra|B|^(u) ̂  + f ^(W
^l?!^ ^ISI^r r a

^^(2^-1B|r^o^)+^rfa(u),

nand so, for r < 2r: |
,|B|,, co

^^^m^wr.^-
The inequality in the proposition is obtained by minimizing
the coefficient of dy,{u).

^) If P < a a^ B is a set of finite measure, then |u|p is
completely continuous on the subspace of 9^ of functions which
vanish outside B exc. Sttga-

PROOF. — (The idea of this proof is due to Garding.) It
will be shown that if ^ vanishes outside B and the sequence
\u^\ converges weakly to 0 in 9^ then |ujs -> 0. For every
r> 1

(2, 3) Hi^^/l + \W \W ^ + ̂ dM.

Since a weakly convergent sequence is necessarily bounded,
for every positive number £ a positive number r can be chosen
large enough so that the second term on the right side of
(2, 3) is less than £ for all n. For fixed r the first term on the
right side of (2, 3) converges to 0, for the functions u^)
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converge pointwise to 0 (13) and by (2, 2) they are uniformly
bounded. Thus if u^ vanishes outside B and [u^\ converges
weakly to 0 in 9^ then |ujp -> 0.

A function is said to be of class O^1'1) on an open set if the
function is of class C" on the open set and every derivative
of order ̂  m is Lipschitzian (14). If u is a function of class
G01"'1) on R71, then the integrals in (1, 5) are defined, and they
are obviously finite if u has compact support (15).

In the proof of the next two propositions and in several
later proofs we will need the well known process of regulari-
zation. A family of regularizing functions is a family

e,{x) = p-" ef^} for 0<p^l ,

where e is a non-negative function in CS°(R") satisfying

e{x) = 0 for \x ^ 1 and /<°(^) dx = 1.

If u is a locally integrable function, the functions

u^(x) == u* e^x) == fu(y)e{x — y) dy

are called the functions obtained from u by regularization, or,
more briefly the regularizations of u. A few of the standard
properties of the family | u? \ are as follows :

(a) Each Up is of class C00.
(6) Up (re) —^ u{x) almost everywhere.
(c) If u belongs to L^ (or locally to L/) then so do the Uo,

and Uo -> u in Lp (or locally in LP).
(d) H u e LP, 1 ̂  p ̂  2, then Up e LP and u, = {2T:)n|2ue^
Other properties of Up will be stated when they are needed.
5) If u is square integrable and\u\^ is finite (16), then u is

(13) In fact, Mn(E) is the inner product in L2 of u^ with (27^;)-n/2e-l(•B»^ times the
characteristic function of B, and weak convergence in ^a implies weak convergence
in L2 (which has a smaller norm).

(14) By this it is meant that there is a constant M such that if [ i \ ̂  m then
\Diu(x)—Diu(y)\^M\x—y\

for all x and y in the open set.
(15) If a is not an integer this is self-evident; if a is an integer it follows from the

classical theorem that the partial derivatives of a Lipschitz function exist a.e. and
are bounded.

(le) If it is known only that u is square integrable then the expression of |u|a by
Fourier transforms must be used here, but if it is known that the necessary deriva-
tives of u exist, then either expression of \u\v. can be used.
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equal almost everywhere to a function in 9^; l/? i^ addition, u
is continuous, then u e §^

6) There is a constant c (depending only on a* and n) such
that if y is of class G01'*A) on R71 and satisfies |Di(p(a?)| ̂  M a.e.
for \i\ ̂  a* + 1 and if u e ̂  (Aen

(2,4) <pu e î  and |yu|a ̂  cM|u[a.

PROOFS. — First we show that if <p is of class G01*' ̂  on R71

and if u is of class C00 and |iia is finite, then the inequality
(2,4) holds. For this the direct expression (1,5) of | u < x
is used.

Since each derivative Di(yu) is a sum of products Dj^Dj^u
with I / I + |^| = \i\, it a is an integer, then, by (1, 5), da(<pu)
is maj orated by a constant (depending only on a) times a sum
of terms of the form

f^D^dx^MH^u) where |/| + |/c| = a.

It is obvious from (1,8) that if ? ̂  a then d^(u} <i\u^..
Hence (2, 4) is proved if a is an integer. If a is not an integer,
then by (1, 5) dy,(^u) is majorated by a constant (depending
only on a*) times a sum of terms of the form

1 OF Wx)D,u{x) — D^(z/)D,u(y)^
C(n,a-a*)JJ \x - y^-^ y

<2M^, , (u}+ 2 r/lD^^IID^^-D.^y)!2^^^^M ^,(^_^(u}+ ̂ ^^_^JJ ^ _ y^^-w aa;a^

where |/| + |A*| == a*. The first term on the right has already
been considered, and for the inner integral in the second we
have

r\Wx}-Wy^ nWy+^-^sWdz
J ^-y^-^ d x ^ ] |^——2a< dz

^M2 f |z[~n-2a+2a"2^+4M2 f \z\-n^^wdz^———,W.
J|2|^l J\2\^ a———a

Hence the second term on the right abbve is at most
cM^^u), and the inequality (2, 4) is established for y of class
(y*1) and u of class C°° with [u[a finite.

Next we show that if u is of class C00 and |u]a is finite, then
u e 9^- Let y be a function in C^R") which is 1 on a neigh-
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borhood of 0, and for p > 0 put y(o)(^) == y(p^). If
ID^I^M for |i|^a*+l, then |D^)(^|^ p l ^ M for
|i!^a*+ 1, so by what has been proved, as p ~> 0, ]9(p)u[a
is bounded. Consequently there is a sequence p^ -> 0 such
that the arithmetic means of the sequence ty(op^j converge
in S^a? and since the arithmetic means obviously converge
pointwise everywhere to u, it follows that u e= S^.

Now we prove 5) by regularization. We note first that for
regularizing functions e?, e^) = e(pS;), and since

e^) | ̂  (2^) -n/2 and e{0) = (2^) -n/2,

it follows that as p —> 0 the functions

u^)={2^e^)u^

are uniformly bounded by u(S;)| and converge pointwise to
u(^) .

Therefore, since \u\y, is finite, |up[a is finite, and, as p —> 0,
1 ^ — ^ o | < x — ^ 0 . Since Up is of class C00, it follows from what
has been shown that Up e S?^. Thus, as p -> 0 {Uo ^ is Cauchy
in ^a? so there exists a function v e 9?^ and a sequence p^ -^ 0
such that Upjk -^ (/ pointwise almost everywhere. Therefore
u = v almost everywhere. Moreover, if u is continuous, then
Upjk —> u everywhere, so that u = v exc. ^a and hence u e ̂ .
This completes the proof of 5).

The proof of 6) is completed as follows. Proposition 5)
shows that each function of class G01*'1) with compact support
belongs to la- Therefore, the transformation Tu = <fu trans-
forms ^a into ^a, and by the first paragraph in the proof this
transformation is continuous. If T denotes its extension to
Sy, by continuity, then for each u e 3^ there is a sequence
|u^j in 9^ such that Un -> u both in 9^ and pointwise exc. Siga-
and such that Tu^ -> Tu both in Sy, and pointwise exc. S4a-
Since Tu^ = 9^ and since yu^ -> yu pointwise wherever u
is defined, a fortiori exc. ^a? it follows that Tu == yu. This
completes the proof of 6).

COROLLARY 1. — If u is locally in Sy, and [uja is finite, then
ueia.
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PROOF. — To say that u is locally in 9^ means that each
point in R" has a neighborhood on which u coincides with
a function in 9^. If this is the case, then by using 6) we can
choose for each point a function y in C^R") such that y == 1
on a neighborhood of the point and such that <pu e 9^ Now,
by 5) u is equal almost everywhere to some function v e Sy^.
Hence ^u = fv almost everywhere, and by the corollary to
proposition 2, yu ==jp^ exc. ^a. It follows that u = 9
exc. Slaa? so that u es ^a-

COROLLARY 2. — If y is bounded and of class C^' ^ on R"
and y == 1 on a neighborhood of 0, and if ̂ ){x) == y(p^), then,
as p -> 0, <p(o)U -^ u in 9^ for every u e 9 .̂

PROOF. — By (6) the transformations T^u = ̂ u of 9^
into itself are uniformly bounded. Therefore, it is sufficient
to show that TpU —> u for all u in some dense subset of la-
It is obvious that this is the case for u e 9^-

7) Let u be a square integrable function and let m be an integer
^ a. Then u is equal almost everywhere to a function in ^a
if and only if for each j with \j\= m there is a function Vj e S^-m
such that DjU = Vj in the sense of distributions.

PROOF. — To say that DjU == Vj in the sense of distributions
means that for every function 9 e C^R")

fuD^dx == (— l^fv^dx.

Suppose first that u^S^ and let \u^\ be a sequence in
C^R") which converges to u in ^a- From the obvious rela-
tion

W = S ̂ -.(D,P)
\J\=m

it follows that the sequence |D^I is Cauchy in ^a-m? ^^
hence that there exists py e ^a-w such that DjU^ —> Vj in
9?a-^. It ? e ̂ (R"), then
(u, D,9)L. = lim(u,, D,9)L. == lim(— l)m(D,u„ 9) = (— 1)" ,̂, y)^

n->c» n->oo

and the first part of the statement is proved.
Following a general theorem about temperate distributions
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and their Fourier transforms [14, vol. 2], if DjU == ^ and both
u and Vj are square integrable, then i^Ei; ... ^ u = v, (17).
Hence, if ^ e ^a-m' then

/ISMul^^S/l^l^-^l^^oo.

By 5), u is equal a.e. to a function in la-

Propositions 1)-7) describe most of the properties of the
functional completion of 3^ which subsist for an arbitrary
completion Sy, whose exceptional class is contained in the class
of sets of Lebesgue measure 0. The finer properties which are
developed in later sections are properties of the perfect com-
pletion. Therefore, we shall close this section with a few
remarks of introduction for the next.

We have stated a,t the beginning of this chapter that 9^
has a perfect functional completion and that if the norm \u\y,
is replaced by the equivalent norm

M'^f^+mw^
then the perfect completion is a space with a positive pseudo-
reproducing kernel; this kernel will be denoted by Gaa. It
will be shown that every function u in the perfect completion
can be represented as a potential

(2, 5) u{x) = G^g{x) = f G^x — y) g{y)dy

of a square integrable function g, and that the following rela-
tion holds :

(2,6) • |H|,=||g|li,=/|g|̂ .

If (2, 5) and (2, 6) are accepted for the present, we can deduce
an expression for the kernel Gy,.

Since the potential Gag defined in (2, 5) is a product of
composition, if follows (provided Ga is integrable) that

{G.grw-WG.(w.
If (2, 6) is to hold, then

/(I + IW(2^<^)IW12^ =fWd^

(17) This simple case of the general theorem can be proved directly without much
trouble.
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for every square integrable function g. Our condition is
therefore satisfied by

(2, 7) G,($) = (2^2 (1 + |$|2)-^
This gives the expression for the Fourier transform of Ga.
However, if a > n, (1 + l^2)-01/2 is integrable, and (2, 7) can
be inverted to give

(2,8) G.(.) = W-j-^-^^

There is a well known formula expressing the Fourier trans-
form of a function f(^) which is a function of |S| alone as a
single integral involving the Bessel function Jy (18):

(2, 9) f^x) = \x^ FfW^ J^(pM) dp.
ly 0 ^

Formulas (2, 8) and (2, 9) give
*~n /•«oo n/2

G^)=(2.)-2!. 2 ^ ^^J^(p|^p

From this we obtain for a > n, (19).

(2- 10) G^x) = .„_/ • K^^l^l^, (20)
2 2 ^Tf-^-) 2

\ 2 /
where Ky(z) is the modified Bessel function of the third kind.
It will be shown that if G^(x) is defined by (2, 10) for all a > 0,
then Ga is integrable and its Fourier transform is given by
(2, 7), and, in fact, that Ga has all the properties that have
been attributed to it. In the next section some pertinent for-
mulas and properties of the Bessel function Ky are listed.

§3. — Formulas and properties of Ky.

Most of the results listed in this section can be found both
in [10] and in [16], and all can be found in one or the other.

(18) See, for example, S. BOCHNER [3].
(19) Formula 20, p. 24 of [9].
(20) L. SCHWARTZ [14] introduced functions La(|a?|) related to G«(a;) by the equa-

tion G«(a?) = L«/M\ (2TC)-».
\27C/
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The modified Bessel function of the third kind, Ky, is defined
in terms of the more common Bessel functions by

(3,1) K^1-^-1^v ? / 2 smvT:
-i-i-v^

where Iv(z) = e 2 Jy(iz),
and Jy is the Bessel function of the first kind of order v.
The above formula for Ky for v an integer should be under-
stood as a limit Ky == lim Ky+e.

e^o
The functions Ky and Iy are defined for complex values

of v and z, but we shall be concerned only with real values of
v and positive real values of z. The function Iy (the modified
Bessel function of the first kind) has the series expansion

00 f-U-2-

<3.2) ^-l̂ +'.+l)
from which it follows that Ky(z) is an analytic function of
z except at z = 0, and for z =/= 0, Ky(z) is an entire function
of v. Obviously

(3, 3) K_v(z) = K,(z).
From (3, 2) it follows immediately that

(3,4) Ky(z) ~ y-^^z-" (21) as z-^0, for v > 0,
Ko(z)~logl/z as z^O.

It is known that

(3, 5) Ky(z) ~ f^-Y e-1 as z -> oo for all v.
\2z/

The following integral formula holds.

/ 1 V'2 v .
( - Q ^ z e /.» v-L/ 1 \"-T

^'^ ^^T^y^^ 2(l+^) '(
\ 2 /

/or z>0, v > — ^ •

(21) As usual, we write f(z) ~ g(z) asz^aif l im^^l .



416 N. ARONSZAJN AND K. T. SMITH

We shall also need the differentiation formula

(3, 7) (ld-\m[z-^{z)] = (-irz-^K^z).
\ Z CvZ /

We mention also the differential equation of second order
satisfied by Ky (which can be deduced easily from (3, 7)
and (3,3))

(3, 8) ^ (^K,(z)) + (2^ ̂  (.-K,(z)) - .-K,(z) = 0.

§ 4. — Formulas and properties of O^.

The kernel Ga is defined for a > 0 by

(4, 1) G^)= „„_/ K^{\x\)\x
2-^-^r/a^ 2

\z /

Most of the necessary formulas and properties of Ga are almost
immediate consequences of the corresponding formulas and
properties of K^_a. They are listed in this section.

2

The kernel Gy,(x) is an analytic function of \x\ except at
x == 0, and for x -=f=^ 0, Ga(^) is an entire function of a. From
(3, 4) we obtain

"̂i-')G^^—————^-^-1 if a<n
2a^2^(^-)\ " ]

(4,2) A^->0 G^)~—————^og1

c\^, i ^/<»n / ft \ iu/\71 \ " X^-^^(n\\ 2 /
p/a_^ra\

\—2—/
G,(.r)- v . / if a>n,

2-,-r(t)<-k~ ~;t»T-1 / OC \
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and from (3, 5) we obtain

(4,3) asM^oo, G^)~^-—————|a;|a=^-M.
2 ' - 2 ^f)

Clearly Ga is a function of \x\ alone; it will sometimes be
convenient to write Ga(r) for Ga(rc) with \x\ = r. With this
notation (3, 7) gives

(4, 4) j-G^r) = ^,_71 . . r^K^^r).dr a \ —r2 2 TC»/T(—

Hence for a > 1, there is a constant c such that

(4, 5) ^1 ^ c[G,Cr) + G,_^)].
0^

Formula (3, 6) shows that all Ky, and therefore all Ga, are
everywhere positive; (4, 4) then shows that Ga is a decreasing
function of |o;|. Formulas (4, 2) and (4, 3) show that Ga is
integrable.

Since Ga is integrable, the Fourier transform Ga(^) exists
for each ^; as a function of a it is analytic for a > 0.
Therefore, from (2, 7) we obtain by analytic continua-
tion

(4, 6) Ga(^) = (2^ (1 + ISI2)-^2 for a > 0.

A simple consequence is

(4, 67) /Ga(n0 dx = (2^Ga(0) = 1.

From (4, 6) it is evident that the following composition
formula holds.

(4, 7) Ga+p(^) = Ga* Gp(^) -^(^Gp^ — y) dy.

We give now a mean value theorem similar to the Frostman
mean value theorem for the kernel jcZ;)11""71.

1) For each r^ > 0 there is a constant c (depending only
27
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on To, a, and n) such that for every point z, every sphere S(a?, r)
with r^ FQ, anrf e^ry function g ̂  0,

(a) IS /̂.,.,,̂ -̂ '̂ -̂'1)-

w iS^X.,̂ ^ '̂'

(c) îsob)!̂ ..̂ '̂ ''"'30- '̂-
We use here the notation Gag introduced in (2, 5). When

g ̂  0, Gag(^) will be considered as defined everywhere possi-
bly with the value + oo.

PROOF. — Parts (&) and (c) are obvious consequences of
part (a), and part (a) is an obvious consequence of the special
case in which x = 0. This special case can be formulated as
follows : if f^ denotes [S(0, r)|~1 times the characteristic func-
tion of S(0, r), then for every x

(4,8) f^ G^x) ̂  cG^x) for r^ r,.

From the composition formula (4, 7) it is seen that (4, 8) has
only to be proved for small values of a, in particular, for
a < n. To simplify the notation we shall suppose 7-0 = 1.

By using (4, 2) and the fact that x^^ and G^{x) are both
positive we obtain the existence of positive constants c^ and
Cg such that

c^x^ ̂  G^x) ̂  c^x a-" for \x\ < 3.

Hence (4, 8) holds for \x < 2 (with 7-0 = 1) if and only if it
holds when G^{x) is replaced by \x\v-n. That it does hold
in this case is the assertion of the Frostman mean value theo-
rem (22). For \x\>,2 we have, since Ga(^) is a decreasing
function of \x\,

^(•^sup^^ î̂ l.G.{x) ==^F G,(p)
u—

(̂ aW °^2

T A 1 T^ . . 1(22) 0. FROSTMAN [11]. In the Frostman theorem the constant c is independent
of 7-0. From the exponential decrease of Ga(p) as p —> x>, it is easy to see that such
is not the case here.
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The supremum on the right side is finite, since Ga is continuous
and positive and since, by (4, 3),

,. G,(p — 1)llm r t.\ = e-?•*-«> "a^P)

COROLLARY. — If i Cp \ is a family of regularizing functions,
there is a constant c such that for every point x and every function
g>0

(o) G^*e,{x)^cG^x)
(&) (Gag)*^) ̂  cG^g{x)
(c) lim(G,g)^p(a;)==G.g(a;).

p^o

PROOF. — Part (a) follows from (4, 8), since

x^)=p-7l^^cf^).

The other parts follow from (a).
With the aid of the kernels Ga we can give the other direct

expression of ||u||a for 0 < a < 1 promised earlier. From
(1, 10) we obtain

^
ism-^Zo[u{x)+u{y)]

1 2

^ r°° F ^ +cos^z,[u{x)—u{y)]
-nr-n-^1 I I ——————————n^^-dxdyd^u
C(n+l, a)J_,J^jK- ^_y^^———

^
^ r" r r l^+^l2®1112^2"

=p7—r.—^ ( | ————————n^r^dxdyd^C(n+l,a)J_,J^^^_^^_^—^
^

A r00 r r l^)—^)!20082^^
+p7—rr^l I —————nTT^a^y^o'C(n+l,a)J_,J^K. ^_^^^_^_

Integration with respect to Zo yields the kernel G^i^a for
the space R1. By using (4, 1) this kernel can be transformed
into the kernel Ga^aa tor the space R71. Making these trans-



420 N. ARONSZAJN AND K. T. SMITH

formations and using the formula (1,3) for C(n + 1, a) we
get

(4, 9) |H|^ = y^-T^ + a)r(l + a)

r8—— ff|^) + uW^——^-^^-^d.d.
L 71 JJ 1 v / ' v ^7 / l |^——y]n-2a alra?/

+slI-Ta rri.^_^)pG^.a(o)+G^^-^ .
^ JJ ' ' v" / l ja;_yjn-^a axcty^

REMARK. — It is easily seen that the first term in the square
brackets is equivalent to the L2 norm of u, the second to da,(u).

Another interesting formula for |ju||a, 0< a< 1, is the fol^
lowing

(4, 10) IMIl == w^ +^ fd^G^-yW) dy.
^ T + a

The Dirichlet integral d^ is taken with respect to x. Beside
the formulas used above, we apply here the composition for-
mula G,^^=G^a*G,,,.

We give now an important formula connecting Gy.{x_y)
with the Laplace operator A. It will be convenient in this
connection to extend the definition of Ga to all real a by
formula (4, 1). This gives for all even integers a^O a func-
tion Ga identically 0.

(4, 11) For fixed y and x=/= y,
{1—^G^x—y) == G^{x~y).

To prove it, we use y as origin and apply the elementary
formula for A/ where / depends only on r = ja;_y\:

w-^w+^iw.
We get therefore

(l-A)G^-y)=G^)-^^G,(r)-^G,(r).

Comparing with (4, 1) and (3, 8) we transform the right-hand
0 J

side into —^-^G^r) and by (3, 7) and (4, 1) we see that
it is = Ga_,(a;—y).
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As corollary we have for all positive integers m
(4, 11Q {t-^G^x-y) = Ga-^-y).

The function G^{x—y) is a fundamental solution for the
operator (1 —A)7" (more will be said about this in section 7).

5. — The perfect functionnal completion of <?̂a*

It will be shown that the normed functional class <?a has
a perfect functional completion. For a > 0, the exceptional
class for the perfect completion is the class of sets on which
a potential Gag of a square integrable function g can be unde-
fined; the functions in the saturated perfect completion are
those which are equal except on an exceptional set to such a
potential.

For a > 0, let Siga denote the class of all sets A such that
for some square integrable function g ̂  0,

(5,1) Ac:E[Gag(rr)=+oo],
x

and let P01 denote the class of all functions u, defined exc. 3laa,
such that for some square integrable function g,

(5, 2) u{x) = Ga.g{x) exc. ^a.

Since the kernel Ga is integrable, it follows from a standard
theorem on products of composition that for every square
integrable function g, Gag is defined and finite almost every-
where and is square integrable. In particular, every set in
Stga has Lebesgue measure 0. Furthermore, the Fourier
transform of Gag is

(5, 3) (Gag)'(^) = (2^2 Ga(S)g(^) = (1 + ^ T^),
which shows that (23).

(5,4) UGaglla = ||g||l. if gelA

Formula (5, 4) shows that if g e L2 then the following condi-
tions are equivalent: (a) g == 0 almost everywhere; (&) Gag
is identically 0; (c) Gag = 0 exc. ^a; {d) Gag == 0 almost
everywhere; (e) [|Gag||a==0. Indeed, it is obvious that each

(23) We use here the expression (1, 9) for ||iA||a.
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condition implies the one following, and by (5, 4), (e) implies (a).
Henceforth, P01 will denote the normed class in which the
norm is |JM[]a.

1) Siga is an exceptional class. P01 is a complete functional
space relative to Slaa.

PROOF. — In order to prove that ̂  is an exceptional class
it must be proved that 3t^ is hereditary (that is, that if A e ̂
and B C= A, then B e 81 )̂ and cr-additive. The first is obvious.
To see the second, if A^ e ̂ , let ^ be a function > 0 in L2

such that

A»<= E [GagnW =+ ^] and \\gn\^^2-\
Then, if

00 00A = U A" and g = 2 ̂
n==l n=l

clearly g is a function > 0 in L2 such that (5,1) holds, so A e ̂ .
From the equivalence of (a) — (e) above it follows that P01

is a normed functional class rel. 81̂ , i.e. that the conditions
u === 0 exc. glaa and |]u||a = 0 are equivalent. From (5, 4) it
is obvious that P01 is complete. By definition P01 is saturated.
All that remains is to prove the functional space property.

From any sequence converging to 0 we can choose a sub-
sequence \u^\ such that

J!>n||a<00.
n==l

If u^ == Gagn except on the set A^ e 81 ,̂ let

^)-2i^)i.
n= l

Then g e L2, and by the Lebesgue convergence theorem,
Gagn(^) -> 0 for every x < Ao = E [Gag(^) == + oo1. Hence

x
00

Un(x')->0 for every x not in the set \J A,,, which belongs to ̂ ,.
n=o

This proves the functional space property, and the proof of 1)
is complete.

As was mentioned before, the norm |]u||a is obviously equi-
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valent to |u|a. Henceforth in this chapter we will consider
9y. as provided with the norm ||u||a. The set functions S, c^,
Cg, etc., are formed with this norm.

2) P01 is the perfect functional completion of 9g^.

PROOF. — In order to show that 3?ac P°S let u e ̂  put
g == (1 + l^l2)^2^, and let g be the inverse Fourier transform
of g. Since u is in C^R"), g is obviously both integrable and
square integrable, so that g is continuous, bounded and square
integrable. Therefore, Gag is continuous and in P01. Since
u == (Gag)^, it follows that u=Gag almost everywhere, but
since both functions are continuous, u = Gag everywhere.
Thus ueP01, and so S^P01.

Let ^a denote the closure of ^a in P01- ^a is a functional
completion of S^a of the type considered in section 2, and it
must be shown that 9y, •== P01, and that this completion is
perfect. Since for each u e P^ j|u||a is finite, it follows from 5)
section 2, that each u e P01 is equal almost everywhere to some
v e i^. Both u and v are in P01, however, and so from u == v a. e.
follows \\u — ^[|a == 0, and hence u = v exc. 8laa- Thus 3a == P^
All of the results of section 2 are now applicable to P01.

Finally, we show that if A e Siga and if S is any sphere, then
there exists a Cauchy sequence in ^a which converges point-
wise to + oo everywhere on A f1 S. This will show that
A ft S, and hence A itself, must be an exceptional set for any
functional completion of 9^ and this will complete the proof
of 2). By 6), section 2 (take y e Q° and == 1 on S), it is suffi-
cient to show that there is a Cauchy sequence \u^\ in P01

such that u^ is of class C°° and such that u^(x) —> + oo at
every point of A. The existence of such a sequence is given
by the following proposition.

3) Let i Co j be a family of regularizing functions. If u e L2,
then Up = u * 6p is of class C°° and belongs to P01 for all a. If
u e P01, then ||uc|[a ̂  IH|a ^^ Up->u &ot/i in P^ and pointwise
exc. SSga. Moreover, if u == Gag wAere g ̂  0, (Aen Up -> u
pointwise everywhere.

PROOF. — It is clear that Uo is of class C°°. For the Fourier
transform of Up we have

u )̂ = w'^w = w^w.
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Since e is of class Q°, it follows that the product of e with any
polynomial is bounded, and hence ||uc]|a <^ °o so that Us e P01

for all a.
If u e P^ then

Wa =/(! + (Sl2)^)^)!2 W^Hu ,a - , ̂  ,„ )1(2^(pS;)|2 u^)]^^|]u[||

since |^)|^ (2^2.
Finally, if ^ = Gag with geL2 , then u? == Ga(g*<?p). It

is well known that when ge L2, g*^o e L2 and g*^o converges
in L2 to g. Hence | u? ^ converges in P01 to u. If g ̂  0, then
by the corollary to the mean value theorem in the last section
Up —> u pointwise everywhere. It follows that whether ^ > 0
or not, u^x) —^ u{x) at every x such that u{x) == Gag(^) is
defined, i.e. pointwise exc. 3laa-

4) P01 15 a proper functional space if and only if a > —• If
2i

a>— anrf m is an integer < a——, then every function in
2i Zt

P01 is of class C^.
nPROOF. — If a ̂ —, then, by (4, 2) Gy,{x—y) as a function
JL

ot y is not square integrable, and there exists a square inte-
grable function g ̂  0 such that

• fG^{x — y) g{y)dy = + oo,

which shows that the set \x\ belongs to ^a* On the other
hand, if a > -o? then, by (4, 2) and (4, 3), Ga is square inte-

JL
grable, so for every square integrable function g, Gag is defined
everywhere and is a bounded continuous function. The second
statement is proved by making use of (4, 4) and a similar
argument. It can also be proved easily by Fourier transforms.

It can be shown that the exceptional class Siga is precisely
the class of sets of capacity 0 for the capacity Ci associated
with the space P01 (24). This result depends on the strong
majoration property defined in section 3, of chapter i.

5) P01 has the strong majoration property.

(a4) From now on, S and 8 are the class of sets and set function associated with P°1

(not as earlier, those associated with ^a). The capacity c^ associated with P" is
the same as that associated with ^a.



THEORY OF BESSEL POTENTIALS 425

Indeed, if u = Gag and if u' = Ga|g|, then u\x} ̂  |^(^)|
exc. ̂  and ||u'||a = |H|a.

6) If Be &, ^M Ci(B)<oo. If Ci(B)<oo, then B e g
and there is a function g^O in L2 5ucA (Aa( u== Gag satisfies

(5, 5) u^l on B ercc. 3laa ^̂  |H|a == S(B) == Ci(B).
All the assertions follow from the general theory in chapter i

(propositions 2 and 3, section 3) except the fact that the
minimizing function u is equal to Gag with g ̂  0. But if
u = Gaf, take g == \f\.

It is evident from 6) that
7) ^a i8 the class of sets of capacity 0 for the capacity c^.
Before beginning a detailed study of capacities we record

one additional consequence of the general theory (chapter i,
§3,3)).

8) If B is the union of the increasing sequence |B^j, then
Ci(B) = lim q(B,).

REMARK. — It was mentioned in the footnote to proposi-
tion 1, § 2, that the perfect functional completion of SQ is L2.
In order to maintain a systematic notation we shall sometimes
use P° to designate L2 and 3lo to designate the class of sets
of Lebesgue measure 0. It is not difficult to prove (see [1])
that the set functions associated with P° satisfy

S(A)2=^(A)2=c,(A)=|A|.

§ 6. — Capacities.

A theory of capacity of the classical type rests ultimately
on the use of positive pseudo-reproducing kernels. In the
classical theory of Riesz and Frostman of capacity of order 2a
the kernel is the Riesz kernel (1, 7), which is the pseudo-repro-
ducing kernel of the completion of Co^R") with respect to the
norm \/d^. In the present theory the kernel is Gga? which
is the pseudo-reproducing kernel for P01 (25). In the first
part of the section we assume a > 0.

(25) It is not necessary that the reader be acquainted with the theory of pseudo-
reproducing kernels. The necessary details will be given fully. Some additional
results on this subject can be found in [2].
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The capacity of order 2a of a compact set C is defined to be
the number y2a(C) determined by

(6, 1) ^ = M^G^x-y) ̂  {x) d(x (y),

where the infimum is taken over all positive Borel measures
on C of total mass 1. The inner capacity yL(A) of an arbi-
trary set A is the upper bound of the capacities of the compact
sets C C A. The outer capacity yL(A) of an arbitrary set A
is the lower bound of the inner capacities of the open sets G^D A.

REMARK 1. — The standard capacity of order 2a -< n is
obtained in the same way by simply replacing the kernel Gga
by the Riesz kernel (1, 7). The standard capacity yga is easily
seen to be invariant under translations and rotations and to
have the following property with respect to a homothetic
transformation with ratio (: yaa^C) == ^"^^(C). Our pre-
sent capacity obviously retains the invariance under trans-
lations and rotations, but it does not have as simple a behavior
with respect to homothetic transformations. It is easy to
show by means of (4, 2) that the following relation holds
between our present capacity and the standard capacity:

Iim^-y^C)=^(C),
t-^o

for every compact set C. Corresponding statements hold
for the inner and outer capacities of arbitrary bounded sets,
and in each case the limit is uniform when the diameter of the
set remains bounded.

A capacity of order n has been studied under the name of
logarithmic capacity, studied rather extensively in the case
n == 2 and rather sketchily for larger n. The logarithmic
capacity is obtained as above by replacing the kernel G, by

the kernel log —. ? where r is any number larger than the dia-
\x\

meter, of the set C. The resulting set function Yn(y, C) is
then defined for all compact sets C of diameter 5^ r. Some-
times the set function

,.(C)=,.xp(-^),
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which is independent of r, is used in place of the logarithmic
capacity.

It is clear from (4, 2) that for each r there is a constant c
such that

-^U^^^^q^^q
c

holds for every compact set C of diameter <^ r. The exact
limiting relation corresponding to the one given above for
Yaa and -j^a is a little more complicated in this case.

If •y is Euler's constant, we have
,. ^-S^T^) , 1 ) . , r , 1
'""j T.('C) -'^Tt+'^+^T-.^

for every compact set C of diameter <^ r. Equivalently
1 I 9n-l'7rn/2^Vy^/9^ }-I. r» v - 1 - \ ^ < f c L ^ / & / ^ / / " l f^\h^-T-^expj- ^/^^(C)

for every compact set C. To establish these relations, an
improvement of (4, 2) is needed, namely

" ^°- ^-F^.^^^f+^l1-!'-')"-
Since Ga(r)/Ra(r) (with 0 < a <; n) is decreasing for 0 <; r <^ oo
from 1 to 0 (using (3, 7), (3, 3), (3, 4) and (3,5)), we obtain for
sets A of diameter <^ r

%(A)^y°,(A)^j^%(A);

hence the sets with Y2i(A) = 0 are the same as those with
T°a(A) = 0.

REMARK 2. — Comparison of our potentials with the Riesz

potentials of the same order a < -^ shows that locally the
2i

(2e) The first part of (4, 2) can be improved to

r("^1)
a^x-^O, G^} =^^|^1.-» + 0 (max(|.«f-"^ 1))

for a •< n, but this will not be needed.
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potentials are the same, but globally (because of the exponen-
tial decrease of Ga) the Riesz potentials form a larger class
(see Remark in § 9). Consequently, there are many state-
ments which are true for the functions in P01 and untrue for
the Riesz potentials. For instance, every function in P^
is square integrable, along with all derivatives of order <^ a.
Also, the product of a function in P01 with a bounded function
of class C<01*'1) is in P01 (see 6) §2). In addition, the proofs
of many common theorems are simpler for P06. On the other
hand, several of the formulas become more complicated due
to the fact that Gga is not homogeneous — for instance, the
formulas in Remark 1 and those in proposition 20) below.

The potential of a measure with respect to the kernel Gaa
is defined as follows (27)

G^W = fG^{x—y)du.{y).

Ggap1 is defined everywhere, provided + °° is admitted as a
value, and is lower semi-continuous. Of primary interest
are the measures (J. for which the 2a-energy

(6, 2) IHJL - fj G^x — y)d^x)du,{y) = f G^dy.

is finite. However, we shall begin by proving a few results
about arbitrary measures.

If a is a measure with finite total mass, then, by (4, 6'),

(6, 3) fG,^{x)dx = ff G^x — y)d^{y)dx = K

and in particular, GaaO is finite almost everywhere and is
an integrable function. By using this and (4, 3) the following
result is easily proved.

1) If pi is a measure such that

(6, 4) /(I + \^'~^~'e^d^x) < oo

then Gga^ is finite almost everywhere and is integrable over every
bounded set. If (6, 4) holds and 2a > n, G^u. is finite and

(27) Henceforth the term measure will refer to a positive Borel measure unless
otherwise stated. If (A is such a measure, |(JL| == p.(R") is its total mass (possibly
-(- oo). A set E is said to be a support of |JL if pi.(R" — E) == 0; a support need not
be closed.
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continuous everywhere. If (6, 4) does not hold, then Gga^ is
identically + oo.

The following result does not require proof.
2) The mean value theorem (proposition 1, § 4^ holds for

potentials Ggap. as well as for potentials Gag.
The next two propositions were proved by Frostman [11]

for the Riesz kernel. The proofs given here are quite similar.
3) Let (A be a measure with a compact support C. There is

a constant c (depending on the diameter of C, a, and n, but not
on u.) such that if G^y.{x) ̂  1 a. e. (pi) (28) then G^{x) ̂  c
everywhere.

PROOF. — Since Gaa^ is lower semi-continuous, the subset
F of C on which G^ ̂  1 is closed, and by assumption F
contains a support of pt,. If for an arbitrary point x, x
denotes a point in F closest to x, then for any point y e= F,

1 _ / 1 - \\x—y\>,-^\x—y\. Hence, G^(x— y)^G^(-^ {x—y}\z ^ \ z /
By (4, 2), there is a constant c (depending only on the
diameter of C, a, and n) such that for every p<i the diameter
of C, G2a(p/2)^cG2a(p). Thus, we have G^y'{x)^cG^(x)^c.

4) If Ggap- is continuous on a closed support of (x, then Gga^
is continuous on R".

PROOF. — In view of proposition 1) we may assume 2a<ln.
This implies that if (^(^o0>0? Gga^-^o) = + °°? hence,
by our hypothesis, ;x cannot have point-masses. Let F be
a closed support of p. on which Gaap1 is continuous and let XQ
be an arbitrary point. For each n, write pi == ̂  + ̂ , where
p.̂  is the restriction of p. to the sphere S(a;o, l/^)- Since
p.(^oj) = 0, it follows that G^{x) == lim G^nO^) tor each x.
Therefore, if for arbitrary £ > 0,

On = F n E [G^n{x) > G^{x) - e ],
x

00

then F == | j 0^. Moreover, 0^ is relatively open in F, for
n=l

Ggap1 is continuous on F and Ggap^ is lower semi-continuous.
Consequently for sufficiently large n, 0^ contains FnS(a;o? 1)?

(28) a.e. (p.) means « except on a set of p-measure 0 ».
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and, therefore, for sufficiently large n, G^^n ̂  €s on F fl S(a;o? 1),
and by proposition 3, G^^n ̂  c e everywhere. Thus

Gaa(4 -> G^^20^71 -^ ^20:-

uniformly, and since each G^^n is continuous at XQ, so is G^y..
We turn now to measures for which the 2a-energy defined

in (6, 2) is finite. The class of such measures will be called Qga.
Note that (6, 3) shows that Qga contains the restriction of the
Lebesgue measure to any bounded set.

5) The following conditions on a measure [A are equivalent.
(a) (AeQ^.
(&) Gap. is square integrable.
(c) G^eP^.
(d) Every function in P* is ^-integrable.
(e) Every function in P01 is [^-integrable, and the integral

is a continuous linear functional on P01.

PROOF. — The composition formula (4, 7) gives

Gaa^ == GaGap, and []^|]2a = \\G^\\^ and
(6, 5) fGa,gd^ = fG^(x)g(x)dx for any g>,0.

It follows that pi e Qga if and only if Ga[^ e L2, and that
Gap- s L2 if and only if every function in Pa is pi-integrable.
Therefore, (a), (&), {d) and {e) are equivalent and imply (c).

If (c) holds, then for some g e L2, Gag = Gga^? and for every
f^ 0 in L2 we have,

fGa.fgdx = fG^gfdx == fG^ fdx = /G^f Go ̂ dx.

Hence, for every f e L2,

fG^fgdx=fG^fG^dx,

and since f can be chosen so that Gajf is an arbitrary function
in C?(R71), it follows that G^ = g a.e. Therefore, Ga^e L2.

The third formula in (6, 5) gives the equation which expresses
the reproducing property of Gaa.

(6, 6) For every u e P01 and a e Q^, J^ ̂ a = (u, G,^),(29).

(t9) (w, v]s. denotes the inner product in the Hilbert space P".
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6) If p. and v belong to Qga and if Ggajx ===, Gga^ aZwo5( e^ry-
where, then (JL = v (30).

PROOF. — For every feL2 (first for f^O, then for all
f^U) -

fG^fdy. == fG^fdx = fG^fdx = fG^fd^

and /* can be chosen so that G^f is an arbitrary function in
Co^R").

Proposition 6) (and the second equality in (6, 5)) show that
||(x[|ia is a positive definite quadratic form on Qga- If (^, v)sa
denotes the corresponding bilinear form, then

(6, 7) (^ ̂  = fG^{x — y)d^{y)d^(x) = fG^{x)d^x)
= fG^{y)dv.{y) = {G,^ G^),.

By virtue of 6) and (6, 7) the correspondence between the
measures of finite 2a-energy and their potentials is 1-1, linear,
and inner product preserving. In order to simplify the nota-
tion, we shall use the same symbol Qaa to denote both the class
of measures of finite 2a-energy and the class of their potentials.

7) Qaa is a closed convex cone in P01. The subspace generated
by Qaa is dense in P01 (31).

PROOF. — It is obvious that Qga is a convex cone. If u^ —> u
in P", where u^ = G^n, then for each v e C^R")

(^ ^)<x == lim(^, uja = lim fv{x)d^{x).
n->ao n-^oo*7

Hence, if p ̂  0, then (^, u)a ̂  0, and by the well known
theorem of Riesz on the representation of non-negative linear
functionals there exists a measure (A such that

(6,8) (^ u)^=f^x)du.{x) for ^ (^(R71).

In general, if a sequence |p^j of measures is such that

f v {x) rfpi {x) = Km f ^x) d^ {x) for v e ̂ (R"),
n-^oo —

(80) The same statement can be proved (by a different argument) when m and v
are only supposed to satisfy (6, 4).

(31) For RIESZ potentials this result is due to H. CARTAN [5, 6] and J. DENY [8].
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then for every non-negative lower semi-continuous function ©

f <p{x) dy. {x) ̂  lim infj^y (x) d^ (x).

Applying this remark first to 9 = Gga and then to 9 = GgapS
we get

| ]^[ laa ̂  lim inf | |(J.J |̂  < oo,

so ^ e Q^. By (6, 6) and (6, 8), (?, u)a = (P, G^(JL^ for every
^ e C^R"), and since such v are dense in P01, u = Ggap. e Q^.

Finally, to see that the subspace generated by Qga is dense
in P01, we observe that if a function u e P01 is such that

J u d^ = 0 /br aM pi e Qg^,

then, since the restriction of the Lebesgue measure to any
bounded set belongs to Qga? the mean value of u over every
sphere is 0, and by the mean value theorem (proposition 1,
§ 5) u == 0 exc. 81̂ .

For each set A in R", Qgo^A) will denote the class of measures
(^eQ^ which are supported by A (i. e., (Ji(R71—A) = 0), as
well as the corresponding class of potentials. It results
from 7) that if A is a closed set then Q2<x(A) is a closed convex
cone, and if A is any set Qaa(A) cQ^A). It is obvious from
the definition that every restriction of a measure in Qaa(A)
belongs also to Qaa(A). A similar statement is needed for
r\ / * \
Q.a(A). _____

8) Iff is a bounded non-negative Borel function and (A e Q^(A)
then the measure p.y defined by

^}=f^Wd^x)

belongs to ^20 (A). In particular, the restriction of ^ to any
Borel set belongs to Q^{A).

PROOF. — We prove first that 8) holds when /eC^R").
Since (x e Qaa(A), there is a sequence [^ in Qgo^A) converging
to [A. It is clear that

IMl-̂  (sup f)\\^
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and for every p e C^R")

(^ G )̂/)a -J^n)/ = f f^ d^ = (̂ , G,̂ ),

-> (/^ G^)a = (^, G /̂)a.

Therefore, Gga^Jy -> Gaa^-/ weakly, and asQ^A) is closed
and convex (hence weakly closed) Gga^/e Qgo^A), which proves
8)if/eCo-(R).

Now, it is well known that there exists a uniformly bounded
sequence \f^\ in C?(R") such that ^->/* a.e. (a). Then for
every v e Pa

(^ G /̂Ja :==fyfnd^->fvfd^= ((/, G^a^a.

Therefore, Gga^-^Gaapt./weakly, and as before Gga^/s Qga(A).
Next we describe the process of sweeping or balayage. If

A is any set in R71 and if v e P01, then, since Qga(A) is closed
and convex, there is a unique u = Gga^ e Qgg(A) which realizes
the minimum distance form v to functions of ^(A). This u,
or the corresponding measure p., is called the result of sweeping
v onto A. Simple and familiar arguments show that if p.
is the result of sweeping v onto A, then (Ggap-—^, Gga^a^O
for every v e Qga(A), and (Gaaf^—^, Gaap-)a=0. The inequality,
combined with proposition 8), shows that Q^^v a. e. (v)
for each v e Qg^ (A); and then the equality shows that
G^a == v a. e. ((A).

9) Le( (x &e (Ae result of sweeping v onto A. T/ien
(a) Gaap-^^ a. e. (v) for each v e Qaa(A).
{b) G2a^=^ a. e. (p.).
(c) J/*A 15 ei(/ier open or closed, G^^v on A exc. ^a.
(d) J/* A is open and v is continuous on A, Gaap-^^ every-

where on A.

PROOF. — Parts (a) and (6) have been proved already.
Part (d) and the half of (c) which is concerned with open sets
follow from the mean value theorem. »

To prove the remaining half of (c), let A == Q D^, where
k=i

00

the D» are open and D^CD,,-,. Then Q2«(A) = Q Q2.(D»),

28
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from which if follows easily that if p^ is the result of sweeping
v onto Dfc, then Gga^ "̂  Gaap- By what has been shown,
Gaap-fc^^ on D^ exc. Slaa. Hence Gga^^^ on A exc. Siga?
and by the functional space property, Gga^ ̂  ̂  on A exc. Sl^a-

If A is a bounded set there exist functions in P01 which are
equal to 1 everywhere on A. The measure (AA that results
from sweeping any such function onto A is called the capaci-
tary distribution of A. The corresponding potential UA == Gga^A
is called the capacitary potential of A (32).

10) (a) UA^I a.e. (v) for each ve:Q^(A); in particular,
UA ̂  1 on A a.e. (v) for each v e Q^-

(b) UA == 1 a.e. ((J.A).
(c) There is a constant c depending only on r, a, and n such

that if the diameter of A is ̂  r, then UA ̂  c everywhere.
{d) |̂ | = n l̂lL = \M.
(e) If A 15 open, UA ̂  1 everywhere on A.
(/>) J/*A is closed, UA ̂  1 on A ercc. ̂ a.

PROOF. — Parts (a), (&), (e), and (/') are direct consequences
of 9). Part (c) follows from part (&) and proposition 3).
Part (d) follows from part (&) and (6, 6) and (6, 7).

The next proposition, which shows that UB can be taken for
the function u of proposition 6), § 5 and that the normalized
capacitary distribution realizes the minimum in (6, 1), is the
first step in showing that the relations (q)2 = Cg == y^ hold.

11) If C is a compact set, then UG minimizes the expression
|H|̂  among all v e P01 such that ^^1 on C a.e. (v) /or eacA

v e Q^. Moreover, -rc- realizes the minimum in (6, 1), and
\W

iMr.^ii^iiia^i^i^s^^Y^c).
PROOF. — If v ̂  1 on C a.e. (v) for each v e Q^a? then in

particular v^l a.e. (p.c). and hence

IMa = |^c| ̂ fvd^= •^ Uc)a ̂ ||̂ |.||uc||..

Therefore, ||̂ c||a ̂  ||^||a? and the first part of 11) is proved.

(8a) Is is easily seen that p.̂  and u^ are independent of the particular function which
is swept onto A.
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From this and 10)-(/') it follows that Uc realizes the minimum
in the definition of S(C) (33) which gives

\M=\\^=\^\=W.
If veQ^(C) and |v| = 1, then by 10)-(a)

1 == \^\^fucd^ = ((AC, ^a^Hp-clUHk.

Thus,

^'-ML
while if v == ̂

\^\'
IU|2 __IM«__ i __ i
Mta- |p.c|2 ~|[xc| IM.

This shows that -^c-, realizes the minimum in (6,1) and that
IM ^

the value of the minimum is as stated.
12) If A is a set F^, then vL(A) = Ci(A)2.

PROOF. — By 11) and (5, 5), proposition 12) holds for com-
pact sets. Therefore, by the definition of ^(A) and propo-
sition 8), § 5, proposition 12) holds for sets F<y.

13) For every set A, Ci(A) = inf Ci(D), the infimum being
taken over all open sets D ̂ 3 A.

PROOF. — It can be supposed that Ci(A) < oo, in which
case, by 6) § 5, there exists, g ̂  0 in L2 such that Gag ̂  1
on A exc. gtga and ||Gag||a = Ci(A). For each p < 1 let

Dp=E[Gag(^)>p].
x

Dp is an open set, Dp ̂  A exc. Siga? and

c,(Dp) = S(Dp) ̂ ^(A) = -^(A).

Let gp e L2 be ^0 and such that ||Gagp|]a = 1 and such that

A—DpC:E[Gagp(^)=+^] . Let Dp^Er^O^1'!-
x x L £ J

(33) We use the fact that, by definition of 9(a» and by (6, 6), each set in ̂ a is of
measure 0 for each v 6 Q^a*
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Then Dp is open and Ci(Dp) = S(Dp) ̂  e . Hence A C D,U Dp,
Dp U Dp is open and

Ci(DpUDp) ̂  ci(Dp) + Ci(Dp) ̂ ci(A) + e .

14) For every set A, y^(A) = Ci(A)2.

PROOF. — It is obvious that if A is open then y^(A) = y[ (A)
Therefore, from 12) it follows that 14) holds if A is open'
From this, 13), and the definition of y^(A), it follows that
14) holds for arbitrary A.

15) IfA=\jA,, then TL(A) ̂  ]^(A,).
k=^ k=l

PROOF. — We first show that if Ci and Ca are compact and
C=C,UC2, then y^C) ̂  y,.(Ci) + ̂ (C,). If ^ and ^
denote the restrictions of y.c to Ci and Cg, then

T2a(C)=|(Xc|^|p4l+|p4|.
On the other hand,

l^l^/^A^lJMcJIJI^.

Since G^ ̂  G^y.c = 1 a.e. (pie), it follows that

G^ ̂  i a.e. (p4)
so that

llfAlll^=/G2,p4^^|p4|.

Combining these inequalities we get

I^I^M^T^Ci).

Similarly, \^\^^(C^.
Now let DI and Dg be open and let D = Di U Dg. It is

well known that an arbitrary compact subset C of D can be
expressed as C = Ci U C,,, where C^ C D^, C, <= D;,, and both
are compact. By what has been shown,

T2«(C) ̂  y^Ci) + ̂ (C,) ̂  y|.(D^ + yL(D2),

and, as C is arbitrary, yL(D) ̂  y^(Di) + ̂ .(D^). If
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00

D == M Dfc, Dfc open, and if C C: D is compact, then for some m,
k=l
m

C C: (J Dk and
k==l

( m \ m <»

T.»(C)^yL (J D*)^SYL(D,)^SYL(D,).
/C==l / k==l k==lVc==l / fc=l tc==i

Therefore, since C is arbitrary

yL(D)^T^).
fc=l

Since the inner and outer capacities are obviously the same
for open sets, this gives 15) for open sets, and 15) for arbitrary
sets follows immediately.

16) For every set A, ^a(A) = ̂ (A).

PROOF. — It A C: H A,, with Afc e ̂ , then
A = l

T°2a(A) ̂  S ̂ a(A.) = S Ci(A^ == ̂  S(A^.

Hence yL(A) ̂  C2(A). On the other hand, if y^(A) < oo,
then y^(A) = c,(A)2 = S(A)2>C2(A).

Because of the above results it is possible to make use of
an important theorem of Choquet [7] on capacitability.
Choquet's theorem can be stated as follows :

Let Y be an increasing, non-negative set function defined on
all compact sets, and let y1 and y° be constructed from y as in
the paragraph after (6, 1). If Y°(C) == y(C) for every compact
set C and if y°(A) = lim Y°(AJ whenever A is the union of the
increasing sequence j |A^, then ^(A) = y°(A), for every ana-
lytic set A.

By 14) we have yL(A) = Ci(A)2. Hence, if C is compact,
then by 11), ^a(C) == Ci(C)2 = S(C)2 == Y,a(C). In addition
if A is the union of the increasing sequence |A^, then by 8),
§ 5, Y^(A) == lim y5S<x(AJ. Thus, the second part of the theo-
rem below follows from Choquet's theorem. The first part
has been proved already.
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THEOREM 1. — For every set A, yL(A) = Cz{A) === Ci(A)2,
and i /*Ci(A)<Qo, Ci(A) = S(A). For every analytic set A,
yL(A)=YL(A).

The several notations for the capacity of order 2a will now
be dropped. Henceforth ^a will denote the outer capacity
of order 2a, i. e., y^ = yL = ^2 == c^. Also Yaa(A) will be
called the 2a-capacity of A. The sets in Siga are the sets of
2a-capacity 0.

REMARK 3. — In accordance with the results which have been
proved here for a > 0 and which were mentioned in the remark
at the end of the last section for a = 0, yo should denote the
Lebesgue measure, and Qo should denote the class of measures
which are absolutely continuous with respect to yo ^d have
a square integrable derivative. The results in the rest of
this section (except 18) which has no meaning for a = 0)
hold for a^O. Many are rather trivial for a = 0, or are
standard results from measure theory. When this is so we
do not take account of the case a == 0 in the proof.

Using the capacitability (i.e. equality of inner and outer
capacities) of &ets G§ we can give another characterization
of the sets in Stga-

17) A e 3(20 if ̂ d only if A is a subset of a set G§ which
has ^-measure 0 for every v e Qg,.

PROOF. — It A e ^Iga? then by definition there exists g^O
in L2 such that

AC=E[G2^)=+^)].
x

The set on the right is a set G§ which has v-measure 0 for every
v e Qga- If AcB and B is a set Gg which has v-measure 0 for
every v e Oga? then for every compact set CcB, ̂ ^C)=\^c\=0'
Therefore, B has inner capacity 0, and by Theorem 1, Ci(B) = 0,
from which it follows that B e 8(20 and hence that A e 34a.

The capacitability of G§5 also gives an improvement of
proposition 1 on the infinities of the potential of an arbitrary
measure.

18) If (JL is a measure satisfying (6, 4) then G^y- is finite
exc. ^20 •
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PROOF. — The proof is easily reduced to the case in which
I J J L J ^ O O . If C is an arbitrary compact subset of

E[G2a^)=+^],
x

then by 10)-(rf) there is a constant c such that Uc^c every-
where. Hence

f Gz^ dy.c = f uc dy. ̂  c\ (x| < oo,

and since Ggap1- == + 00 everywhere on C it follows that
T2a(C) == |(^c| = 0. Thus, E [Gza^W = + oo ] is a set G§ with
inner capacity 0. x

We end this section with some results on the nature of the
capacities yga-

19) For fixed A, y2a(A) is an increasing function of a. If A
is open, y2a(A) is continuous on the left; if A is compact yaa(A)
is continuous on the right,

PROOF. — It is evident that if P ̂  a, then |H|p:^|H]a.
Therefore P^PP, ^C^p, Q,^Q,p(^) and M^llf^.
If 72<x(A) <; oo, then there is a function u e P01 such that u > 1
on A exc. ^a and such that |]u||^ == y2a(A). Since u^l on
A exc. 8(2? we have y2p(A) ^IHIi^lM]^ === T2a(A), which proves
the first statement in the proposition.

If A is compact and £ > 0 is given, let D ̂  A be open and
bounded and such that Y2p(D) < Y2p(A) + £? and let u e PP
be such that u^l everywhere on D and such that |H||==y2B(D).
(u = UD has these properties.) By using Fourier transforms
we get that every regularization Up == u*e? belongs to P01

for all a, and that if p is fixed and a\(3, then |l^c||a\H^p||p.
Let po be small enough' so that u^ ^_ 1 everywhere on A.
Then, as a \ ?, by 3) § 5,

T.a(A)^||upJ|2,\||uJ||^||u||2p=^(D)^^(A)+£.
This proves the continuity on the right when A is compact.

If A is open and e > 0 is given, let C C: A be compact and
silch that Y2<x(A) <; T2<x(C) + £, and let p. be a measure with

j[
support in C such that |(x| == 1 and such that —77^== [Hlicr

Tza^)

(84) In the present case Q^, and Q^ are considered as sets of measures and compa-
red as such.
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Every regularization pip == pi*ep belongs to Q^ for all ? and has
total mass 1, and if p is fixed and (B/^a, then ||^p[|2?\ l l^pl laa (35).
Let po be small enough so that a closed support of ^ is con-
tained in A. Since ||v[[^ = ||G,,v[|a and G^uip == (G^°)o, by 3)
§ 5, as P / a,

T ^ ' ^ l 1 ^ 0 1 ^ ^ 1 ^ 0 1 1 2 2 ^ 1 ^ — — •T20(^ T2a(L) T2<x(A)—— e

The next result is an improvement of a proposition of Bre-
lot [4] on the relation between the capacity of a set A and the
capacity of T(A), when T is a Lipschitz transformation. Later
we shall use the result in cases when the Lispchitz constant
tends to 0 and in cases when it tends to oo. It is well known
that a Lipschitz transformation defined on an arbitrary subset
of R71 with Lipschitz constant M can be extended to a Lips-
chitz transformation on R", with the same Lipschitz constant
(see [13]) so there is no loss in generality in assuming from the
beginning that the transformation is defined on R".

20) Let T be a transformation of R" into R" satisfying
\Tx — Ty ^ M\x — y[ If A. and B = T(A) both have diameter
^ r, then

y,a(B) ̂  M"-201 y^(A) if 0^a<^ and M^l.
n—2a , / r» \o~2~~F/n—2a\

T^(B)^ ^ v 2 ^"-^(A) ^0^a<"-
r 8 K^r)

2

and M > 1.

Tn(B)^————rKH^———-i———— ^ M^L
^——"'^log-y^A)

2»-^»/T(-1) M

T»(B)^(l+—7-.logM)^(A) if M>1.
\ ' • ^ o v ) /

(36) (x, is the measure with density h,[x) = C e,(x—y) dy.(y). Since [x has

compact support, h, is of class Cy, and \\y.,\\^ = f\i +\^)-''\h,\" df.
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PROOF. — Suppose first that A is compact, put B == T(A),
and let 6(A) and C(B) denote the spaces of continuous func-
tions on A and B normed by the upper bound. Each function
y e 6(B) defines a function T*y e (5(A) by the equation
T*9(^) = ?(ToO. Since [|T*9|| = |[(p||, T* is one to one and the
range R(T*) is a closed subspace of C(A). If pl==-L-B- is the
normalized capacitary distribution for B, then n B I

i(r^=f^z)du.{z)
is a positive linear functional on R(T*). By a well known
theorem of Hahn-Banach type, I has a positive linear exten-
sion to 6(A), and by the representation theorem of Riesz,
this extension is given by a measure v on A. Thus, v is a
positive measure on A such that for every continuous
function y on B, and hence for every non-negative lower
semi-continuous function 9 on B.

ff{z) d^{z) =f^{Tx) d^x).

Taking © == Gga, we have

(6? 9) -^ = ̂  = ff^ ~ ̂  d^ d^T2a(B) J J

=ffG^Tx—Ty)d^x)d^y).

Put \x—y\ == p and \Tx—Tz/| == pi. By our assumption
npi <^ Mp, p ̂  r, and pi ̂  r. Now, for 0 <^ a << -- we evaluate

the quotient
2a—n n—2a

G^Tx-Ty)^ 2 K^^)_/p,^^-nP i 2 K——(PO_i___ = ( - s 1 - 1 _____2-
2a—n V ^ / n—2aG^-i/) _2a-'>„ . , \ p

p 2 K,^(p) v r / p 2 K^p)
2 2

By (3, 3) and (3, 7) z^K^(z) is a decreasing function of z.
From this and (3, 4) we get

M201-" if M^l
n—2q

G^Tx—Ty} ̂  r~~^ K^ (r)
G^-V) - M--"^^—————, .7 M>1.2 ^ rf"^0'^
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Combining this with (6, 9) and the fact that [v| = 1 we get
\ Upa-n
l̂ ^M^-IHIî -^1 far M^l,

T2a(B)—— ~~T2a(A) ——
n—2<x

^ r^K^r) ^ ^

W^^T^^T^^^^WA) foT M>1-2 'v^)
Next, consider a == -^- and M ̂  1. Then pi ̂  Mp ̂  p and,JL
by (4, 1) and (3, 7) we have

G^Tx - Ty) - G^x -y)= ———1——^ [KM - Ko(p)]
2n-^/T(-^)

\ 2 /

=———L^rK^)^.
2n-i^^^^-Ypt

\2i /
\

By (3, 7) tKi(t) is decreasing, hence Ki(^)^— yKi(r) for ̂ r,
Therefore, since pi ̂  Mp

G^x - Ty) - G^x - y) ̂  rKl(r) , . log -,
2n-^n/2F/».\ M

\ 2 /

and from (6, 9) and the fact that |v| = 1 we get
1 ^ , , ,,» , rKJr) , 1

—_^|M||,+———— /r,^08^
Y,(B) 2'•-l^tn/2^(-"-)

^ 1 rK,(r) , _1_
-Y^^y.^p/^^M'

\ 2 /
Finally, we show that for M > 1, we have

G.(T.-T^————^G.(.-y),

•K.(r}

which, combined with (6,9) will give the required results
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First if pi ̂  p, this inequality certainly holds, since Gn is
a decreasing function. Suppose, therefore, that pi > p. Then

G»^-t/)-G,(T^-Ty)_K,(p)-K,(p.)_ 1 /^ ̂ .
G^Tx-Ty) K,(p.) - K^)J, Ivlww'

By (3,7), (Ki(() is decreasing, so (Ki(t)^lim (Ki(() = 1.
Since Ko is a decreasing function t->o

G,,{x—y)—G,{Tx—Ty) ̂  _J_ ^ ^_
G^Tx-Ty) -K^r)108 p ^K^r)1^"1

which gives the inequality at the beginning of the paragraph.
Now that we have proved the proposition when A is a

compact set, we see from proposition 8, § 5, that it holds when
A is an F<j, and in particular when A is an open set; and having
the proposition when A is an open set, we deduce immediately
that it holds when A is arbitrary.

COROLLARY. — If A has diameter ̂  r, then

^n-l^nl^(n\

Tn(A)^ rKo(r)K,(r/

PROOF. — Apply the last two inequalities in the proposition

to the homothetic transformations y—>py and y->—y with
any p<l. P

The following result is used in the proof of a generalization
of the Frostman mean value theorem.

21) If p^l we have: for a<-^-
2t

2K,,_gg(2) .
^_^ T2,(S(0,1)) ̂  T2a^^ ̂  y..(S(0,l))

^(r^)
and for a = — 9

2t
2n-^n/.r/"A

Ko(2)^(S(0.1))^^(S(0. p))logt^ K^K\2/-p i\<,(2)Ki(2)
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PROOF. — Proposition 20) applied to the transformations

y->py of S(0,l) onto S(0, p) and y-^^- of S(0, p) onto 8(0,1)

gives the inequalities stated for a << „ and gives2t

^(S(0,l))(l+log4-)
—————v————^^Tn(S(0, p))log-^

l+———log-^ P
^o W P / i \

^(S(0,l))(l+log^)
<_______\___p/

~ 1 + ——Ki(2)/ nX^^04))^V/Tm P
\ 2 /

For 0 <; p <; 1 the left side varies monotonically between
y^(S(0,l)) and ^(S(0,l)) Ko(2) and the latter is the lower bound
since ^K^) == .841... The right side varies monotonically

2n-2^p/n\

between y^(S(0,l)) and — — v — / - ' By the precedingJ\.i(2)
corollary and the fact that Ko(2) <; 1, both of these are smaller
than the constant given in the proposition.

22) There is a constant c > 0 (depending only on a, ?, and

n) such that if O^p^a^— and Ac:S(a;, p) with ?< 1,
then

T2«(A) ^ y,3(A)
T2a(S(^p))— Y2p(S(^,p))

PROOF. — Let A C: S(0, p) and let B denote the image of A

under the transformation y->-"-• Then by propositions 19)

and 20) we have for a <; —
Jj

Y2a(A) > cp'-^B) ̂ cp'-^B^c^Y^A).

In view of 21) this is sufficient to prove our statement. For

a == — the proof is similar with p"""^ replaced by (log-6-} .
z \ P /
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Next we consider subsets of a subspace R^ C: R/1, k << n,
and the relations between their capacities as subsets of R^
and their capacities as subsets of R". Quantities associated
with R* will be primed : thus x' denotes a point of R\ yap
denotes the capacity of order 2(S in the Euclidean space R^,
Staa is the class of subsets A' C: R^ with y^A') = 0.

23) If 2a > n — /c, then for every measure a on R^ and
every subset A of R^

n—_k

Ilî -o.-.̂ 2""̂  L^l*
^-"T")

(6'10) / n-/c\
^-^

T'2a-(n-fc)(A) = ————^———— Y2, (A).

2"-^ 2 r(a)

PROOF. — It is easy to see from (4, 1) that
n—k

(6,11) G;..(..aM = 27'1' ' rw G»(.t'),
^-"T*)

and from this the first formula in (6, 10) is obvious. For
compact sets A, the second formula in (6, 10) follows at once
from the first. The validity of the second formula for compact
sets implies the validity for sets F<j, and then the validity
for sets F<j implies the validity for all sets.

24) //^a;^—/?, then, as p -> 0, ^[8(0, p) ft R^] is of
order p"-201 or of the order———.-/ according as a < — or a == —.

log 1/p Z 2t
If 0 ̂  2a ̂  n — /c, then ^(R^) == 0.

PROOF. — The first part of 24) is obtained by applying 21)
to ^a-G^fc) (S(0, p) n R^) and then using 23).

As for the second part of 24), if in the second equation in
(6, 10) we take A to be any compact subset of R^ and let
2a \ n — /c, we can conclude from 10) that Yn-fc(A) == 0, and
hence that yn-fc(R /c) = 0- Using 19) again, we see that if
2a < n — k, then y^R") = 0.
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The next proposition, which we state without proof, shows
the relation between sets of capacity 0 and sets of Hausdorff
measure 0. It is due to Frostman [11].

If h{t) is a continuous non-decreasing function of (^ 0
with A(0) = 0 and h(t) > 0 for ( > 0, the Hausdorff outer mea-
sure H corresponding to h is defined as follows :

H(A) = lim H^(A) where Ho(A) = inf SA(rf(A,)),
p->-o k

where rf(A^) is the diameter of A^ and the infimum is taken
over all sequences A^ satisfying AdJAj^ and d(A^) <; p.

For a > 0, the Hausdorff a-dimensional measure is the
Hausdorff measure corresponding to h{t) = ̂ (a)^, c(a) a sui-
table constant; the 0-dimensional, or logarithmic Hausdorff

^
measure is the one corresponding to h(t) === ——.-•

We say that H is weak relative to H if og (

r4^^<oo.
Jo ^(<)

(Thus the (3-dimensional measure is weak relative to the
a-dimensional measure if (3 > a.)

Frostman's theorem is as follows.
25) If the (n-2o(.)-dimensional measure of A is 0, then

y^(A) = 0. If ^(A) = 0 then H(A) = 0 for every Haus'
dorff measure which is weak relative to the {n-2oL)-dimensional
measure.

REMARK 4. — In the case a === yi/2 Frostman proves a
slightly stronger statement: if y^(A) == 0 then H(A) == 0 for
every Hausdorff measure with jftt~lh{t) dt<^ oo. The first part
of 25) can be strengthened as follows: if the (n—2oL)-dimen-
sional measure of A is finite then y2a(A.) == 0. This result for
a = n/2 and n = 2 is essentially due to P. Erdos and J. Gillis
[10a] (a simpler proof was given more recently by L. Carleson
[4a]). The proof was extended to arbitrary n and a^n/2
by W. F. Donoghue (as yet unpublished).

It is clear from proposition 20) that if A is a set of 2a-capa-
city 0, then the projection of A on any hyperplane has 2a-capa-
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city 0. To conclude the section we give a partial converse
of this which will be used in the next section.

26) If A. is a set whose projection on some hyperplane of
dimension n-/c, /c^a, has Incapacity 0, then Y2<x-2/c(A.) = t^35").

PROOF. — It is sufficient to consider k = 1, in which case,
by virtue of proposition 20), the assertion is equivalent to the
following lemma.

LEMMA 1. — If A e ^Iga? a ̂  I? then the union of all lines
which meet A and are parallel to the x^-axis belongs to Slaa-a-

PROOF. — First we consider a == 1. In this case, by 20),
the projection of A on the hyperplane x^ == 0 has 2-capacity 0,
and by 23) it has 1-capacity 0 relative to the hyperplane.
Therefore, it has (n-l)-dimensional Lebesgue measure 0.
By a standard theorem in measure theory, the union of
the lines which meet A and are parallel to the ^-axis
must have n-dimensional Lebesgue measure 0, that is, 0-capa-
city 0.

Now assume that a > 1 and that Ac:^[Gag(a?) = + °° ]?
O'^geL2, and put

g(x) = sup— f^'g^', () dt.
h .li v^n,

According to an important inequality of Hardy and Little-
wood [12], geL2 . It will be shown that if x is any point
such that Gag(rc), Gag(o;), and Ga_ig(o;) are all finite, then the
line through x parallel to the a^-axis does not meet A. This
will prove the proposition, because the set of x such that
either Gag(rc), Gy,g{x) or Ga_ig(*r) is == + °° has (2a-2)-capa-
city 0.

From (4, 5) it is clear that if Gy,g{x) + Gra_ig(^) <; oo, then
j^^M g^_y)dy<^. Thus, if G,g(^)<oo, G,g(aQ<oo

(35a) Added in proofs. A stronger result holds due to M. Ohtsuka [13d] : the
hypothesis k^a. is replaced by k^2a. and the thesis f2a—2fc(A) == 0 is replaced by
T2«--fc(A.) = 0. However the weaker result of the text is sufficient for our pur-
poses.
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and Ga_ig(^) <; oo, we have for h=^0

w M^r^r '̂-^^
tOT^---''-'-^1

y"7 f̂ '--'̂ .-,-,..) .̂̂ ,n J x^ JW-'Jw Oyn
r , , , .i r'-^Gji/'^—z,,), , ,,

g{x — y , %„) — ———————"z^ (fen dy' ,
J li J Xa, ^yn

Cg^-y', ̂ jG^^n-^+^-G^^-^);^^,
J ( M ^

G«g(^, ̂  + h) — Gqg(^)|
A |

This shows that Gag(x\ x^ + h) < oo for all A and hence that
no point (a/, ̂  + h) belongs to A.

§ 7. — Differentiability of functions in P06.

The purpose of this section is to characterize the functions
in P01 by differentiability and continuity properties.

THEOREM 1. — Let ueP^ and let |i |=m^a. The deri-
vative D^u exists in the ordinary sense exc. 8t2<x-2m ^nd D;u e= pa-"*.
If u=G^g and m<a, then D,u{x) == C ̂ ^x^^ g^y) dy

»y OX

exc. 8(20-2m- If J is a permutation of i, then ^,u{x) = Dyu(a?)
exc. 8l2a-2m- If w^a—1, D^u is absolutely continuous on
all lines in any given direction except those contained entirely
in a set e ̂ -2m-2 (36)- Finally, the direct formulas (1, 5)
and (1, 10) for dy,(u) and \\u\^ respectively^ are valid for all u e P01

and
( d^(u) = ̂  d^{D,u),

(7,1) 771

^-2(*")2iM
/C=0 7J

Ui=^

(86) A function is absolutely continuous on a straight line if it is absolutely conti-
nuous on each finite interval of the line.
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PROOF. — By using Fourier transforms we deduce that
there are potentials Uj e= P01""^'! such that iij = i^^u and, when
replacing DjU, they satisfy (7. 1). Furthermore, we see
immediately (by passing to Fourier transforms) that the

^
difference quotient -, [uj{x^ ..., ^ + A, ..., x^) — Uj{x)]

converges in P01- '̂!-*- to u^, (|/|^a—1). An easy induction
shows then that the theorem reduces to the following two
statements : 1° the absolute continuity of Uj (replacing D^u)
and the pointwise convergence of the difference quotients
exc. 8l2<x-2iy|-2) and 2° DjU == (D^.Ga) *g exc. 3l2<x-2|./|- We prove
first 1°; it is clear that we can restrict ourselves to the
consideration of u(i.e. |/ |==0), a^tl and the derivative —•

bxn

We start with the case a = 1 (which is treated sepa-
rately since there is no kernel Go). Let |u^ be a
sequence in C^(R") which converges in P1 to the given func-
tion u. By (7, 1), which obviously holds for functions in
C^R"), the sequence ]—^ converges in P° = L2 to some func-

C^n)
tion v e P°. By picking a subsequence if necessary, it can
be assumed that for fixed x ' outside a set E'dR""1 of (^-1)-

dimensional measure 0, —•— ?—' —> v(x\ x^) in L2 with
0.2̂

respect to the variable x^. By using Lemma 1 at the end of
the last section, and again picking a subsequence if necessary,
it can be assumed that if x ' « E', then u^x\ x^) —> u(rr', ^).
Then if x' ^ E' we have

u^, b) — u[x\ a) == lim [u^x'y b) — u^[x\ a)]=iimr^^^^= r^',^.
Ja ^n Ja

It follows that if x' ^ E', then u[x\ x^) is absolutely continuous in
x^ so that — (re', x^) exists and is equal to ^(^', x^) for almost

^xn buall x^. Hence — exists and is equal to ^ almost everywhere.
^Xn

Now suppose that a > 1, and consider u === Gag, with
g e L2. If we put

1 F71
g{x^ x^) = sup — \g{x\ x^ + t)\dt

h^o n J o
29
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then, by the Hardy-Littlewood inequality [12], g e L2. Let

^E[JP^(^+»}
Since

^Ga(^-y) 1 ^i , , . .M7,^^Ga(^—y)-, ^-—.——-r ^yn+^^-—-—-gy^^n Al Jo ^n/ o

it follows that if x « Ai, then

(7, 2) lim f ̂ -^ A- f g(</', Vn + <) ̂  ̂  = ̂  ̂ (^),
/i^oj ^ n Jo ^nh-^oj ox^ n J Q

and also that

<7-3) ;^G2^tJ>'.''•+t)AA'
=-^J'|G,(o;'—y', ̂ +A—y„)—G,(a;'—1//, ̂ —yjjg(y)^.

Now let u = Gag exc. Stga ^d Ist Ag be the union of all
lines parallel to the .r,-axis which contain some point of
E[u(;r)^G^(a;)]UE[G,|g|(;r)=+oo]. Then if ^A^UA,,
(7, 2) and (7, 3) give"

(7,3Q lim ̂ ,Xn-}-h)—u(x',x^ ̂  &G, .^
h-^0 h ^X^

so that —- exists provided that x < AiDAg.ox^
By (4, 5), Ai e 3laa-2? and by the lemma at the end of the

last section, Ag e 8l2a-2* Hence, for every u <= P01 the deri-
^u . . , . . •vative — exists in the pointwise sense except on a set of
^ r r

(2a-2)-capacity 0.
We prove now the statement about absolute continuity.

If I is any line parallel to the a;n-axis and not contained entirely
in Ai U A^, then there is a point x e I— (Ai U Ag), and, as A^
is a union of lines, all points (a/, o^+ h) e I—Ag. It follows
that the right hand side of (7, 3) can be written as

^
, [u{x\ x^ + A) — u{x, x^)]
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and hence u(x\ x^ + A), as a function of h, is an integral, and
therefore absolutely continuous.

Finally, to prove that DyU = (DyGa) * gexc. Slaa-^we proceed
by induction with respect to the number of indices in the
system /. We use an argument completely similar to the one
which led to (7,2), (7,3) and (753'). The kernel Gy, is now replaced
by D^-Ga and we use the inequality

\Dfi^x)\^c[G^x)+G^x}],
with a constant c depending only on a, [/|, and n. Thisi nequa-
lity is deduced in the same way as (4,5), from (3,7), (4,1), (4,2)
and (4,3).

As corollaries of Theorem 1 we can now prove.

COROLLARY 1. — If a > 2m, where m is a positive integer,
and if g e L2,

{l-^)mG^{x)=G^g{x).
We apply here formula (4, 11).

COROLLARY 2. — If m is a positive integer and g e L2,
(1 — ^G^g^x) = g{x), almost everywhere.

PROOF. — The formula for derivatives of a potential in
Theorem 1 is not valid for orders i| = a (37). Since we have
to prove equality of two functions in L2, the simplest is to
compare their Fourier transforms, both of which turn out
to be g.

Corollary 2 shows that G^[x — y ) is a fundamental solu-
tion corresponding to (1 — A)7". As was already mentioned
in § 6 (see (6, 6)), Gga is the pseudo-reproducing kernel of P01.
For a == m the reproducing property can be put in a form
avoiding the use of measures :

COROLLARY 3. — For u e P7", we have

^) = 2 (?) 2 f^f-^^y^ exc.^(38).k==o \i\=kJ °y °y
bl̂ l(s7) The formula ̂  G^g(x) == C ̂ ^ZzA g(y) dy for |i| == a can be made
W J W• —^OV^/ I
W J ^X1

valid if we consider the integral as a singular integral.
(88) A similar direct formula for arbitrary a is more complicated; double integrals

must be used.
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^UPROOF. — Since —r for i\ = k^m is at least in L2 and
by1 —

'>.kr^ '>.kr^
——2m== (—1)^ ——2W? each term in the sum is a potential^y1 v / W L

of order ^ m. Furthermore the Fourier transforms of both
sides are obviously equal. Hence the equation is true almost
everywhere and since both sides are in P01 our statement
follows.

In proving a converse of Theorem 1 we shall use a genera-
lization of the Frostman mean value theorem, 1), § 4. It
will be recalled that a part of the Frostman theorem asserts
that for each positive measure p. the value of a potential
Gaa^ at a point XQ is the limit of the averages of Gaa^ over
spheres with center XQ and radius converging to 0. In the
generalization of this theorem the spheres are replaced by
much more general closed sets, the essential point being
that the closed sets can be quite thinly distributed.

1) Let XQ he a given point, and for each positive integer k
let Aj, be a closed set contained in S(a;o, p^), where p;c —> 0. If
for some ? ̂  a there is a constant c > 0 such that

(7, 4) T2p(Afc)>cy2p[S(a;o, p^)],
then each Ajc supports a measure ^k of total mass 1 such that

G^(xo) = lim CG^{y) d^ (y)Tsa^^oy — 1AA1A ; ^20^
fc->oo«-te-^. 00 v

for every positive Borel measure JJL. A suitable choice for v*
is the normalised capacitary distribution for A^.

A similar result holds for each function u in P01 exc. Stga-
2) For each point x and each positive integer k let A.k{x) be

a closed set contained in S(rc, p/c(^)) where pfc(^) —^0. If for
each x there is a P^a and a constant c>0 (both may depend
on x) such that (7, 4) holds, then each A^(a;) supports a mearure
v£ of total mass 1 such that for every function u e P01

u{x) == lim j u { y ) d^(y) exc. ̂ a
fc-^00*7

A suitable choice for v^ is the normalized capacitary distribution
for Aj,{x).

The proofs of 1) and 2) are given in [15] for the special case
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P == a. In view of proposition 22) of the last section, however,
if the hypothesis (7, 4) holds for some P ̂  a, then it holds
also for P == a (39). Indications of how thinly the sets A^(rc)
can be distributed are given by the results on the nature of
the capacity of a set near the end of the last section. Additional
results related to 1) and 2) can be found in [15].

* REMARK 1. — It is not necessary to require the sets A^ to
be closed, provided the outer capacity ^a is replaced by the
inner capacity. Of course, either the outer or the inner capa-
city can be used if the A^ are capacitable, in particular, if
they are analytic. In this case v* cannot necessarily be taken
to be the normalized capacitary distribution for A^, but rather
can be taken to be the normalized capacitary distribution of
some closed subset of A^.

3) If u e P01, then for each £ > 0 there is a set Bg such that
T2a(Bg) <; £ and such that the restriction of u to R"—Bg is
continuous. Conversely, if a function u has this continuity
property and is equal almost everywhere to a function in P^
then u <= P01.

PROOF. — The first part of the proposition is evident from
proposition 2), § 2, chapter i. The second part is proved
by showing that if p e P01 and if u = v almost everywhere,
then u = v except on a set of 2a-capacity 0.

To see this, let £ > 0 be given, and let Bg be a set such
that Y2<x(Bg) < £ and such that on R" — Bg both u and p are
continuous. We may obviously increase Bg to be an open
set with the same properties; we may therefore assume that
Bg is an open set. Choose gg^O such that ||g£[[[»< £ and such
that Gagg(rc) ̂  1 everywhere on Bg and let

Ds=E[Gag^)>^-].

)R anrl v (T\ \ <^ Ac M-Then clearly Dg^Bg and y2a(Ds)<4£. Moreover, if XQ ^ Dg,
then Gagg(^o) ls not ^e limit of mean values of Gagg(y) over
the sets S{xo, pj ft Bg for any sequence p^ -> 0. Therefore

(39) The proof of 1) is rather simple, the proof of 2) rather delicate. In many
applications the special case (S = 0 is sufficient, and this special case is an almost
immediate consequence of the Frostman theorem itself.
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it follows from 1) (with (3 == 0) and the Remark 1 above, that

|S(^o, p)nBg| „
|S(^p|)| u?

so that in particular, |S(a;o? p) — Bg[ =^= 0.
Since u = v almost everywhere, we have

fu{y) dy = fv{y) dy,
S(^o, p)—Bg S(rro, p )—Bg

and, as both u and p are continuous on R"—Bg and as
|S(o;o, p) —Bg| ̂  0, we can divide both sides by |S(o?o, p) —Bg|
and let p -> 0 and conclude that u(xo) == V{XQ). This shows
that u = v outside Dg, and since ^(De) < 4e, it follows that
u = v except on a set of 2a-capacity 0.

We can now state the converse of Theorem 1.

THEOREM 2. — Let u <= L2 and m be an integer, 0 ̂  m ̂  a.
The function u belongs to P01 if the following conditions are
satisfied:

a) u is defined except on a set of 2oL-capacity 0 and for each
£ > 0 there exists a set Bg C: R" with Y2<x(Bg) < £ such that u,
restricted to R"—Bg is continuous.

b) All derivatives Dju of orders \j\^m exist when determined
successively pointwise in the ordinary sense each one except
on a set of corresponding (2a-2[/^-capacity 0; each derivative
of order |/|<w is absolutely continuous on all lines in the
directions of coordinate axes except a set of such lines forming
a union of (2<x.-2\j\-2)-capacity 0.

c) All derivatives of order \ j \ = m are in P01-7".

PROOF. — One could give different proofs of this theorem
(for instance by using the theory of distributions and propo-
sition 3). The most direct, perhaps, is the one using regula-
rization. If Up = e^ * u, then, by using partial integration
one gets successively for all \j\<im

D/Up = (D^p) * u = e? * Dju.

Hence, for | / |=m, since DjU e P^^'cL2,

D?p == (27c)^(l)m^u = (2^e^.
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It follows that ^DjU^^^u and, D^ueP01-"1, ueL 2 gives
(since (1 + |S|2)a< 2a[l + 1 (̂1 + ̂ Y^]

/luj^l + |S|2)a^^2aJ|u|2[l + 1 (̂1 + l^l2)^] ̂

=2a/|u|2^1+ S (W+IW-'l^oo.
L |./|=m J

Therefore u is equal to some u' e P01 almost everywhere and
by proposition 3) and condition a), u e= P01.

REMARK 2. — Our proof shows that condition b) can be
considerably weakened. In this condition it is enough to
assume that for k == 1, . .., yi, the pure derivatives ̂  /< m,

O^CL
are equal a.e. to functions absolutely continuous on almost
all lines parallel to the x^- axis. Correspondingly, condition c)
can be (and should be) relaxed as follows : all derivatives
y^u
—m> k = 1, ..., n are equal a.e. to functions in P01-"1. In the

last formula of the proof the inequality would be

J^IU^I+ISIT^^W-I (\uA 1+^^(1 ^-ISI^^^oo.

REMARK 3. — Theorems 1 and 2 and the preceding remark
allow a simple direct characterization of functions u e P01

without using the Fourier transforms. To this effect we take
m = the largest integer ̂  a. The function u should be in L2

and satisfy condition a) of Theorem 2, the derivatives ^.
^x{

Ir^/c^yi, 1/l^a — 1 should exist pointwise and be equiva-
lent to absolutely continuous funtions except on a set of

^m,.
lines of measure 0 and — for each k must have a finite

k

Dirichlet integral of order a—m (if a = m it is just
r^x? \
j ^ dxj. This integral, for a > w, is given by (1, 4).

The norm ||u||. is given by (7, 1) where imu||^ are given
directly by any of the formulas fl, 10), (4, 9), or (4, 10).

The next proposition is obtained immediately by using
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Fourier transforms, proposition 5), § 2, and the corollary to
proposition 2) § 2.

4) If ^eP^^ then for every unit vector e and every real
number h,

u{x + he) — u{x)
h u

Conversely, if u e P01 and if for each vector e in a basis for R"
there is a constant M such that for every real h

u{x 4- he) — u{x) |
h

M,

then u is equal except on a set of ̂ -capacity 0 to a function in P^1.

§ 8. — Restrictions to subspaces.

The purpose of the section is to characterize the restrictions
of the functions in P01 to a subspace R^ C R". In accordance
with conventions, quantities associated with R^ are primed.
In addition, if u is a function defined on R", u' denotes its
restriction to R\

THEOREM 1 a. — If u e P01, 2a > n — /c, then u e P01"""2" (R^)
and

r a-n—k\

(8,1) HP n-^ Wn—k

2»-*TC 2 F(a)

'^') = (2^t)-^?J^_,u(^, S")^ o<wos( everywhere.u'^'

PROOF. — For u e P°1, let Tu denote the function on the right
side of the second formula in (8, 1). We shall show first that
Tu(^') is defined almost everywhere and that if

IMII2 ̂ i+i^i2)'""''^2^'
then

n/, n—k\F a—
(8,2) ll|Tu|||2^

2'-^"' r(a)
ira.
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If we apply the Schwarz inequality to the product (1 ̂ -IS;)2)"^2.
(1 + l^2)^2 u(^) we obtain (at first with u replaced by |u|
in order to show the absolute integrability of the functions
involved)

1™^ (^"X-.dfwX-.'1 + lw(w/

= (^^ f ^/ r fl + ISi^-lufni^"
(1 + l̂ -^-^ + I^JK"-^ •

 lq) 'U(S9)1 ̂  •

a-^
Multiplying by (1 + |S'|2) 2 and integrating with respect
to $', we get (8, 2) and also the fact that the integral for
Tu(S') is absolutely convergent for almost all ^'.

Now, if u e Q° (R71), then, as is well known, Tu is simply u',
Let u be an arbitrary function in P01 and let | u^\ be a sequence
in CS°(R71) which converges to u in f and pointwise except
on a set of 2a-capacity 0. The inequality (8, 2) shows that

g_n-^
\u'^\ is Cauchy in P 2 (R^), and the second formula in
(6, 10) shows that u^ -^ u' pointwise in R^ exc. ^-n+fc.

a-"^
This proves that u' e P 2 (R^) and also the inequality
in (8, 1).

From the fact that Tu^->Tu relative to the norm |[|w|||,
and therefore relative to the L2 norm, it follows that for some
subsequence [u^\, Tu^(^) -> Tu(^) pointwise almost every-

_n—h
where. On the other hand, since u^. -> u' in P 2 , u^ -> u'
in L2, and hence some subsequence converges to u' almost
everywhere. Therefore, since Tu^ = u^., we have Tu = u'
almost everywhere.

^_n—fc
THEOREM 1 6. — If u'eP 2 (R^), 2a>n—/c, ^en ̂

restriction of the function u e P01 whose Fourier transform is
given by

(S 3) W) - 2n?*^(g) (l+l^l2)"''^ -/.«(8,3) u(^)- ^^^u(S)

\ 2 ^

is u', and for this function u equality holds in (8, 1).
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PROOF. — Inspection shows that any function whose Fourier
transform is given by (8, 3) is equal almost everywhere to a
function u e P01. The second formula (in 8, 1) shows that the
Fourier transform of the restriction of u to R^ is u', and hence
that the restriction of u to R^ is equal to u' almost everywhere,

^_n—fe
and therefore, since both functions belong to P 2 (R*)
except on a set of ^laa-n+fc- Computation shows that for these
u and u* equality holds in (8, 1).

REMARK 1. — Formulas (6, 11) and (6, 10) show that if
u' == Gaa-n+fct^ tor some measure (x e Q^_^^ (pi may even be
a signed measure, i.e. in Qaa-n-^—Q^-n+k) then the function
u defined by (8, 3) is simply

^ .̂G..,.
r(.-'̂ )

Next we give a generalization of Theorem 1 & to the case
in which not only the function but also certain of its normal
derivatives are given on a hyperplane R"~1 (in the previous
notations we now put k = n— 1). In the formula we make
use of a system of functions (pp(() biorthogonal to the powers
of ( on (— oo, + °°) with respect to the weight function

/j
(l+(2)-<x. To be explicit, let r be an integer < a — — and

2t
let yp be the polynomial of degree <_ r which satisfies

(8.4) ^^^=^ 0^p,^r.

THEOREM 1 c. — Let r be an integer <; a—— and let
a-p-1 z

<^eP a (R^) for p==0, 1, .. . ,r. If u is the function,
in P" whose Fourier transform is given by

(8.5)

i/S\ ̂  /2^M/2 V ^-p(i-H^T) * - / ^" -\^ /r/s[" [ ' ^ ( l+ISIT ^Wl+IW^
then

(8'6) vu^=^xf) for P==0,l , . . . , r ,
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and there is a constant c (depending only on a and r ) such that

(8,7) H^c^ W-p-f •
p==o

Moreover, u is the function in P01 with minimum norm satis-
fying (8, 6).

PROOF. — From the fact that ^eP01"^2 (R"-1) it follows
that the product of each summand in (8, 5) by (1 + IS]2)0171

is square integrable over R", so that by proposition 5) § 2,
there does exist a function uep* whose Fourier transform
is given by (8, 5) and whose a-norm satisfies (8, 7). The

constant c can be taken to be 2Ti(r + 1) max \ l p { ) - By
P J —oo (1 "r ^ )

Theorem 1 a (and Theorem 1 of the last section) the Fourier

transform of —.(re', 0) is
^

(2^1/2 r wu^d^
<y—oo

which, by (8, 4) is easily shown to be Vp^)' Therefore

—L-^—/ == Vp^x'} almost everywhere, and since both are in

P^^R"-), ̂ pu^ol= ̂ ) exc. r.-,-..

In order to prove that u is the function with minimum a-norm
among all functions in P" which satisfy (8, 6), we have to
prove that u is orthogonal to all v e P® which satisfy

—p (x\ 0) = 0 for p = 0, ..., r. In terms of the Fourier
te;

transform, the problem is to show that

/(i+ISITu(S)W^=o
for all p which satisfy

fWW^=Q for p = = 0 , . . . , r .

This is immediate, since y? is a polynomial of degree <^ r.
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REMARK 2. — It is easy to see by the same argument that
1if r + -^-< P ̂  a, and u is determined by (8, 5), then2i

(8,8) l|uH|^c,Sll^l;-,-^.
p==0 r 2

where Ci depends on a, (?, and r. This shows (interchanging
the roles of a and p) that Theorem 1 c can be strengthened
in the following way: ^

Suppose that (3 ̂  a > r + — and (Aa^ /br p === 0, . . ., r,
B-p-JL 2

^eP' '(R71-1). Then there exists u e P? 5ucA (Aa< (8, 6)
and (8, 7) AoM.

In the next propositions we will use the following notations :
as before x ' denotes the first k coordinates of x as well as the
corresponding point of R*; x" denotes the last {n—k) coor-
dinates of x as well as the corresponding point of R""^—the
subspace where x* ==0. If E is a subset of R", Ea.' denotes
the set of all x" such that (re', x " ) e E. If fis a function in R\
^ is the function on R"-^ defined by f^x') =f(x, x'). By
2(20? Yaa? etc., are denoted the classes, functions, etc., corres-
ponding to R""*.

1) If AC:R" and A e §t̂  and if 0^(3^ a then, for all x9

exc. Slaa^p? A^. e Sl'23.
2) If ueP^R^ and 0 ̂  ? ̂  a, then u^eP^R"^) for

all x' exc. 8l2a-2p-

PROOFS. — We assume first that 0 <; P <; a. Consider
«-3 1

ueP^R"). The function h(^) = (1 + 1$'|2) 2 (1 + 1^|2) 2 u(^)
.a-

is in L2 and ||A[]L2^ ||(1 + |S;|2) 2 u[[L», hence its inverse Fourier
transform h{x) satisfies

(8,9) ll̂ )lkH»)̂ ||u||,.
_<x-g _^

Since u(^)=(l+|^|2) a (l+l^l2) 2 ̂ ), by using the kernels
Ga_p and G'a corresponding to spaces R* and R""* we can
write

(8,10)
u{x', x") = f^_, G'^{x' - y')G^x" - y'W, y") d y ' d y " .
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This equality is at first valid only almost everywhere. Howe-
ver, if we apply the above formulas to the regularized functions
Up == ^p * u, the corresponding Ap is obviously e^ * h and the
equation

(8,10')
Up(r.', x ' ) = f^f^, G^ - y ) Gp (^ - y") Ap(y , y") dy d y -

is valid everywhere. We put now

'̂, y'1} = f^ G'^{x' - y ' ) h,{y', y " ) d y ' ,
1

w)=[f^w,y"wY
and get

u,{x', x") == f^,, G^x" - y"}^){x', y " ) d y " ,

\\^=fM^.y"^dy" ___
=JH»-*^Ja.G«-P^-^G«-P(^-z')W^'')/lF(z^t/ff)(^y^z'^

^[f^G^x'-y'W^dy]^

(8,11) IMIp^G,-^' -y')hW) d y ' .
Similarly, for Up — Up^, putting

Uv'} = [^-J^(y'> yff)-^(^/^t/'')W]1

we get

(8, 11') |]^-^||p^^G^p(^'-y')Ap.^') ̂ '.

Since Ap, pi converges to 0 in L^R^) when p and pi -> 0, we
can choose a sequence pm \ 0 such that the series

^')+J>L..,p>')=H'(^)
C T = = 1

converges strongly in L^R*) and hence the sequence
^Up^'j converges in P^R""^) for all x* e R^ except where
Ga-fiH'^') == + 00 19e' except a set B' e Slaa-^p- F01* each re'
outside of this set we can then choose a subsequence |^p^j
converging pointwise in R"""* except on a set B^/) e 81̂ .

To prove proposition 1) we replace u by v = Gag, g e L^R"),
g ̂  0, such that v(x) = + oo for xe A. Then ^p(rc) -> P(a?)
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everywhere in extended sense and now, denoting the above
sets B' and B(^/) by A' and A^/) we get A^CA^/), and hence
A^' €E 31̂  except for x' e A' e Slaa-^-

To prove proposition 2), denote by A the set where Uo(x}
does not converge to u{x). Using proposition 1) we find a set
A' e ̂ _,p outside of which A^ e ̂  Then, for x ^ A' U B',
Uo^^(rc") converges pointwise outside of A^ to u^{x") and
hence u^{x") coincides with the limit of l^a^ in

P^R"-^) exc. SKp.
We still have to settle the extreme cases : 1) 0 == (3 == a,

2) 0 = P < a, and 3) 0 < (S = a. The first is trivial. The
last two cases are treated like the general one : we must remem-
ber only that the operator GQ reduces to identity for 0 = 0.
For instance,
for 0 = P < a (8, 10) becomes

u{x\ x " ) =^G^'-y')%', a/') dy
for 0 < P = a (8, 11) becomes [|up^||p ̂  A '̂).

As special cases or corollaries of proposition 2) we mention
the following:

2 a) 0 < p = a. Almost everywhere in R*, u^ e P^R"-^.
26) 0 = (3 < a. Except on a set of 2a-capacity 0 in R\

u^ e L^R"-").
^_{^

2 c) If a > — _ — , u^ is continuous in R71"^ except for x
^ ___ 7

in a set of 28-capacity 0 in R^ for any S< a—n——-
Zt

kIt should be noticed, however, that if os.^.-^ we obtain
a-*- ~ 2

from 2) that u^ e P 2 (R"-^) except on a set of logarithmic
capacity 0 in Rk whereas we know from Theorem 1 a that
u^ e P^^R"-^) for all x ' e R\

§ 9. Functions locally in P01 on an open set.

If D is an open set, Pj^D) denotes the class of all functions
on D which belong to P01 locally, that is, the class of all func-
tions u defined on D exc. Slaa such that each point of D has
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a neighborhood on which u coincides with some function in P^
Many results about functions in P^c(D) are immediate conse-
quences of results already proved about functions in P*. For
example, if ueP^(D) and if \i\ ̂  a, then D,u exists in the
ordinary sense exc. ^a-w and belongs to P^'-I^D). Or, if
u e P£c(D) and if 2a > n — /c, then the restriction of u to

a-"^
DDR* belongs to Pioc 2 (DDR^). In this section we give a
few results about P^c(D) which are not so obviously covered
by the earlier theorems.

1) ueP^(D) if and only if for each compact KcD there
exists a function UK e P^R") which coincides with u on the
set K.

PROOF. — The first half follows directly from the definition
of P^c. To prove the second part we use the method of parti-
tion of unity.

We choose a locally finite covering |U^ of D by open sets
such that UiC:D and that each U; be sufficiently small so
that there exists a function u» e P^R") coinciding with u
on Uf. We take then a partition of unity corresponding to
the covering \\]^\ i.e. functions y; e C^(R^) with values bet-
ween 0 and 1, such that each y; vanishes outside of Ui and that
^i(x) = 1 for each x e D.

We take now those U^, . .., U^ which intersect the compact
K; there is only a finite number of them. The function

W, + . • • + W,

is then the desired function UK. In fact, by proposition 6)
§ 2, each y^eP^RJ. Then for rceD, ^u == y.u; and for
xe K, <fi,{x)u^{x) + . .. + (pi^x)u^x) = u{x)^<fi{x) = u{x).

As corollaries from 1) we get
1') If u e Pi'Sc(D) and 9 e G01*' *) and has a compact support

in D then (pu, when extended by 0 outside ofD, belongs to P^R").
Here again we use 6) § 2.
I7') If u has a compact support in D and we extend u by 0

outside of D, then u e P^(D) if and only if u e P^R").
As we already mentioned before, Theorem 1, § 7 on diffe-

rentiation has an obvious extension in a localized form to
P^c(D). The extension, however, of the converse, Theo-



464 N. ARONSZAJN AND K. T. SMITH

rem 2, is not so immediate. We prove it here under the weak
hypotheses stated in Remark 2, section 7.

2) Let m be an integer 0 ̂  m ̂  a. The function u belongs
to Pi^D) if

a) u is defined in D except a set of Ion-capacity 0 and for
each e= > 0 there exists BeC D with y2<x(Be) < e , 50 ^a( u res-
tricted to D-Be is continuous.

b) All pure derivatives —-,? k = 1, ..., n, / === 0, 1, ..., m,
^ay

ercî  pointwise almost everywhere and all those of order j <; m
are equivalent to absolutely continuous functions on almost
all lines parallel to the corresponding Xjc-axis (40).

^TOy.

c) The derivatives ——> k = 1, ..., n, are almost everywhere
^

equal to functions in P^^D).

PROOF. — The first step is to prove that all the derivatives
—.9 f = 1, . . . , m are locally L2 in D. This is true for
^Xj
j == m by c). To show it for / <; m we have to extend a lemma
by Nikodym [13 b]. We introduce the following notations :
Let Q be the closed cube 0 ̂  x^ ̂  a, k = 1, ..., n, Q^ the
face of Q lying in the coordinate hyperplane orthogonal to
the a^-axis, ̂  a variable point in Q^. A point re in Q will
be written (^k), x^) for any k.

LEMMA. — Let u he defined almost everywhere in the n-dimen-
sional cube Q. Suppose furthermore that for each k, 1 <^ k <^. n,

and for almost all o^eQ^, the derivatives—'—-——>j= 0,1,
^xk

. . ., m — 1, are equivalent to absolutely continuous functions
y^uin O^Xk^a. Then, if each——9 k = 1, 2, ..., n is in L^Q),

^u ba^all the derivatives —.» k = 1, 2, ..., n. / = 0, 1,..., m — 1
are in L^Q). ^

PROOF. — We use induction with respect to the dimension n.
For n = 1, the theorem is obviously true. Suppose that it
is true for dimension n—1 and fix an index /c, 1 ̂  k ̂  n.

(40) The last condition means that for almost all such lines I intersecting D the
derivatives are absolutely continuous on every closed segment contained in (n D.
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By our assumptions it is clear that we can find a function
pfc(a^), Xfc) defined for almost all ^ e Q^ and which is a
polynomial of order 5^ m — 1 in x^ such that if Uk(x) is
defined by

(9, 0) ^, „) = p.( ,̂ ..) + f'̂ g^ '̂,' A

then

(9, 0') —k--J = —M almost everywhere in Q for j = 0,1,..., m.
^ ba?(

Consider the (n — 1)-dimensional cubes obtained by inter-
secting Q with the hyperplanes Xjc == const., 0 ̂  Xje ̂  a. It
is clear that by the hypotheses of our lemma, for almost
all Xje in [0, a] the function u satisfies in these (n — l)-cubes
the conditions of our lemma with respect to the n— 1 remai-
ning variables. Hence we can find m distinct values a»,
0 ̂  Oi < ... < a^^ a such that

m m

(9' ̂  S/oJ"^^ oOP^^S/Ju^"), a,^dx<k)<

For almost all x^> in Q)(, p^a^*), () can be determined by
its values at (== a,, ..., dm (we use the Lagrange interpolation
formula). Therefore, from (9. 0) we get

(9 2} uf^ x } - ^^'""(^^(^^"'^t(9,2) u^,^)-^ ^ (m-l)!^

, v g(̂ ) r,, /^ ^ r" ̂ ^( '̂[), <) (^-^•' ̂ i
+ 2j (^-o.)g'(a.) l"^—— ai) -J. ^ (m-1)! ^J'

m

where q(t) is the polynomial TT(<—a;) and y' is its derivative.
1=1 ^By taking in (9, 2) the derivatives —. for j' = 1, . . . , m — 1

6ay
we derive without trouble an evaluation

/9 3V V1 r^^^hr <W u ) z, \ ——.j—— dXit^
j~ ^0 ^ |

jr^-^.ir&.+sK^,^]
lyo ^k I i=i J

30
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with constant c > 0 depending only on the a[s, a, w, and n.
Integration in (9, 3) with respect to ^ over Qj^ and (9, 1)
together with (9, 0') gives then the lemma.

Going back to the proof of proposition 2), consider a compact
K C: D and a bounded open set U 13 K such that U C: D. Take
<p e CS^R") such that y(rc) == 1 on K and f(x) == 0 outside
of U. We write v = <fu extending this function by 0 outside
of D. It is obvious that v e L^R") by the above lemma, that
condition a) of theorem 2, § 7 is satisfied and that condition b)
of this theorem in the weakened form of remark 2 is satisfied
also. However, condition c) of the theorem, even in the
weakened version of remark 2 presents still a problem. Let
us write

/n / \ ^ bm(^ bm^ i /^ ̂  ̂ "^ , , yv/9 y\ — === —i— === © — 4- ( i —i- —— -4- ... 4- —i- uv ' j ^ ^ ^ r ' v 1 / ^ ̂  o<
The first term is equivalent to a function in P01-1" but the best
we know about the remaining terms, by the above lemma,

y»^
is that they are in L2. Hence— e L2 == P° and by theorem 2

k

(for a = m) v e P"1 and so u e P^c(D).
Suppose that we know already that u e P^D) for some (3

with m ̂  p <; a. Then by (9, 4) and theorem 1, § 7 (applied
Vu . i . ^ i Vv • • ito —: with / = m — 1) we get that — is equivalent to a
03?L -^k

function in P^ with ?i == min (a — w, ? — m + 1). Again,
by theorem 2, remark 2, it follows that v is a potential of order
min(a, ? + 1) and hence u is locally such a potential. This
procedure allows us to reach stepwise (in a number of steps
smaller than a —m + 1) the stage where min(a, (3 + 1) == a?
when the proof will be done.

For later use we record a similar proposition (with a similar
proof) which gives sufficient conditions in order that a function
on D be equal almost everywhere to a function in P^(D).

2') If a measurable function u defined almost everywhere on D
satisfies conditions b) and c) of proposition 2, then u is equal
almost everywhere to a function in P^(D).

A transformation is said to be of class C^' *) on an open set
if each of its coordinate functions is of class C '̂ *) on the open
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set. A transformation is a homeomorphism of class £<"*'i)
if both the transformation and its inverse are of class 0^'1).

3) If T is a transformation of D* into D which is locally a
homeomorphism of class G"*' ^ then for each ueP,^(D) the
function Tu{x) = u(Tx} belongs to P^D*). If a > 1, the
partial derivatives of T*u are calculated by the usual formulas
for the partial derivatives of composite functions.

PROOF. — By a classical theorem of topology, T transforms
open sets on open sets (41). Therefore, it can be assumed
(by restricting ourselves to a subdomain of D*) that T is a
homeomorphism of class G^'1). Also, by multiplying u by
a function <p e Q°(D), it can be assumed that u has compact
support in D. Hence it is sufficient to prove the following
statement (which is a special case of the proposition).

4) Let T be a homeomorphism of class O^ ̂  of D* onto D,
and let U be a relatively compact open subset of D. Then there
is a constant c such that if u e P01 and u vanishes outside U, then
TueP01 and ||T*u[|, ̂  c||u||,.

PROOF. — If u is of class G01*'1) then T*u is also of class
G^), so, by proposition 5) § 2, T'ueP01. In evaluating
the norm of T*u, formula (1, 5) is used. For integral values
of a the existence of the constant c is obvious from the classical
formula for the transformation of multiple integrals. For
non-integral values of a the double integral over R" is domi-
nated by a sum of integrals

/Rn-U/Rn-IP ^-D/U and /D/D

The first of these is 0, since u vanishes outside U. The
second is easily seen to be dominated by |T*u|a» (the constant
depends on the distance from U to the boundary of D), and
hence by |u|a. Finally, the evaluations that were used in
the proof of proposition 6) §2, and the classical formula for
the transformation of integrals show that the third is also
dominated by |u|a. Thus, the proposition is proved tor u
of class C^' 1). It is proved for arbitrary u by using approxi-
mations of class C^1). The approximating functions can

(41) If a* > 0, the implicit function theorem can be used here, but if a* = 0 the
theorem of Brouwer is needed.
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be chosen to vanish outside an arbitrary neighborhood of U,
and the above results applied to this neighborhood.

Proposition 3) shows that PfoefD) is defined not only when
D is an open subset of R", but actually when D is an open subset
of any differentiable manifold of class C^'1). This fact will
be important in chapter iv, part. n.

To finish this section we prove that some general potentials
are locally in P01.

Consider a measure (x (in general a signed measure) for which
the potential Ga[x has a meaning. Following (6, 4) this requires

q—n—l

(9,5) /(1+M) 2 ^I^KUL^KOO.

In general G^(x) is defined and finite exc. ̂  (see 18), § 6).
However, more can be said under additional assumptions.

5) If (A satisfies (9, 5) and in some domain D, dy. (x) == g{x) dx
with g e P|L(D), then u = G^a restricted to D is in P^^D).

PROOF. — Take any bounded open set U with U C: D and
take 9 e C^R") and such that y ( o ; ) = l o n U and y vanishes
outside of a compact lying in D. Then dy. = (fgdx + (1 —y) dy.
and

(9, 6) G^(x) == fG,(x—y)^y)g{y) dy
+/G^—y)(l—y(y))^(y).

Since yg e P^R^, the first potential e P^R"). In the second,
there are no masses in the open set U and hence the second
integral is an analytic regular function of the n variables
x = (a?i, ..., x^) in U (42). It follows from 2) that the second
integral belongs to all classes PL(U) and thus U6P^P(U).
Since u is an arbitrary open bounded subset of D we get our
statement.

REMARK. — A statement similar 5) can be proved concer-
ning more classical potentials such as newtonian or more
generally Riesz potentials R^ corresponding to the kernel
Ra(r) == C^-" (^3).

(4a) To see this, in the integral replace the variables x^ by complex variables ^,
which is possible since Ga(r) is an analytic function of r regular outside r == 0.

(48) For a ̂  n, and a — n an even integer, this definition of R« should be changed
by putting a factor Ig — and adding similar terms of lower order in r.
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Since for a ̂  n, up to a constant coefficient, R<x(r) is the
principal term of the development of Ga(r) around 0, both
kernels together with all their derivatives behave alike in
any fixed bounded set (44). It follows that when the measure
(A (or density g) have compact support the potentials Rap.
and Gapi. behave alike in every hounded domain as concerns
sets where they are defined, or differentiability or the transfer
of differentiation under the sign of integral. The essential
difference between the potentials Ra(x and Gapt. is in their
global behavior; Rap. is much less manageable than GajA. This
is due to the fact that the kernel Ra(^) is never in L2 or in L1.

However, fora<;—? the kernel is L1 inside a sphere r <; ?o
JL

and L2 outside of the Sphere, which allows the use of classical
theorems in Fourier transforms for the corresponding potentials
of functions in L2.

Coming back to the extension of 5) to Ra(A we notice that
the condition (9, 5) should be replaced now by

(9, 7) /(I + W-d^x) < oo (^).

Replacing (9, 5) by (9, 7) in the statement of 5), and u = G^y.
by u == Rap-, the proof proceeds in the same way (with G
replaced by R). The second integral in (9,6) is again analytic
in U. The first, however, causes more trouble, and we must
use proposition 2). To this effect we differentiate (which
we may do) m times under the integration sign, m being such

nthat 0 <; a — m < -^-f The resulting differentiated kernels
Zi

DyRa are then in L1 in a sphere and in L2 outside of a sphere
which allows the application of classical theorems to the Fou-
rier transform of DyRa(yg) and we obtain

DjR^) = (2^2 D^a (yiT= W\^ (yg).

Since yg is an entire function and (1 + l^l2)^2?^ is in L2 and
since |/| == m, \^\ ̂  ISI"1, I^M < ISI^ it follows that

(44) For a ̂  n, these facts are true only for derivatives of orders ̂  a — n but those
of lower orders are continuous at 0.

(45) Or the corresponding expression when a— n is an even non-negative integer.
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(1 + |S|2) 2 ^ DjRffg) is in L2, hence D^(yg) e p^+P-m
which makes it possible to apply 2).

This line of proof leaves out two exceptional cases : n = 2,
a an integer and y i = = l , a = A - + a ' with k integer and

l /2<a'<l .
Another way of proving that R<x(yg) <= P^^U) which

avoids the exceptional cases is to prove it first for small a,
0 < a <; — We then use the composition formula

Ra=Ra^Ra,* ' - '*Ra ,n with a = a^ + . . . + a^, 0<afc<-j-.

We have successively Rajyg) e Pfo^U), Ra,_^RoJyg)
PfoF-^^U) and so on till R,(9g) e P^P(U). Since the
composition formula is valid only for a < n, for a .>: n
we have to replace it by an approximate composition formula
where the composition is taken not over the whole space but
over a sufficiently large sphere containing U. The result
of the composition differs then from Ra by a function regular
in U and thus the proof can be achieved.

§ 10. — Relations between the classes P01 and U.

In this section we establish the L^ class to which a potential
Go/*, /e Ly, p^l, belongs. When p = 2 we obtain the L7

class to which the functions in P01 belong.
1) If f e L^ p ̂  1, then G^es D7 for every q ^ p satisfying

^-^—^ if p > l and A-_^o,q ~ p n 1 ^ p n ' '

^>1--^ if p = l or A._^o,q P n i f p ^ ?

and there is a constant M depending only on a, n, p, and q such that
1|GA^ MH/^P.

PBOOF. — A classical theorem of W. H. YOUNG states that
if^-1-^!, l^r^oo, l^p^oo, ^-=^-+-1-—!r P ~ ~ —f— q r p
and if u e I/ (R»), v e L^R") then

II"̂ I|L )̂H|L-MLP.
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1 aSince Ga e L^R") for every r^l with —>1—— we get

1 1 aimmediately for any q ̂  p satisfying — > — — —
q P n

IIGaFII.^IIG.IMiyilp with ±=±-1+1.
r q p

This gives the statement (with M == ||Ga||i/-) except when
1 1 a— == — — — > 0 and p > 1. In this case, however, SobolefTs
q p n r

theorem, [15 b] or [14], states that
IIIVIIr^ Mlj^p.

Since a < — < n and Ra(a;) ̂  G,(a;), it follows that

||G./1|̂  MH/llu,,
which finishes the proof.

COROLLARY. — P^dl^ for every q ' ^ 2 satisfying
1 - ^ 1 os •/» / n- 1 ^ f\ .n M—^,-——— if a^—, —>0 if a==—.
q JL n Z q 2

§11 . — Comparison of the class P" with various other classes.

In the present section we are going to compare our potentials
of order a with other classes of functions introduced and used
previously by different authors. These are essentially the
classes of Riesz potentials of order a (for a<-^-^ the (BL)-

\ 2 /
classes and the classes H01 = W01 = W? for a a non-negative
integer. We will not give proofs in the remarks which follow;
most of these proofs rely on arguments similar to those used
in preceding sections.

1. The Riesz potentials of order a. — These were introduced
by the present authors in [1] for a < n/2 as the perfect func-
tional completion of the class Q° with respect to the Dirichlet
norm of order a, \/d^{u). They were also introduced by
J. Deny [8] as potentials of magnetic distributions of order
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2a which form the completion of the class of signed measures
of finite 2a-energy with respect to the energy norm. For
a ̂  n/2, C? does not have a functional completion with respect
to the norm \/dy,(u) (see 2), § 1).

By using the same kind of computations as those which
lead in § 1 to (1, 5) (or (1, 10)) we can give a direct formula
for d^(u) without using derivatives, for u e Q°. To this effect
we introduce the A*-th differences of u{x), A*u(a?, Zi, . . . . z^)
as follows.

(11.1) Aou(rc) = u(aQ,
A^+'^a;; Zi, ..., z», Zfc+i) == A*u(a;; Zi, ..., z^)

— A^a; + ZA+I ; zi, ..., z»).
We then take any decomposition a == a^ + • • • + »»»
0 <; a, < 1 and obtain

(11.2)j (^ 1 r . r i^^,--^)!'
^^-IIC^aO.L Ja»|zx|'•+2a«...Nn+2a*aa;dzl "^^ )-

In this way dy.{u) has a meaning for all measurable functions u.
We could be tempted to consider those u for which (11, 2)
is finite as Riesz potentials of order a. However, on the class
of all such functions \/dy.{u) is a pseudo-norm; it is 0 if (and
only if) u is equivalent to a polynomial of order << k. It can
be proved that this class is independent of the decomposition
a = a! + •• • + a* except tor the adjunction of additional
polynomials when we increase A*.

Let us call the class of u with (11, 2) finite F^. Obviously
A^u^, z^, . . ., Zh) is L2 for almost all systems (z i , . . . , z^ ) .
From this, by an inductive argument as in Nikodym's lemma
(see § 9), we can prove that u e L^ (R").

If a <^ n/2 it can be proved that F^ admits of a direct
decomposition,

(11, 3) F01' k = [polynomials of order < k] + C?,

the second class being the functional completion of Q0 under
the norm (11, 2) relative to the class of sets of measure 0,

(46) A similar formula, using higher differences instead of derivatives can be
obtained for \\u\\^. The reason such formulas are not given in the main text is that
they do not lead in a simple manner to norms in subdomains of R".
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i.e. the class of all functions equivalent to Riesz potentials
of order a. Such decomposition is no longer possible for
^-n.
— 2
Our space P01 is a subclass of F01' \ A function u in F01' k

which is equivalent to a function in P01 is characterized by the
simple fact that u e L2. Each function in F01'k can be proved
to be equivalent to a function in P^R"). We can consider
as the essential part of F01' k the subclass F01'k of P^R") with»̂
finite (11, 2). If we add / |u|2 dx to (11, 2) for a fixed bounded

iY S ' '

set of positive Lebesgue measure, we obtain a quadratic norm
which makes F01'k into a complete functional space. This
space is the perfect functional completion of C^R71) D F01'k
with respect to this new norm. For a > n/2 it will be a proper
functional space.

2. (BL) -classes of order a. — These classes were introduced
first for a== 1 by 0. Nikodym [13 &], for a a positive integer by
J. Deny [8], and for arbitrary a by J. Deny and J. L. Lions [8 a]
as a special case of much more general (BL)-classes which,
besides those which are akin to our spaces P31, contain many
other important classes. They are divided into two cate-
gories : those « in large sense » and those in « precise sense ».

Those in large sense akin to our P01 (which we will denote by
(BL)a) were formed explicitly for a an integer by assuming
that the derivatives exist pointwise a.e. (original definition)
or that they are taken in the sense of distributions and that
the last derivatives (of order a when a integer, of order a*
when a is not an integer) have a finite V^a-a^c norm. These
classes are essentially the same as the above classes F^
except that the latter contain polynomials of higher order
and that in the original definition the exceptional class of
sets was somehow smaller than the sets of measure 0 (see [8 a]).

The classes in precise sense differ from those in large sense
only by the fact that their exceptional sets are taken smaller
than in the original, namely they are sets of 2-capacity 0.

Spaces H111 = W7" = W^, m positive integer. — These spaces
are used by many authors working in partial differential equa-
tions (the notation depending on the author). A function u

31
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belongs to I-P^R/1) if it is L2 and has strong derivatives in L2

sense of all orders <^ m.
The space H7" is exactly the functional completion of Q°

with respect to our norm |u|^ or ||u||n, relative to the class of
all sets of Lebesgue measure 0. It is therefore an « imperfect »
version of P"1.

GENERAL REMARK. — All functions in the above considered
spaces are equivalent to functions in the corresponding P01

or P^c. We can always replace the former by the latter
for which all our results concerning differentiability and res-
trictions to lower dimensional spaces, etc., are valid. This
replacement can be very easily achieved by considering as
the corrected value of the function u at a point x the mean
value limit

lim IS| I u^ dy = uf^
for spheres S with center at x, with radius converging to 0.
The corrected function u' is defined wherever the limit exists
(in any case a.e. if u is locally integrable), it is equivalent to u
(when u e L^) arid belongs to P" or P^c whenever u is equi-
valent to such a function.
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