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UNIVERSAL REAL LOCALLY CONVEX
LINEAR TOPOLOGICAL SPACES

Otton Martin NIKODYM (Gambier, Ohio, U.S.A.).

It is known that every separable Fr. Riesz-Banach space can be
isometrically and isomorphically embedded into the (C) — space of
all continuous functions in (o, i) with norm [|y[|==maxy(.y), fi5].
Recently E. Silverman [12] has embedded the same spaces into the
space (m), i. e. the space of all bounded infinite sequences (*) with
the norm ||a||==:sup a^\ where a=.(a^ a^ ...). The underlying

paper shows that the method used by Silverman can be generalized
to fit the construction of universal spaces which embed the general
locally convex real linear topological spaces. The obtained result
discloses, at the same time, that essentially, vectors of such a space
can be conceived as some real valued functions, and its topology
as generated by a generalized uniform convergence. Thus the uni-
form convergence shows itself as a more general notion than it
could be surmised.

NOTATIONS. — The elements of a linear space will be termed
vectors, and sometimes, for the sake of clearness provided with
arrows. We also call them points , since we may admit the Grass-
mann's approach to the vector calculus.

The operations on sets will be denoted by the Bourbaki symbols
[A], n , u , d, the inclusion of sets by g . The empty set will be
written ^, the set composed of the single vector x by (a?).

Addition of vectors, and the multiplication of a vector by a real
number \ will be denoted by x-\- j, \x respectively.

(*) This space is not separable.
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Given the sets E, F of vectors, E-\-F will denote the set of all
vectors x -(- y where x^E, y ^ F . Similarly x -\- E will denote the
set of all vectors x-\- y where y^E. The symbol \. E will denote the
set of all vectors X . x where x^E.

{x, y} will mean the closed segment and (a?, y) the open one. The
domain and range of a relation R will be denoted by GR* DR
respectively. If QR u DR is meaningful, this set w^ll be termed
field of R and denoted by ®R. If a topological space is denoted
by (L), the set of all its vectors will be written L.

§ 1. — Basic concepts.

1. A. Kolmogoroff [ i j has introduced the notion of a general
linear real topological space. This is i) a linear space L (i. e.
an abelian group with real multipliers), 2) provided with an open —
set topology [!\\ (which is equivalent to the neighborhood topology
and also to the Kuratowski's topology [2], [3]), 3) satisfying the
weakest separation axiom (i. e. if x-=f=.y, then either there exists a
neighborhood of x not containing j, or there exits a neighborhood
of y not containing a?), and l\) in which x-\~y, ^x are continuous
functions of the couple of both variables (not only with respect
to each variable separately).

It has been proved that the linear topological space must satisfy
the Hausdorff separation axiom (i. e. if x^=.y, then there exist
disjoint neighborhoods of x and j), and even it must be a regular
topology [3].

J. v. Neumann [5] has given an equivalent definition of a linear
real topological space, by axiomatizing a class of sets £7, V, W, ...
of vectors in L in the following way :

i»Hy=P)(2).(/en
2° for every (7, Vdl there exists W^U with W c U n V,
3° for every U there exists V such that

y+yct/.
(2) This axiom was admitted by D. H. Hyers [6] instead of the original v. Neumann's

axiom.
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4° for every U there exists V such that

<x . V c U for all a where [ a( ̂  i,

5° for every a; and U there exists X such that

Hc^k.U.

Those sets t7, V, ...will be termed v. N e u m a n n ' s neighborhoods
(N. nbhds).

Two systems U', U" o f N . nbhds are said to be equ iva len t if
for every UW there exists U'^Vi" with U" c U' and for every UW
there exists U[^t with U\ c (/;'.

Let Ec L. A point x is said to be an U — interior point of E,
[5], if there exists U^U such that ~x-{-Uc E. A set E such that, if
x^E, then a? is an U — interior point of E is called U — open. If
U is equivalent to U', then a U — interior point of E is also a
U' — interior point of E.

If U is a system of N. nbhds, and if we replace every (7^U by
U° i. e. the set of all U — interior points of U, then the system { U°\
will be an equivalent system of N. nbhds. U° is never empty. If
given U, we take all translations of the sets of | U°\, we obtain a
neighborhood-topology in L. (By a neighborhood of x^ we shall
understand the x^ — translation of any U°.) The space L provide I
with this topology is a Kolmogoroff linear topological space, [5j.
The topologies, thus generated by two equivalent systems of N.
nbhds, are equivalent.

Conversely, given a Kolmogoroff linear topological space, there
exists a topologically equivalent system of neighborhoods (s) such
that the neighborhoods U of o satisfy v. Neumann's axioms and (s)
is composed of all translations of all sets of U, [i8j.

It can be easily shown, that if we add, to the above five axioms,
the axiom

6° Ift/eU, and |a |<i . then

a.(/c(7,

no restriction to the topology will be introduced [6j. Hence we may
admit 6° too. N. nbhds satisfying 6° will be termed V. N e u m a n n ' s
star neighborhoods (N. st. nbhds).
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2. D. H. Hyers [6] has introduced the pseudo-normed linear
spaces which are identical with the topological linear spaces. His
approach is this :

Let R bean E. H. Moore- H. L. Smith stream ordering, i. e.
a partial ordering such that
if dp d^oR, then there exists dg^oR with

d ,̂ d,Rd,(3).

Let us attach to every x^L and every d^oR a number H(x, d),
called R-pseudonorm ofx, and satisfying the following conditions:

i° H ( x , d)>o,

2° itH^x, d)=o for all cfeoR, then 1c=o,
3° H(\x, d) =(X|. H^x, d) for all real numbers X,
l\° for every Y, > o and ^(pR there exist S > o and cfeoR such

that for every x, y^L we have :

if^(S,d)<<?, ff(^,d)<S, then^+^,e)<r.,

5° if^Rc^, then H^c, dJ<fl(S, ̂ ) for every ^.
A linear space with pseudo-norm is termed pseudo-normed

linear space.
Given such a space, if we define

(7(d,a)==^jffp,d)<aj for all a > o,
df

the class \ U(d, a) \, where deoR, a > o will satisfy J. V. Neumann's
axioms, and the condition 6° too, so the U(d, a) are N. st. nbhds.

(3) By a par t ia l o rder ing we understand a not empty relation^] R such that
1) aRa whenever a^®R,
2) if aR6, fcRc, then aRc.
3) fora, b^ OR the following are equivalent

I) aR6, 6Ra, II) a=6.[io].

If, given a stream ordering R, we attach to every element a of the field 0 R of R an
element taken from a not empty set E, we get a function f(a) which will be termed
R- s t ream sequence of e l emen t s of E.

The term, commonly used, for a stream-sequence is « directed set », though this is
clearly no set at all, but may be rather understood as the ordered couple (R, f). The stream-
sequence is a generalisation of the ordinary sequence.
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Conversely given a system U ofN. st. nbhds we can define a Hyers'
pseudo-norm in the following natural way by putting

1) HCx,U)=in{^ j^oc.[/{,
df >0

2) ^R^.=.U,c^for^,^U.
df

The second definition organizes U into a stream ordering, and one can
prove that H^x, U) thus defined satisfies the Hyers' conditions i°-5°.

Thus, given a topological linear space (L), there is at least one
stream ordering attached to it.

The Hyers' pseudo-norm-approach to linear spaces has been put
into a simpler form by J. P. La Salle [7].

3. The linear (real) topological space is said to be convex
(locally convex) if there exists a system of N. nbhds U such
that every F^U is a convex set(4), which condition is equivalent to

v-^v^.v.
The linear space is convex if and only if there exists a pseudo-norm

H{x, d) such that for every d,Xi y

H^c-{-y, d)<fl(^, d)-\-HQ, d).

We shall deal only with real l inear topological convex
spaces(L) .

We fix a system U of convex N. st. nbhds and take the corres-
ponding Hyers' pseudonorm which we shall denote by

\\x\\u=H^u),
df

and where the corresponding stream ordering is defined by

^R^.=.^c_^, (^,(7,€U)
df

(4) Given a linear space L, a subset E of L is said to be convex if the following
condition is satisfied:

•> -> >- ->
if x^f x^Ef then ^a^ -^-^x^E for every )^, \

with ̂  ^> o, ?.g ̂ > o, )̂  -[- ^3 == i.
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Theorem. Every U is a convex body in (L), having $
as its l inear ly i nne r point(°).

It may be proved that for U the linearly inner point coincide with
the topologically inner points, but we do not need it.

Proof. Let a?=^=o and (Ml. By V. Neumann's axiom 5 there
exists JB such that x^. £7, p > o.

Hence —. x e £7.

and then, for all y with |y! < —, we have v . o^U.

Hence on the line / passing through o and x there exists an open
segment containing o and included in (7.

^ Theorem. — If we replace every U by its linear closure
L\ v, c o b t a i n an equ iva l en t system of convex N. st. nbhds(6).

Proof. Let (/^U. There exists (/, with U,-+- U, c (/, hence 2U, c [/.
Let A be a boundary point of U^ We have A =7^0, because o is a
linearly inner point of U^ Fut B= 2 . A. We have (?, fi) c [/ and
then Ait/.

Since every boundary point of^ ̂  belongs to U, we have C/^ c U.
On the other hand we have U c (/, which completes the proof.

REMARK. It may happen that the whole space L belongs to U, but,
if we drop it, we obtain an equivalent system ofN. nbhds, unless
the topology is trivial with L as the only neighborhood.

(x) Given a linear real space (L), (even without any topology considered therein), a
convex body in V is a convex set E containing at least one l inear ly inner point ,
i. e. a point XQ such that on every straight line, in L, passing through XQ there exists an
open segment (a?7, x") containing XQ and belonging to E. [iij.

(6) If (L) is a linear space, E c L, then E is said to be l inear ly-closed, if for every
straight line I in L the set E n I is a closed set in the natural topology on the straight
line I .

By the l inear closure E of a set E c L we understand the smallest linearly closed
set containing E. If B is a convex body and, XQ its linearly inner point, then B is also a
convex body in which a*o is a linearly inner point, and vice versa.

The points of B which are no linearly inner points of B (hence of fi) are termed
boundary points of B. (and of B) and its collection is termed the l inear bounda ry
of B. Points of L which do not belong to B are termed l inear ly outer points for B
(andforfi)[n].

It may be proved that the linear closure of U coincides with its topological closure,
but we do not need it.
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In the sequel we shall suppose that (L) is not trivial, and that U
does not contain L. Besides we may admit, without loss of gene-
rality, that every U is a linearly closed convex body.

§ 2. — Some linear functionals.

4. We shall need an important theorem by J. V. Wehausen
([i8], p. 162) ; it will be states at 6. 2. It has been proved, by relying
on the known theorem ofHahn and Banach, but we shall derive it
in a geometrical way, by relying on a theorem on convex bodies.
This will give the Wehausen's theorem the geometrical evidence,
(see also [i3]).

Let us have a fixed system U o fN . st. nbhds where Z^U, where
every (/^U is a linearly closed convex body with o as its linearly
inner point. Take the corresponding pseudo-norm \\x\\u. We have
IH|(/ > i, < i , or= i . i fa? is linearly exterior to £/, interior of U
or a boundary point of U respectively.

Consider the cartesian product (L*) == (L) X (— oo, 4- °°) of the
df

given linear topological space (L) and the topological space (— oo,
-|-oo). Its vectors are ordered couples (a?, \) w^ere ^L, and \ is a
real number. We define addition and multiplication by

&^)+(^^=?+3;^+^)»
df

a. (a;, ),)==(aa7, aX).
df

Define (7*as the set of all (^. \) where x^U, Xe<—s, 4-6)' (£ > °)-
The class ((7*j satisfies V. Neumann's axioms for neigborhoods.
Hence (L*) is a real linear topological space.
All U* are linearly closed convex bodies in L* with (?, o) as a

linearly inner point.
Having this, take (7^U. Define E^ as the set of all couples (^, \)

where \ ̂  IMIi/*

4. 1. The set E*u is convex in (^*).

4. 2. The point (o, 1} is a l inearly inner point of
£^[in (L*)]. E^u is a convex body in (L*).

Proof. Choose x^o\ take the points (^, o), (^, i) and the
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straight line /* passing through them. The point

P:=(^o. »-°0
df

is lying on F.
If y. = o, we have P\ = (o, i) . We want to find ^ > o such that

if a[ << y ̂  then P^E^j. A simple geometric construction will do this,
and its arithmetical equivalent is as follows.

Put

we have o<a.<i, | bJ L ==-!-̂ ::La:fl.o — , ..ii^n ? vvc u<ivc u^^^i, 1 1 ^ 1 1 ^df i -+-[Fol|t/ S

Let a <; ̂ .
It follows

I —a>|a|.-1——^=100 .pj|y=||a ĵ|^.
^-o

This gives :

ll^oll^ ̂  1 — a) anc^ t^'len ^C^.

Hence, if a straight line /* passing through (o, i) is not parallel
to L, there exists an open segment on /* containing (o, i) and
contained in JE^.

Now let /* be parallel to L. Its points are (aa^, i) where x^ =^= o.
If ||a7j|(/===o, we have |(aa?J|y^i, and hence /*^£^. If [pj|(;>o,

we have for ja| ̂  —— the inequality

Ik^ol̂  1 ^ 1 - Rk<1''
and then the open interval ((—e.^, i), (e.^o» I)) ' ^ere

£==——? belongs to E^.
d{wu

Thus we have proved that (^, i) is a linearly inner point of Z?^.
Hence Efj is a convex body in (L*).

4. 3. If (^, x )^^ , ^=^?, ^ > o , then (aa?, ^)^E!
for every a ̂  o.

The proof is obvious.



UNIVERSAL REAL LOCALLY CONVEX LINEAR TOPOLOGICAL SPACES 9

4. 4. Every point (o, \), (^>o) is a linearly inner
point of 2?^.

Proof. Let ^ be a straight line passing through (o, \). Denote
by /* the straight line passing through (o, i) and parallel to ^.
Since (o, i j is a linearly inner point of £^, there exists an open
segment (^, <) with p, i)^«, <), «, <)€/*. If a^«, <),
we have \x\Q.x*, )^)c/^. Since, by the preceding theorem,
\. a?* ^ £^, it follows that

p, \) e(><, ^<)^^n^,

and then, that (o, ).} is a linearly inner point of E^.

4. 5. Every point (a?, ?.), where [p| |^/<<X, (X > o) is
a l inearly inner point of£^.

Proof. Consider the line /*, (j^, ?.) where p varies in
(—oo, -4- oo). /* passes through (o, ?.).

There exists e > o such that

H^.(l+£)<X.

It follows that if — £ < a < i - + ~ e , we have» -^H
a.a?[|(;<^.

Hence the segment

( ( — e x , \), ((i-l-e)?, x)) belongs to fi'^.

The point (o, x) is an inner point of this segment.
Now we can apply the following theorem on convex bodies [i i j :
If G is a convex body, y^ its linearly inner point, and (y^ y ^ ) an

open segment containing y^ and included in G, then all points of
0'r ^2) are dearly inner points of G.

It follows that (a?, \) is a linearly inner point ofJS^.

4. 6. Every point \x, \), where \\x\\u = \, is a boundary
point of E^ ; if \\x^u > ̂  it is a linearly exterior point
of ^.

Proof. Take the set of all points (a*, ^) in L* for which (JL >)..
They are all linearly inner points of E^ and are lying on the straight
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line/* composed of the points ( x , a) where a^(—oo, -t-oo). If
<x < X, the point (a;, a) does not belong to £^.
Choose a number \ > X. The point ( ,̂ ),J is a linearly inner point
of 2%. If we choose on <* the direction in which (^, ^J precedes
[x, \), we see that the supremum of points of flying on F i8 (a?, x).
Hence, by a theorem on convex bodies [ i i j . (^, x) must be a
boundary point of E^ and ( ,̂ ^) for every ()/ < X) an exterior
point. The theorem is proved.

4. 7. It follows that (a?, x) is a l inearly inter ior , exterior
or boundary point of E^ according to whether \\x\\u < X,
> X or = \ respectively. It also follows, by a theorem on convex
bodies [ 11 j, that E^j is a l inearly closed convex body in L*.

4. 8. We see that, if ( ,̂ \) is a boundary point of £^, then for
( >" \every oc ̂  o, aa;, \y.) is also a boundary point.

5. Take a vector x and a neighborhood U with 1c\\u > o. The point

^=& ipy
df

is a boundary point of£^. Since J% is a linearly closed convex body,
there exists at P* a hyperflat F* of support of E^ in If (7).

5. 1. Let F* be a hyperflat of support of E^j at P*, and let M* be
the halfspace with boundary F* and such that

E^^M\

WehavejP*=^(o, o), because x=/^o\ hence the ray R* issuing

(7) If L is a linear space, then b y a l i n e a r v a r i e t y i n L w e understand a not empty
subset E of L such that, if x^ x^.E, then \x^ -)- \x^E.E for every real \ and \.

By a f la t in L we understand a translation of a linear variety. By h y p e r f l a t in L
we understand a flat F ̂  L for which there exists a vector ~x such that the smallest Hat
containing F and x coincides with L.

A hyperflat F determines two ha l f spaces M,, M^ such that M^\jM^= L, M^M^==F.
They arc linearly closed convex bodies with F as common linear boundary.

J. Dieudonne [i3] has proved that, if G is a linearly closed convex body, x its
boundary point, then there exists at least one hyperflat F such that :r€F, and that G,
is contained in one of the two halfspaces determined by F. Such a hyperllat is termed
h y p e r f l a t of suppo r t for G at x. Dicudonnc's proof is algebraic. A geome(rtc;t1 proof
is given in fn].
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from (o, o) and passing through P* is well determined. It must
belong to F*. Indeed fi*c£^ (on account of l\. 7).

Suppose fi* c F*. Since P*efi* n F*, there would exist on fl* a
segment (P*, P^) composed of linearly inner points of one halfspace,
and another segment (P*, P^) on fi* composed of linearly inner points
of the other halfspace. Since <P^, P^> belongs to the boundary ofJ%,
we could deduce that E^ possesses inner points in both halfspaces (8)
which is impossible. Thus R*cF*, and then (S, o)^*.

5.2. If Q, )J^* and (y, ^)eF*, then \=^.
Proof. Suppose \ < \. The straight line passing through (y, \),

[y , \) belongs to F*. Hence (y, o)e^*. If^==S, we would have
(o, ije^7* which is impossible, because (o, i) is a linearly interior
point of E"u. Hence ^^S. Since (^, o)^F* and (j, o)el7*, the
straight line /joining these two points is contained in F * . Hence the
plane passing through / and Fy A belongs to F*, and hence
Co, i)^* which is impossible, since ^ i) ls a linearly inner point
of£^.

5.3. For every x there exists \ such that

(S, \)^*.

Proof. Suppose that for a given x^ we have

(^, x)^F* for all \.

Consider the straight line /* composed of all points (a^, \) where
^(— oo ,-[- oo). Take the hyperflat E* parallel to F^ and passing
through (S, o). Since (S, o)^F*, we have E*=F*. The vector

?=(^,+i)-fc-0^
df

because if not, $ would be independent of Z?* and hence /* would
intersect F*.

Hence the line (o, ).) with varying \ would belong to F* and then
(o, o) would be no inner point of Z?^.

(8) There is the following theorem. If G is a convex body, x^ its linearly inner point
and a its boundary point then the open segment (a, .Tp) is composed of linearly inner
points of G, [11].
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5.4. Let us remark that given a U there exists x such
thatp|[y>o.

Since U differs from the whole space, there exists at least one
boundary point x of U.

For this point we have 1̂ 11̂ = i as was already proved.

5.5. Given an a?=^o, there exists (/ such that

H (/>o.
Ifnot, we would have [p[ y==o for all (7, and then by Hyers' first

>- >•
axiom, a?==o.

The set E^ is lying in one of the two linearly closed halfspaces
determined by F*. One of them M^ contains (o, — 1} the other Afg
contains (o, i). Clearly E^c_M^.

5.6. If S€L, and p,x)€F*, then ^<||4/.
Indeed if we had \ > \\x\\u, the point (a*, X) would be a linearly

interior point of JE^, and then (a?, ^)^F*.

6. Take a neighborhood L^U. Since there exists x^ with ||a*o||(/ > o,
the corresponding set E^ is not empty, and then the flat F*, as defined
before, exists. Choose F*. Let us define the function f(x) by putting:

/(^)=X where p. x)6F*.

Such a number X exists and is unique.

6.1. We easily see that f{x) is a l inear funct ional in L.
This will mean that

/P4-^=/P)+/(^) for all x, ;eL.

and /(aa?) = a/(ai) for all ^e^ and all real numbers oc. Of course,
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f[x) depends not only on U but also on the choice of the support-
hyperflatF*for^(9).

6.2. Theorem. (Wehausen) For every a^ and U there
exists a linear continuous funct ional fx^u^) ln L such
that

^P \f^ ̂ )1 = 1» fx., ̂ ) = Pjt/-
a?6(7

Proof.
Suppose first that

Rl>o.
Consider the set £^. We know that the point P*= (a^, ||a\||^) is lying

f~^ \
on the boundary of E^, and that this point differs from ^o, o).

Take a support-hyperflat F* at P* to E^ in L*, and consider the
corresponding linear continuous functional f(x).

Put
^ _ xy-^^vIkll̂

The point (y, i) lies on the boundary of 2?^, and especially on the
line joining (0,0) with P*.

Hence (j, i)6F*. Hence/(j)== i , and then

/(̂ )=A|p,||,.y)=|p,||, . . . . . . (.)
Now we have for x^U,

/(a;)<|H|^<i.

(9) Let ^€(7. We have ||^||(/< i. Since (^, /(^^eF111, we have by what has been
proved,

/(^)<»<..
Let U° be the set of all points of U which are U-interior points. Hence U° is an open set
in the linear topological space. We have for xGU° also the inequality

/(^)<i.
Thus we see that f(x) is bounded from above on a non empty topologically open set (7°.
The following theorem is true [i5J.
If, in a linear space, provided with a topology T such that the following conditions are

satisfied :
i° if E is a T-open set, then every translation of E is so,
a° if E is a T-open set then a. E for a ̂  o is also a T-open set, there exists a T-open

set, on which the linear function f(x) is bounded from above, then /(a;) is continuous in
this topology.

This theorem allows to conclude that /(a?) is a con t inuous l inear funct ional .
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Ifa^t/, then —x^U, because U is a star-neighborhood. Hence

-/(^)=/(-^)<ll-^ll^=IM^<i.
It follows that for every x^U we have

LA^KI-

Since ||j|[y== i, we have y^U, for U is linearly closed.
Hence

^pl/O^)^1 . . . . . . (2)
a-ey

Thus the functional f(x) satisfies the conditions stated in the
theorem.

Now suppose that ||a?J (/==o.
There exists x^ such that \x^u ̂ > o \ fi11^ a linear functional f(x), as
above, for x^

We have

Besides
^lA^)!^1-

/(^)<|[^=o.

Since x^U, we have—a*^^,
and then

Thus

and then

-/(^)=/(-^)<ll-^=o.

l/(^)|<o, hence/(^)=o,

/(^)==IKII^-
The theorem is proved.

6. 3. The funct ional fx,u\y) of the preceding theorem
has the property :

(i) . . . . . \f^ u{y) <:\\Y\\u tor every y .

Proof. Let ||j|[(/==:o. We have for n==. i , 2, . . .

^^=^'?=0.
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Since \\ny\\u ̂  i » we have ny^U,
and then

l/^(^)l<i.
It follows

/^,t/(.y)^— f01* ^= i, 2 , . . , hencen

f^u{y)=o. and then in this case the inequality (i) is proved. Let

B>°-put^^
We have \^\\u= i , hence z^U, and then

1/^.(/(^)|< i, i. e.

1/.,,»(7)1<11^.
The theorem is proved.

§ 3. — The matrix space.

7. Let ̂  be a cardinal ̂  ̂  and R a stream ordering. Take a set J
of any elements a, (B, . . . whose power is ^ ; these elements, as
well as the elements rf, e, /. . . of oR will be used as indices. By a
matr ix we shall understand a function A-=[A^d\ defined for all
a^<7 and all ofeo)R and whose values are real numbers (hence }Aa d\
is a function of two variables a, d).

Let SO? be the class of all matrices A ==.iAa,d{ such that for every
x and every d^oR

sup|^|< oo. . . . . . . (o)
dRdo,ae/

7. 1. We organize 3% into a linear space (3ft) by defining the
addition of matrices and the multiplication of matrix by a real
number:

^M^^F^+Ba,^

X.|A^^X.A,J.

The matrix with all elements = o is the null-vector of this space.
Put

IMUI^suplA^I. . . . . . . (i)
dRdo
aEJ
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7.2. We easily check that this func t ion of A and d satisfies
all the Hyers* condi t ions for the R-convex pseudonorm.

Hence Sft is organized into a pseudo-normed space with the
pseudo-norm (i).

§ 4. — Embedding of (L) into a matrix space.

8. Let (L) be a real linear convex topological space ; by its sepa-
rabil i ty-cardinal we shall understand the smallest cardinal ^
such that there exists a subset Q of L with power ̂  and everywhere
dense in (L), i. e. for every vector x^L and every topologically
open set G containing a^, there exists x^Q n G.

Let us choose a system U o f N . star. nbhds, such that Leil and
such that, if (7̂ 11 then U is linearly closed. Construct the corres-
ponding Hyers' pseudonorm \\x\\u with the corresponding stream
ordering R, defined by U,RU,. =^=. U, c ̂ , (^, (/^U).

Let ̂  be the separability-cardinal of (L) according to the topology
induced by U, and choose an everywhere dense set Q of power ^
in L. We suppose that ^ ̂  ̂ .

According to what was made in §2, attach to every ^Q and
U^U a linear continuous functional f(x) =/-> {x) with the
properties: ' u o

sup|/(^)|=i, /(t)=p||^ . . . . . . (i)
x^Uo

Put
A(x) = j A^ ̂ ) j ̂  j/^ ̂ ) j for all x^

^Qand^eR==U.

8.1. We shall prove that the matr ix j u s t def ined satisfies
the condition (o), § 3.

We have

^(91=M?l<ft<IHk
whenever URUy. Hence if we fix ~x and Uy, we have

sup A^(;(^)|<|p||^< oo . . . . . . (a)
r60se<?

E/Bl/o
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8.2. Let us take the correspondence S which attaches to every
~^ /"^Nx^L the matrix A[x) taken from 3%.

The correspondence S is an algebraic homomorphism
from L into 3%.

8.3. The correspondence S preserves the Hyers* speudo-
norm. Proof. Let x be arbitrary. Take a neighborhood U^. We have

||̂ © (/o==sup ^^(x) = sup |/^pi)|.
URUaUKUo

^0 ?=Q
We have

hence
l/^©l<lft<IHk ift/R^o'

l|A©|k<|H|,. . . . (3)

Take e > o and-find a V^ll such that i('y^V°-{-'x (7° means the
topological interior of F), we have

\\y—^ i/o<e W
For t/Rt/. we have

1/s. (/G) — /$. ̂ ) I = [4 £/G —a:) I < ? — Hu < IP — s ̂  < £»
hence

l/^(y)-/s,^)l<^ (5)
for every ^Q, every yR(/o and jeV°.

From (4) we have, because of the convexity condition,
iii-'-ii n" îi 11^" "^n i-̂  ^-llljl-H^

for every U'R.UQ and every j ̂  V0 -|-a;.
Since Q is topologically everywhere dense in L, there exists

r^Qn [F+S].
We have

M n->[j
( /—F( | ( /<e

and from (5),
f^)—f^)\<^

for every £^ Q and every MEU/y.
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Hence

and then

It follows from (5):

for every UH.UQ.
Hence

OTTON MARTIN NIKODYM

lU^-U^k^
||H-A^)|<e.

^.uPO—Ht^26

iP||t/o —— 26 < A^(x) < A^uff)

Consequently

|R|i/o — ae < sup A^v{x) for any e > o.
UM,
S6<?

Hence |ft.<||A(..)[|^. . . . . . .

From (3) and (6) it follows

Rk=||A(.r)|k.
Q . E . D .

Hence we have proved that S preserves the pseudo-norm.
8. 4. Finally, let us prove that S is a one-to-one relation.
Suppose that A(a?J==:A(a?J.

A(a^—a?J is the o-matrix.

(6)

a-. -V-Since -x^\u=o
->- -̂ ->• ->- ->

for all U, it follows that x^—x^=o, and then x^=x^.
Thus the correspondence S is an isometric isomorphism from L

into 9)1 and then also a homeomorphism. It follows that 3% is a
universal l inear convex topological space in which are
isometr ical ly and isomorphipal ly embedded all real topo-
logical linear spaces having isomorphic stream orderings
of N. str. nbhds and the same separabili ty cardinal ^.

9. Now let $ be a not empty set of real linear convex topological
spaces (Li) where i ranges over a not empty set/. IfR, is a streamor-
dering generated by L^ and t^ is its separability cardinal, we can put
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« == sup ̂ , and find a stream ordering R such that R; is isomorphic
df i-e/ ° r

with a sub-partial ordering of R, and consequently have a matrix-
space which embraces isomorphically and isometrically all spaces
of$.

10. Now let x^x, which means that for every topologically open
set G with SeG, there exists U^ such that if t^Rt/, then ^S-f- G.

If we put yu=Xu—x, the above is equivalent to the statement:df >-
for every, open G with o^G there exists U^ such that if Uj{U, then

^eG.
This is equivalent to the statement:
(1) For every Nnbhd U there exists V, such that, if U^U, then

^/.

We shall prove that (i) is equivalent to the following statement :
(2) For every U1 and e > o there exists U^ such that if £^R£7, then

iA'<^.
Proof. Suppose (i). Let p be a natural number with -J- ̂  e, and

/ i \° Ptake the topologically open set ( — . U ' ) . There exists U such that,
if £/,R[/, then \P /

< i \°y. -^.u),
hence

y^.u',
hence p .yu^U\
hence

\\p'yu\\u'<^
\\yv\\v < — < e, hence (2).

Suppose (2). Take U' and e==i. There exists (/, such that,
if U,RU, then \^\\v < i •

Hence •>•
yi](.U, hence (i).
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10. 1. Having this, lake the matrix-image A ̂ yu) of yu-
(2) is equivalent to the statement:
(3) for every U and e > o there exists U^ such that if Uj{U, then

l|A(^)fc<e,
because

^GA'=||^^

^YU^U^ SUp ^a,W'(^)
WB(7
a6Q

Hence (3) is equivalent to the statement :
(4) . . . . . . for every (/' and e > o there exists U^ such that, if

U^U, we have
A^w•(Juy\<:^

for all ^Q and all WW.
Now A^W\yu) can be conceived as a function (p(/(a, W7) of two

variables a, W defined for all a^Q and all W/ with WR(/'.
The statement (4) says that the stream sequence i^fui converges

uniformly, i. e. For every £ > o there exists (7p, such that for all U
with U^U and all (a, W) we have

i?.(a, vnKe.
Hence for every f7 the stream sequence (pc/(a, W) of functions

restricted to those (a, W) for which IVR<7, converges uniformly to
the 0-matrix. We can say that every matrix, restricted from above,
converges uniformly.

Hence the correspondance S between vectors of the
space L and matrices t ransforms every convergent R-
stream sequence \Xi]\ of vectors into a corresponding
stream sequence of functions 9(/(a,W) whose all
restr ic t ions from above (i. e. WRWp, where Wp is
fixed) converge un i formly .

This reminds an ordinary ^ sequence of functions ^n(p, q),
(n == i ,2 ...) defined for o^q, O^JD^I , which converges uni-
formly in every rectangle o-^p^i, o^q ̂ q .
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