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LONG-TIME ASYMPTOTICS FOR THE
DEGASPERIS–PROCESI EQUATION ON THE

HALF-LINE

by Anne BOUTET DE MONVEL,
Jonatan LENELLS & Dmitry SHEPELSKY (*)

Dedicated to the memory of Louis Boutet de Monvel

Abstract. — We analyze the long-time asymptotics for the Degasperis–
Procesi equation on the half-line. By applying nonlinear steepest descent tech-
niques to an associated 3× 3-matrix valued Riemann–Hilbert problem, we find an
explicit formula for the leading order asymptotics of the solution in the similarity
region in terms of the initial and boundary values.
Résumé. — Nous étudions le comportement asymptotique en temps grand de

l’équation de Degasperis–Procesi sur la demi-droite. L’application de techniques
de descente de plus grande pente non linéaire à un problème de Riemann–Hilbert
matriciel 3× 3 associé nous permet d’obtenir une formule explicite, en termes des
données initiale et au bord, pour le terme dominant de l’asymptotique de la solution
dans la région de similarité.

1. Introduction

The nonlinear steepest descent method introduced in [12] provides a
powerful technique for determining asymptotics of solutions of nonlinear
integrable PDEs. By appropriately deforming the contour of the associated
Riemann–Hilbert (RH) problem, the long-time behavior of the solution can
be determined by adding up the contributions from the individual critical
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lem, boundary value problem.
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points. In this way the asymptotics associated with the modi�ed KdV [12],
the nonlinear Schrödinger [10], and several other integrable equations posed
on the real line have been rigorously established, see [2, 11, 15]. More
recently, a number of works treating periodic problems [16] as well as initial-
boundary value problems [1, 3] have also appeared.

In this paper we use the method of nonlinear steepest descent to analyze
long-time asymptotics for the Degasperis�Procesi (DP) equation

(1.1) ut � utxx + 3 �u x + 4uux � 3ux uxx � uuxxx = 0 ; � > 0;

posed in the domain

(1.2) 
 =
�

(x; t ) 2 R2 j 0 6 x < 1 ; 0 6 t < 1
	

:

Our main result (see Theorem 5.1 below) gives an explicit formula for the
leading order asymptotics ofu(x; t ) in the similarity region 0 < x

t < 3 in
terms of the initial and boundary values. In this region it has the form of
slowly decaying oscillations, whereas in the complementary regionxt > 3 it
is dominated by solitons, if any, see [2, 3, 4].

Equation (1.1) was discovered in [8] using methods of asymptotic inte-
grability. A Lax pair and a bi-Hamiltonian structure were derived in [7].
An interesting aspect of (1.1) is the existence of peaked solutions [7] as
well as weak solutions with a very low degree of regularity [5]. The latter
class includes a class of discontinuous generalizations of the peakons called
shock-peakons [21]. The asymptotic behavior of the solution of (1.1) on the
line was determined in [4]. In [17] the solution of the initial-boundary value
problem of (1.1) on the half-line was expressed in terms of the solution of
a 3 � 3-matrix RH problem.

Compared with most other applications of the nonlinear steepest descent
approach, the asymptotic analysis of (1.1) presents a number of additional
di�culties:

(a) The RH problem associated with (1.1) involves3 � 3 matrices in-
stead of 2 � 2 matrices. This implies that the standard uniqueness
results for L 2-RH problems (such as Theorem 7.18 of [9]) do not
apply. However, it turns out that in an appropriate function space,
which we denote by _L 3, uniqueness holds also for3� 3-matrix valued
RH problems, see [20].

(b) The t-part of the Lax pair associated with (1.1) has singularities
at the points K j = e

�ij
3 � �i

6 , j = 1 ; : : : ; 6. In [17] this di�culty
was overcome by utilizing two di�erent sets of eigenfunctions which
were solutions of two di�erent Lax pairs (a similar idea was used
already in [4] to recoveru(x; t ) for the problem on the line). Here we
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LONG-TIME ASYMPTOTICS FOR THE DP EQUATION 3

adopt a similar approach; however, in order to obtain a RH problem
suitable for the asymptotic analysis of (1.1), we use a modi�cation
of the RH problem in [17]. The modi�ed problem has the advantage
that, after the appropriate contour deformations prompted by the
nonlinear steepest descent method have been performed, the RH
problem involves only one set of eigenfunctions near each of the
twelve critical points. This leads to a jump matrix near each critical
point of an appropriate form.

(c) The Lax pair associated with (1.1) has singularities at the sixth

roots of unity { j = e
�i ( j � 1)

3 , j = 1 ; : : : ; 6. In [4, 17] this di�culty
was overcome by considering a regular RH problem for an associated
row vector. Here, rather than trying to develop a nonlinear steep-
est descent approach for row vector RH problems, we carry out
the steepest descent analysis using a regular3 � 3-matrix valued
solution which, in general, is di�erent from the original solution.
However, by uniqueness for the row vector RH problem, the row
vectors associated with these two solutions coincide.

(d) On the half-line, the jump contour for the RH problem associ-
ated with (1.1) involves nontransversal intersection points, see Fig-
ure 2.1. This implies that the standard theory of L p-RH problems
does not apply. We circumvent this di�culty by employing the the-
ory of L p-RH problems developed in [20] for general Carleson jump
contours.

Our analysis determines the asymptotic behavior ofu(x; t ) provided that
all boundary valuesf @j

x u(0; t)g2
0 are known. However, for a well-posed prob-

lem, only a subset of the initial and boundary values can be independently
prescribed. If all boundary values are not known, our asymptotic formula
(see Theorem 5.1) still provides some information on the solution, but since
the function r (k) is unknown, the precise form of the asymptotics remains
undetermined. In general, the computation of the unknown boundary val-
ues (i.e. the construction of the generalized Dirichlet-to-Neumann map)
involves the solution of a nonlinear Volterra integral equation. We do not
consider the construction of the Dirichlet-to-Neumann map in this paper.
We also do not consider the existence of so-called linearizable boundary con-
ditions for which the unknown boundary values can be eliminated thanks
to additional symmetries.

In Section 2, we give a short review of the RH approach for (1.1) on the
half-line. In Section 3, we formulate a RH problem suitable for determining
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the long-time asymptotics. In Section 4, we prove a nonlinear steepest de-
scent theorem appropriate for analyzing the asymptotics in the similarity
region. In Section 5, we prove our main theorem.

2. Preliminaries

We consider initial-boundary value problems for (1.1) for which the initial
and boundary values

u0(x) = u(x; 0); x > 0;(2.1a)

g0(t) = u(0; t); g1(t) = ux (0; t); g2(t) = uxx (0; t); t > 0;(2.1b)

satisfy the three conditions

u0(x) � u0xx (x) + � > 0; x > 0;(2.2a)

g0(t) � g2(t) + � > 0; t > 0;(2.2b)

g0(t) 6 0; t > 0:(2.2c)

The assumptions in (2.2) imply the following positivity condition which is
needed for the spectral analysis:

u(x; t ) � uxx (x; t ) + � > 0; (x; t ) 2 
 :(2.3)

In view of (2.3), we may de�ne q(x; t ) by

(2.4) q(x; t ) =
�
u(x; t ) � uxx (x; t ) + �

� 1
3 ; (x; t ) 2 
 :

We next give a short review of the RH approach for (1.1) on the half-line;
see [17] for further details. We suppose thatf gj g2

0 belong to the Schwartz
classS(R+ ) and that there exists a unique smooth solutionu(x; t ) of (1.1)
in 
 such that (2.1) and (2.2) are satis�ed and u( � ; t) 2 S(R+ ) for each
t > 0. For simplicity, we henceforth assume that � = 1 .

2.1. Lax pairs

Equation (1.1) admits the Lax pair [4, 6]

(2.5)

(
 x (x; t; k ) = L(x; t; k ) (x; t; k );

 t (x; t; k ) = Z (x; t; k ) (x; t; k );

ANNALES DE L'INSTITUT FOURIER
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where k 2 Ĉ = C [ f1g is the spectral parameter,  (x; t; k ) is a 3 � 3-
matrix valued eigenfunction, the 3� 3-matrix valued functions L and Z are
de�ned by

L(x; t; k ) =

0

@
0 1 0
0 0 1

�q 3 1 0

1

A ; Z (x; t; k ) =

0

@
ux � 2

3� � u 1
�

u + 1 1
3� � u

ux � �uq 3 1 � ux + 1
3�

1

A ;

and � = � (k) is de�ned by

� =
1

3
p

3

�
k3 +

1
k3

�
:

Let ! = e
2 �i

3 . De�ne f l j g3
1 and f zj g3

1 by

(2.6) l j (k) =
1

p
3

�
! j k +

1
! j k

�
; zj (k) =

p
3

�
(! j k)2 +( ! j k) � 2

k3 + k� 3

�
; k 2 C:

Let

P(k) =

0

@
1 1 1

l1(k) l2(k) l3(k)
l2
1(k) l2

2(k) l2
3(k)

1

A ; k 2 C;(2.7)

and de�ne f Vj (x; t; k ); ~Vj (x; t; k )g2
1 by

V1 = P � 1

0

@
0 0 0
0 0 0

� (q3 � 1) 0 0

1

A P;

V2 = P � 1

0

@
ux � u 0
u 0 � u

ux � �uq 3 0 � ux

1

A P;

~V1 = P � 1

0

B
@

qx
q 0 0
0 0 0
0 1

q � q � qx
q

1

C
A P;

~V2 = P � 1

2

6
4

0

B
@

� uqx
q 0 0

u+1
q � 1 0 0

u x
q2

1
q � 1 + uq uqx

q

1

C
A +

q2 � 1
�

0

@
0 0 1
0 0 0
0 0 0

1

A

3

7
5 P:

Let L = diag( l1; l2; l3) and Z = diag( z1; z2; z3). The eigenfunctions	 and
~	 introduced by

 (x; t; k ) = P(k)	( x; t; k )eL (k )x + Z (k ) t ;(2.8a)

 (x; t; k ) = D(x; t )P(k) ~	( x; t; k )eL (k )y(x;t )+ Z (k ) t ;(2.8b)

TOME 0 (0), FASCICULE 0
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where

(2.9)

y(x; t ) =
Z (x;t )

(0 ;0)
q(x0; t0) (dx0 � u(x0; t0)dt0) ;

D(x; t ) =

0

B
@

1
q(x;t ) 0 0

0 1 0
0 0 q(x; t )

1

C
A ;

satisfy the Lax pair equations
(

	 x � [L ; 	] = V1	 ;

	 t � [Z ; 	] = V2	 ;
(2.10a)

and
(

~	 x � [qL ; ~	] = ~V1
~	 ;

~	 t � [Z � uqL ; ~	] = ~V2
~	 ;

(2.10b)

respectively.

2.2. Analytic eigenfunctions

Let  j , j = 1 ; 2; 3, denote contours in the(x; t )-plane connecting(x j ; t j )
with (x; t ), where (x1; t1) = (0 ; 1 ), (x2; t2) = (0 ; 0), and (x3; t3) = ( 1 ; t).
The contours can be chosen to consist of straight line segments parallel
to the x- or t-axis. For a diagonal matrix D , let D̂ denote the operator
which acts on a matrix A by D̂A = [ D; A ], i.e. eD̂ A = eD Ae� D . We
de�ne solutions f 	 n (x; t; k )g18

1 and f ~	 n (x; t; k )g18
1 of the Lax pairs (2.10a)

and (2.10b) respectively, by the solutions of the integral equations

(	 n ) ij (x; t; k ) = � ij +
Z

 n
ij

�
eL̂ (k )x + Ẑ (k ) t Wn (x0; t0; k)

�

ij
;(2.11a)

( ~	 n ) ij (x; t; k ) = � ij +
Z

 n
ij

�
eL̂ (k )y (x;t )+ Ẑ (k ) t ~Wn (x0; t0; k)

�

ij
;(2.11b)

where k 2 Dn , i; j = 1 ; 2; 3, n = 1 ; : : : ; 18, and the contours  n
ij are given

by

(2.12)  n
ij =

8
>><

>>:

 1; Rel i (k) < Rel j (k); Rezi (k) > Rezj (k);

 2; Rel i (k) < Rel j (k); Rezi (k) < Rezj (k);

 3; Rel i (k) > Rel j (k);

for k 2 Dn ;

ANNALES DE L'INSTITUT FOURIER
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D1

D1

D2

D2

D3

D3

D4

D4

D5

D5

D6

D6

D7

D8

D9D10

D11

D12

D13

D14

D15 D16

D17

D18

Figure 2.1. The setsDn , n = 1 ; : : : ; 18, which decompose the complex
k-plane.

the closed one-formsWn (x; t; k ) and ~Wn (x; t; k ) are de�ned by

Wn = e� L̂ x � Ẑ t (V1dx + V2dt)	 n ; ~Wn = e� L̂ y � Ẑ t ( ~V1dx + ~V2dt) ~	 n ;

and the open setsf Dn g18
1 are displayed in Figure 2.1. Precise de�nitions

of all the sets Dn can be found in [17]; here we only give the de�nitions of
the Dn relevant near the positive real axis and nearK 1:

D1 = f k 2 Ĉ j Rel1 < Rel2 < Rel3 and Rez1 < Rez2 < Rez3g;

D6 = f k 2 Ĉ j Rel2 < Rel1 < Rel3 and Rez2 < Rez1 < Rez3g;

D7 = f k 2 Ĉ j Rel1 < Rel2 < Rel3 and Rez2 < Rez1 < Rez3g;

D8 = f k 2 Ĉ j Rel1 < Rel2 < Rel3 and Rez1 < Rez3 < Rez2g;

D18 = f k 2 Ĉ j Rel2 < Rel1 < Rel3 and Rez1 < Rez2 < Rez3g:

Let K j = e
�ij

3 � �i
6 , j = 1 ; : : : ; 6, denote the points where� = 0 and let

{ j = e
�i ( j � 1)

3 , j = 1 ; : : : ; 6, denote the sixth roots of unity, see Figure 2.2.
Away from the sets f1 ; 0g[f { j g6

1 [f kj g and f { j ; K j g6
1 [f kj g, respectively,

	 n and ~	 n are bounded and analytic functions ofk 2 Dn with continuous
extensions to �Dn . Here f kj g denotes a possibly empty set of singularities
at which the Fredholm determinant of integral equations (2.11) vanishes;

TOME 0 (0), FASCICULE 0
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K 1

K 2

K 3

K 4

K 5

K 6

{ 1

{ 2
{ 3

{ 4

{ 5 { 6

Figure 2.2. The points K j = e
�ij

3 � �i
6 , j = 1 ; : : : ; 6, where � = 0 , and

the points { j = e
�i ( j � 1)

3 , j = 1 ; : : : ; 6, where P � 1(k) has poles.

for simplicity, we henceforth assume that the setf kj g is empty (soliton-
less case). For thosen for which the indicated limiting points lie on the
boundary of the correspondingDn ,

	 n (x; t; k ) = I + O(k � K j ) as k ! K j ; k 2 Dn ; j = 1 ; : : : ; 6;

~	 n (x; t; k ) = I + O(1=k) as k ! 1 ; k 2 Dn ;

~	 n (x; t; k ) = I + O(k) as k ! 0; k 2 Dn ;

where I denotes the identity matrix.
We de�ne spectral functions f Sn (k)g18

1 and f ~Sn (k)g18
1 by

Sn (k) = 	 n (0; 0; k); ~Sn (k) = ~	 n (0; 0; k); k 2 Dn :(2.13)

2.3. Symmetries

De�ne sectionally analytic functions S� (k) and ~S� (k) for k 2 C by setting
S� (k) = Sn (k) and ~S� (k) = ~Sn (k) for k 2 Dn . If f denotes one of the3� 3-
matrix valued functions L , Z , M , S� , or ~S� , then f obeys the symmetries

ANNALES DE L'INSTITUT FOURIER
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E1

E1

E2

E2

E3

E3

E4

E4

E5

E5

E6

E6

E7

E8

E9E10

E11

E12

E13

E14

E15 E16

E17

E18

Figure 2.3. The setsEn which decompose the complexk-plane.

f (k) = A f (!k )A � 1; k 2 C;(2.14a)

f (k) = Bf (1=k)B; k 2 C;(2.14b)

f (k) = Bf (k)B; k 2 C;(2.14c)

where A , B are de�ned by

A =

0

@
0 0 1
1 0 0
0 1 0

1

A ; B =

0

@
0 1 0
1 0 0
0 0 1

1

A :(2.15)

3. A Riemann�Hilbert problem

We use the eigenfunctions	 n and ~	 n to de�ne a RH problem suitable
for analyzing the long-time asymptotics.

Choose a small radiusr > 0 and let B j denote the open disk of radiusr
centered at K j , j = 1 ; : : : ; 6. Let B = [ 6

j =1 B j and de�ne open setsf En g36
1

by, see Figures 2.3 and 2.4:

En = Dn n �B; E n +18 = Dn \ B; n = 1 ; : : : ; 18:(3.1)

The eigenfunctionsf ~	 n g18
1 are well-behaved neark = 1 and k = 0 while

the eigenfunctionsf 	 n g18
1 are well-behaved near theK j 's. We formulate a

TOME 0 (0), FASCICULE 0
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E1

E1

E7

E8

E 19

E 19

E25

E26

Figure 2.4. The setsEn for k near K 1.

RH problem relative to the contour shown in Figure 2.3 (see also Figure 2.4)
by using ~	 n and 	 n for k in En and En +18 , respectively.

Let y = y(x; t ) be the function de�ned in (2.9). The map G : (x; t ) 7!
(y; t) is a bijection from 
 = f x > 0; t > 0g onto G(
) � R2. Thus,
for each (y; t) 2 G(
) , we may de�ne a sectionally meromorphic function
M (y; t; k ) by

(3.2) M (y; t; k )

=

(
~	 n (x; t; k ); k 2 En ;

P(k) � 1D(x; t ) � 1P(k)	 n (x; t; k )e(x � y+ � 0 )L (k ) ; k 2 En +18 ;

where n = 1 ; : : : ; 18 and the constant � 0 2 R is de�ned by

� 0 = lim
x !1

(y � x) =
Z 1

0
(q(x; 0) � 1)dx:

Let M n denote the restriction of M to En . The de�nition (3.2) and the
relations (2.8) imply that M satis�es the jump condition

M n = M m Jm;n ; k 2 �En \ �Em ;(3.3)

where

(3.4)

8
>><

>>:

Jm;n (y; t; k ) = eyL̂ + t Ẑ
� ~S� 1

m (k) ~Sn (k)
�
;

Jn;n +18 (y; t; k ) = eyL̂ + t Ẑ Cn (k);

Jm +18 ;n +18 (y; t; k ) = eyL̂ + t Ẑ e� � 0 L̂
�
S� 1

m (k)Sn (k)
�
;

n; m = 1 ; : : : ; 18:

ANNALES DE L'INSTITUT FOURIER
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