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STABILITY OF SOLUTIONS TO COMPLEX
MONGE–AMPÈRE FLOWS

by Vincent GUEDJ, Chinh H. LU & Ahmed ZERIAHI (*)

Dedicated to Jean-Pierre Demailly on the occasion of his 60th birthday

Abstract. — We establish a stability result for elliptic and parabolic complex
Monge–Ampère equations on compact Kähler manifolds, which applies in particu-
lar to the Kähler–Ricci flow.
Résumé. — Nous établissons un résultat de stabilité pour les équations de

Monge–Ampère complexes elliptiques et paraboliques sur les variétés Kähleriennes
compactes, qui s’appliquent en particulier au flot de Kähler–Ricci.

1. Introduction

Several important problems of Kähler geometry (e.g. finding canonical
metrics) necessitate to study the existence and regularity of solutions to
certain degenerate complex Monge–Ampère equations. The fundamental
work of Yau [18] guarantees the existence of smooth solutions to a large
class of equations. It has been generalized in various interesting directions,
providing weak solutions to several degenerate situations. We refer the
reader to [13] for a recent overview.

In this paper we are interested in the stability properties of solutions to
such equations. Let X be a compact Kähler manifold of dimension n, θ be
a Kähler form and dV a volume form on X. Fix 0 6 f a positive density
on X and let ϕ be a θ-plurisubharmonic function solving

(1.1) MAθ(ϕ) = eϕfdV,

Keywords: Monge–Ampère, stability, Kähler–Ricci flow.
2010 Mathematics Subject Classification: 53C44, 32W20, 58J35.
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where MAθ(ϕ) = (θ+ddcϕ)n denotes the complex Monge–Ampère measure
with respect to the form θ. Throughout this note we always assume that
the densities are normalized by

∫
X
fdV = 1.

If (fjdV ) is a sequence of Borel measures converging in total variation to
fdV then, it follows from [12] that the corresponding sequence of solutions
(ϕj) converges in L1(X) to ϕ. Our aim is to establish a quantitative version
of this convergence.
Our first main result gives a satisfactory answer for Lp densities with

respect to Lebesgue measure, p > 1 (see [3, 12, 16] for related results).

Theorem 1.1. — Fix p > 1 and 0 6 f, g ∈ Lp(X,dV ). If ϕ,ψ are
bounded θ-plurisubharmonic functions on X such that

MAθ(ϕ) = eϕfdV ; MAθ(ψ) = eψgdV,

then
‖ϕ− ψ‖∞ 6 C‖f − g‖1/n

p .

where C > 0 depends on p, n,X, θ,dV and uniform bounds on ‖f‖p, ‖g‖p.

We use some ideas of the proof of 1.1 to establish a stability result for
parabolic complex Monge–Ampère flows. We consider the equation

(1.2) (ωt + ddcϕt)n = eϕ̇+F (t,·,ϕ)fdV,

in XT := ]0, T [×X, where 0 < T < +∞ and
• (ωt)t∈[0,T ] is a smooth family of Kähler forms on X;
• there exists a fixed Kähler form θ such that θ 6 ωt for all t;
• F = F (t, x, r) : X̂T := [0, T ]×X×R→ R is smooth, non-decreasing

in the last variable, uniformly Lipschitz in the first and the last
variables, i.e. ∃ L > 0 s.t. ∀ ((t1, t2), x, (r1, r2)) ∈ [0, T ]2 ×X × R2,

(1.3) |F (t1, x, r1)− F (t2, x, r2)| 6 L(|r1 − r2|+ |t1 − t2|),

• 0 < f ∈ C∞(X,R).
Our second main result is the following:

Theorem 1.2. — Fix F,G : X̂T := [0, T ] × X × R → R satisfying
the above conditions and fix p > 1. Assume that ϕ : [0, T ] × X −→ R
is a smooth solution to the parabolic equation (1.2) with data (F, f) and
ψ : [0, T [×X −→ R is a smooth solution to (1.2) with data (G, g). Then

sup
XT

|ϕ− ψ| 6 sup
X
|ϕ0 − ψ0|+ T sup

X̂T

|F −G|+A ‖g − f‖1/n
p ,

where A > 0 is a constant depending on X, θ, n, p, L, a uniform bound on
ϕ0, ψ0, ϕ̇0, ψ̇0 on X and a uniform bound on ‖f‖p and ‖g‖p.
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2. Preliminaries

2.1. Elliptic complex Monge–Ampère equations

Let (X, θ) be a compact Kähler manifold of dimension n.
A function u : X → R ∪ {−∞} is called quasi-plurisubharmonic (quasi-

psh for short) on X if it can locally be written u = ρ + ϕ, where ϕ is a
plurisubharmonic function and ρ is a smooth function.
A function u is called θ-plurisubharmonic (θ-psh for short) if it is quasi-

psh on X and θ+ ddcu > 0 in the weak sense of currents on X. The set of
all θ-psh functions on X is denoted by PSH(X, θ).
It follows from the seminal work of Bedford and Taylor [1, 2] that the

Monge–Ampère measure (θ + ddcu)n =: MAθ(u) is well-defined when u is
a bounded θ-psh function, and it satisfies several continuity properties.

We refer the readers to [13] for a detailed exposition of global pluripo-
tential theory. In this note we will need the following comparison principle.

Proposition 2.1. — Assume that u, v ∈ PSH(X, θ) ∩L∞(X) are such
that e−u MAθ(u) > e−v MAθ(v) on X. Then u 6 v on X.

This result is well known (a proof can be found in [6, Lemma 2.5]). We
shall also need the following version of the domination principle :

Proposition 2.2. — Fix a non-empty open subset D ⊂ X and let u, v
be bounded θ-psh functions on X such that for all ζ ∈ ∂D,

lim sup
D3z→ζ

(u− v)(z) > 0.

If MAθ(u)({u < v} ∩D) = 0 then u > v in D.

Proof. — Adding a large constant to both u and v, we can assume that
v > 0. For each ε > 0 consider vε := (1 − ε)v. Then vε ∈ PSH(X, θ) and

TOME 0 (0), FASCICULE 0
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vε 6 v, hence lim supD3z→∂D(u(z)− vε(z)) > 0. The comparison principle
(see [5]) yields∫

{u<vε}∩D
θnvε 6

∫
{u<vε}∩D

θnu 6
∫
{u<v}∩D

θnu = 0.

Since θnvε > εnθn, we deduce that u > vε almost everywhere (with respect
to Lebesgue measure) in the open set D, hence everywhere in D. The result
follows by letting ε→ 0. �

2.2. Complex Monge–Ampère flows

We recall the following definition of (sub/super)solution which will be
used in this note.

Definition 2.3. — Let ϕ : [0, T [×X −→ R be a function satisfying:

• ϕ is continuous in XT := [0, T ]×X,
• for any x ∈ X, the function ϕ(·, x) is C1 in [0, T ] and ϕ̇ = ∂tϕ its
partial derivative in t is continuous in [0, T ]×X;

• for any t ∈ [0, T ] the function ϕt is bounded and ωt-plurisub-
harmonic.

We say that the function ϕ is a

• solution to the equation (1.2) with data (F, f) if for any t ∈ ]0, T [,

(ωt + ddcϕt)n = eϕ̇(t,· )+F (t,·,ϕt)fdV.

• subsolution to the equation (1.2) with data (F, f) if for any t ∈
]0, T [,

(ωt + ddcϕt)n > eϕ̇(t,· )+F (t,·,ϕt)fdV.

• supersolution to (1.2) with data (F, f) if for any t ∈ ]0, T [,

(ωt + ddcϕt)n 6 eϕ̇(t,· )+F (t,·,ϕt)fdV.

All the above inequalities have to be understood in the weak sense of
currents: the LHS is a well defined Borel measure since ϕt is a bounded
ωt-psh function (see [1]), while the RHS is a well defined measure which is
absolutely continuous with respect to Lebesgue measure.

ANNALES DE L’INSTITUT FOURIER
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3. Stability in the elliptic case

3.1. A general semi-stability result

Theorem 1.1 is a consequence of the following more general result which
generalizes stability results where the right-hand side does not depend on
the unknown function (see [9, 16]).

Theorem 3.1. — Fix p > 1. Assume that 0 6 f, g ∈ Lp(X,dV ) and
ϕ,ψ are bounded θ-plurisubharmonic functions on X such that

MAθ(ϕ) > eϕfdV and MAθ(ψ) 6 eψgdV.

Then there is a constant C > 0 depending on p, n,X, θ and a uniform
bound on log ‖f‖p and log ‖g‖p such that

ϕ 6 ψ + (C + 2oscXϕ+ 2oscXψ) exp
(oscXϕ

n

)
‖(g − f)+‖1/n

p .

Proof. — We use a perturbation argument inspired by an idea of
Kołodziej [14] (see also [17, proof of Theorem 3.11]) who considered the
local case.

For simplicity we normalize θ and dV so that
∫
X

dV = Vol(θ) = 1, and
we denote by ‖f‖p the Lp-norm of f with respect to the volume form dV .
We assume that ‖f‖p, ‖g‖p are uniformly bounded away from zero and
infinity (i.e. log ‖f‖p, log ‖g‖p are uniformly bounded).
If ‖(g−f)+‖p = 0 then g 6 f almost everywhere in X. In this case, ϕ is a

subsolution and ψ is a supersolution to the same complex Monge–Ampère
equation. Then the comparison principle (Proposition 2.1) yields ϕ 6 ψ in
X, which proves the result.

We assume in the sequel that ‖(g−f)+‖p > 0. Integrating the inequality
MAθ(ϕ) > eϕfdV , we see that

inf
X
ϕ 6 − log

(∫
X

fdV
)

= 0

hence supX ϕ 6 oscX ϕ. Similarly supX ψ > 0, hence − infX ψ 6 oscX ψ.
Set ε := esupX ϕ/n‖(g − f)+‖1/n

p . If ε > 1/2 then

sup
X

(ϕ− ψ) 6 sup
X
ϕ− inf

X
ψ

6 2
(

sup
X
ϕ− inf

X
ψ

)
exp

( supX ϕ
n

)
‖(g − f)+‖1/n

p ,

as desired.

TOME 0 (0), FASCICULE 0
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So we can assume that ε < 1/2. Hölder inequality yields∫
X

(g − f)+

‖(g − f)+‖p
dV 6 1.

It follows from [15] that there exists a bounded θ-psh function ρ such
that

MAθ(ρ) = hdV :=
(
a+ (g − f)+

‖(g − f)+‖p

)
dV, sup

X
ρ = 0,

where a > 0 is a normalization constant to insure that
∫
X
hdV =

∫
X

dV .
Since ‖h‖p 6 2 the uniform estimate of Kołodziej [15] guarantees that

−C1 6 ρ 6 0,

where C1 only depends on p, θ, n.
Observe that one can use here soft techniques and avoid the use of Yau’s

Theorem (see [10, 13]). Consider now

ϕε := (1− ε)ϕ+ ερ− C2ε+ n log(1− ε),

where C2 is a positive constant to be specified hereafter, and ε < 1/2
is defined as above. Then ϕε is a bounded θ-psh function, and a direct
computation shows that

MAθ(ϕε) > (1− ε)n MAθ(ϕ) + εn MAθ(ρ)

> eϕ+n log(1−ε)fdV + eϕ(g − f)+dV.

We choose C2 = − infX ϕ so ρ − ϕ 6 C2 and ϕε 6 ϕ + n log(1 − ε) 6 ϕ.
Thus

MAθ(ϕε) > eϕε(f + (g − f)+)dV > eϕεgdV.

In other words, ϕε is a subsolution and ψ is a supersolution to the equation
MAθ(φ) = eφgdV . The comparison principle (Proposition 2.1) insures that
ϕε 6 ψ, hence

ϕ− ψ = ϕε − ψ + ε(ϕ− ρ) + C2ε− n log(1− ε)

6 (C1 − inf
X
ϕ+ sup

X
ϕ+ 2n)ε

= (C1 + oscX ϕ+ 2n) exp
( supX ϕ

n

)
‖(g − f)+‖1/n

p .

Since C1 only depends on p, θ, n, the result follows. �

ANNALES DE L’INSTITUT FOURIER
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3.2. The proof of Theorem 1.1

Without loss of generality we normalize f, g and θ so that
∫
X
fdV =∫

X
gdV =

∫
X
θn =

∫
X

dV . Let φ be the unique bounded θ-plurisub-
harmonic function on X normalized by supX φ = 0 such that MAθ(φ) =
fdV . The existence of φ follows from Kołodziej’s celebrated work [15] and
moreover, −C 6 φ 6 0, where C is a uniform constant depending on
X, θ, p, ‖f‖p. Then φ is a subsolution while φ+C is a supersolution to the
Monge–Ampère equation

MAθ(u) = eufdV.

It thus follows from the comparison principle (Proposition 2.1) that

φ 6 ϕ 6 φ+ C.

We thus obtain a uniform bound for ϕ. The same arguments give a uniform
bound for ψ as well. 1.1 follows therefore from Theorem 3.1.

Remark 3.2. — In 1.1, one can replace the Lp-norm of f − g by the
L1-norm, at the cost of decreasing the exponent 1/n to 1/(n + ε) (ε > 0
arbitrarily small).
Namely under the assumptions of 1.1, for any ε > 0, there exists a

constant C > 0 which depends on p, n,X, θ, ε and a uniform bound on
‖f‖p and ‖g‖p such that

‖ϕ− ψ‖∞ 6 C‖f − g‖1/(n+ε)
1 .

Indeed repeating the proof with an exponent 1 < r < p close to 1, we get
a bound in terms of ‖f−g‖1/n

r . Then observe that if we write r = (1−t)+tp,
by Hölder-interpolation inequality applied to h := |f−g| ∈ Lp(X), we have∫

X

hrdV 6
(∫

X

hdV
)1−t(∫

X

hp
)t
,

which implies that

‖h‖r 6 ‖h‖(1−t)/r
1 ‖h‖tp/rp .

Since t = (r − 1)/(p − 1) and 1 − t = (p − r)/(p − 1), we see that the
exponent (1− t)/r = (p− r)/r(p− 1) is arbitrary close to 1 as r → 1.

TOME 0 (0), FASCICULE 0
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4. Stability in the parabolic case

4.1. A parabolic comparison principle

We establish in this section a maximum principle which is classical when
the data are smooth. It has been obtained for continuous data in [11], we
propose here a different approach which applies to our present setting:

Theorem 4.1. — Fix ϕ : [0, T [ × X −→ R a subsolution, ψ : [0, T [ ×
X −→ R a supersolution to the parabolic equation (1.2), where 0 6 f ∈
Lp(X) with p > 1. Then

sup
XT

(ϕ− ψ) 6 sup
X

(ϕ0 − ψ0)+.

Recall that (ϕ0 − ψ0)+ := sup{ϕ0 − ψ0, 0}.
Proof. — Fix T ′ < T , 0 < ε. We first assume that M0 := supX(ϕ0 −

ψ0) 6 0 and we are going prove that ϕ 6 ψ + 2εt in XT ′ .
Consider w(t, x) := ϕ(t, x) − ψ(t, x) − 2εt. This function is upper semi-

continuous on the compact space [0, T ′]×X. Hence w attains a maximum
at some point (t0, x0) ∈ [0, T ′] ×X. We claim that w(t0, x0) 6 0. Assume
by contradiction that w(t0, x0) > 0, in particular t0 > 0, and set

K := {x ∈ X;w(t0, x) = w(t0, x0)}.

The classical maximum principle insures that for all x ∈ K,

∂tϕ(t0, x) > ∂tψ(t0, x) + 2ε.

By continuity of the partial derivatives in (t, x), we can find an open neigh-
borhood D of K such that for all x ∈ D

∂tϕ(t0, x) > ∂tψ(t0, x) + ε.

Set u := ϕ(t0, · ) and v := ψ(t0, · ). Since ϕ is a subsolution and ψ is a
supersolution to (1.2) we infer

(ωt0 + ddcu)n > eF (t0,x,u(x))−F (t0,x,v(x))+ε(ωt0 + ddcv)n,

in the weak sense of measures in D. Recall that
• u and v are continuous on D,
• F is non-decreasing in r,
• u(x) > v(x) + εt0 for any x ∈ K.

ANNALES DE L’INSTITUT FOURIER
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Shrinking D if necessary, we can assume that the latter inequality is true
in D. We thus get

(ωt0 + ddcu)n > eε(ωt0 + ddcv)n.

From this we see in particular that D 6= X, hence ∂D 6= ∅.
Consider now ũ := u+min∂D(v−u). Since v > ũ on ∂D, Proposition 2.2

yields ∫
{v<ũ}∩D

eε(ωt0 + ddcv)n 6
∫
{v<ũ}∩D

(ωt0 + ddcu)n

6
∫
{v<ũ}∩D

(ωt0 + ddcv)n.

It then follows that ũ 6 v, almost everywhere in D with respect to the
measure (ωt0 +ddcv)n, hence everywhere in D by the domination principle
(see Proposition 2.2). In particular for all x ∈ D,

(4.1) u(x)− v(x) + min
∂D

(v − u) = ũ(x)− v(x) 6 0,

Since K ∩ ∂D = ∅, we infer w(t0, x) < w(t0, x0), for all x ∈ ∂D, i.e.

u(x)− v(x) < u(x0)− v(x0) for all x ∈ ∂D,

contradicting (4.1). Altogether this shows that t0 = 0, thus ϕ 6 ψ+ 2εt in
XT ′ . Letting ε→ 0 and T ′ → T we obtain that ϕ 6 ψ in XT .
We finally get rid of the assumption ϕ0 6 ψ0. IfM0 := supX(ϕ0−ψ0) > 0

then ϕ−M0 is a subsolution of the same equation since F is non decreasing
in the last variable. Hence ϕ −M0 6 ψ in XT . This proves the required
inequality. �

Remark 4.2. — We note for later works that the above proof only re-
quires t 7→ ϕ(t, · ), ψ(t, · ) to be C1 in ]0, T [ × X. This should be useful in
analyzing the smoothing properties of complex Monge–Ampère flows at
time zero.

4.2. A parabolic semi-stability theorem

We now establish a technical comparison principle which is a key step in
the proof of 1.2. The proof of this result does not require the smoothness
assumption on F,G, f, g. We assume in this subsection that

• F,G : X̂T := [0, T [×X × R→ R are continuous;
• F,G are non decreasing in the last variable;
• F,G satisfy condition (1.3) with the same constant L > 0.

TOME 0 (0), FASCICULE 0
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• 0 6 f, g ∈ Lp(X) with p > 1.

Theorem 4.3. — Assume that ϕ : [0, T [×X −→ R is a subsolution to
the parabolic equation (1.2) with data (F, f) and ψ : [0, T [×X −→ R is a
supersolution to the parabolic equation (1.2) with data (G, g). Then

sup
XT

(ϕ− ψ) 6 sup
X

(ϕ0 − ψ0)+ + T sup
X̂T

(G− F )+ +A ‖(g − f)+‖1/n
p ,

where A > 0 depends on X, θ, n, p and a uniform bound on ϕ̇, ϕ,ψ, and
supXT G(t, x, supXT ϕ).

Remark 4.4. — In the second term of the estimate above one can replace
supX̂T (G− F )+ by

sup
[0,T [×X×I

(G− F )+,

where I = [infXT ϕ, supXT ϕ] is a compact interval in R.

Proof. — We first assume that ‖(g− f)+‖p > 0. Since
∫
X

dV =
∫
X
θn =

1, it follows from [15] that there exists ρ ∈ PSH(X, θ) ∩ C0(X) such that

(4.2) (θ + ddcρ)n =
(
a+ (g − f)+

‖(g − f)+‖p

)
dV

normalized by maxX ρ = 0, where a > 0 is a normalizing constant given by

a := 1− ‖(g − f)+‖1

‖(g − f)+‖p
∈ [0, 1].

We moreover have a uniform bound on ρ which only depends on the Lp
norm of the density of (θ+ ddcρ)n which is here bounded from above by 2,

(4.3) ‖ρ‖∞ 6 C0(a+ 1) 6 2C0,

where C0 > 0 is a uniform constant depending only on (X, θ, p).
Fix B,M > 0. For 0 < δ < 1 and (t, x) ∈ XT we set

ϕδ(t, x) := (1− δ)ϕ(t, x) + δρ+ n log(1− δ)−Bδt−Mt.

The plan is to choose B,M > 0 in such a way that ϕδ be a subsolution
for the parabolic equation (1.2) with data (G, g). The conclusion will then
follow from the comparison principle (Theorem 4.1).
Observe that for t ∈ ]0, T [ fixed, ϕδ(t, · ) is ωt-plurisubharmonic in X

and

(ωt + ddcϕδ(t, · ))n > (1− δ)n(ωt + ddcϕt)n + δn(θ + ddcρ)n.

Using that ϕ is a subsolution to (1.2) with density f , we infer

(4.4) (ωt + ddcϕδ(t, · ))n > eϕ̇+F (t,·,ϕ)+n log(1−δ)fdV + δn
(g − f)+

‖(g − f)+‖p
dV.

ANNALES DE L’INSTITUT FOURIER



STABILITY OF COMPLEX MONGE–AMPÈRE FLOWS 11

Set m0 := infXT ϕ, m1 := infXT ϕ̇ and choose M := supX̂T (G − F )+.
Noting that ϕ > ϕδ + δϕ and recalling that G is non decreasing in the last
variable, we obtain

ϕ̇(t, x) + F (t, x, ϕ(t, x)) + n log(1− δ)
> ϕ̇δ(t, x) + δϕ̇(t, x) +G (t, x, ϕ(t, x))−M + n log(1− δ) +Bδ +M

> ϕ̇δ(t, x) + δϕ̇(t, x) +G (t, x, ϕδ(t, x) + δϕ(t, x)) + n log(1− δ) +Bδ

> ϕ̇δ(t, x) + δm1 +G (t, x, ϕδ(t, x) + δm0) + n log(1− δ) +Bδ.

The Lipschitz condition (1.3) yields

ϕ̇(t, x) + F (t, x, ϕ(t, x)) + n log(1− δ)
> ϕ̇δ(t, x) +G(t, x, ϕδ(t, x)) +Bδ − Lδm0 + δm1 + n log(1− δ).

Using the elementary inequality log(1− δ) > −2(log 2)δ for 0 < δ 6 1/2, it
follows that for 0 < δ 6 1/2,

Bδ − Lδm0 + δm1 + n log(1− δ) > (B − Lm0 +m1 − 2n log 2)δ.

We now choose B := Lm0 −m1 + 2n log 2 so that

ϕ̇(t, x) + F (t, x, ϕ(t, x)) + n log(1− δ) > ϕ̇δ(t, x) +G(t, x, ϕδ(t, x)),

which, together with (4.4), yields

(4.5) (ωt + ddcϕδ(t, · ))n > eϕ̇δ(t,· )+G(t,·,ϕδ(t,· ))fdV + δn
(g − f)+

‖(g − f)+‖p
.

On the other hand, if we set

M1 := sup
XT

ϕ̇, M0 := sup
XT

ϕ and N := sup
XT

G(t, x,M0),

then the properties of G insure

ϕ̇δ(t, x) +G(t, x, ϕδ(t, x))
6 (1− δ) sup

XT

ϕ̇+ sup
XT

G(t, x, (1− δ)ϕ(t, x))

6 (1− δ)M1 + sup
XT

G(t, x, (1− δ)M0)

6 (1− δ)M1 +M0Lδ +N 6 N + max{LM0,M1}

Using (4.5) we conclude that for 0 < δ < 1/2,

(4.6) (ωt + ddcϕδ(t, · ))n

> eϕ̇δ(t,· )+G(t,·,ϕδ(t,· ))
(
f + δne−M2

(g − f)+

‖(g − f)+‖p

)
dV,

where M2 := N + max{LM0,M1}.
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To conclude that ϕδ is a subsolution, we finally set

(4.7) δ := ‖(g − f)+‖1/n
p eM2/n·

Assume first that ‖(g − f)+‖p 6 2−ne−M2 so that δ 6 1/2. It follows
from (4.6) that

(ωt + ddcϕδ(t, · ))n > eϕ̇δ(t,· )+G(t,x,ϕδ(t,· ))(f + (g − f)+)dV

> eϕ̇δ(t,· )+G(t,x,ϕδ(t,· ))gdV,

hence ϕδ is a subsolution to (1.2) for the data (G, g) in D. The comparison
principle (Theorem 4.1) insures that for all (t, x) ∈ XT ,

ϕδ(t, x)− ψ(t, x) 6 max
X

(ϕδ(0, · )− ψ(0, · )+).

Taking into account the estimates (4.3) and (4.7), we get

ϕ(t, x)− ψ(t, x) 6 max
X

(ϕ(0, · )− ψ(0, · )+ + TM +A1‖(g − f)+‖1/n
p ,

where
A1 := (M0 + 2C0 + 2n log 2 +BT )eM2/n·

When ‖(g− f)+‖p > 2−ne−M2 , we can choose a constant A2 > 0 so that

ϕ(t, x)− ψ(t, x) 6 max
X

(ϕ0 − ψ0)+ +A22−ne−M2 .

We eventually take A = max{A1, A2}.
Assume finally that ‖(g − f)+‖p = 0 which means that g 6 f almost

everywhere in X. In this case we solve the equation (4.2) with the right
hand side equal to dV and repeat the same arguments with an arbitrary
δ > 0. The conclusion follows by letting δ → 0. �

4.3. Proof of Theorem 1.2

The proof of Theorem 1.2 goes by symmetrizing the roles of ϕ and ψ, and
establishing uniform bounds on ϕ,ψ, ϕ̇, ψ̇ depending on uniform bounds for
ϕ0, ϕ̇0, ψ0, ψ̇0 and ‖f‖p, ‖g‖p.

4.3.1. Bounds on ϕ

By assumption, we can fix a,A > 0 such that

aθ 6 ωt 6 Aθ, ∀ (t, x) ∈ XT .

Let ρ be the unique bounded normalized θ-psh function supX ρ = 0 such
that MAθ(ρ) = C0fdV , where C0 > 0 is a uniform normalization constant.
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Then ρ is bounded by a constant depending only on the Lp norm of f and
on θ, p. We set

C1 := sup
X

(aρ− ϕ0) and C2 := sup
X

(ϕ0 −Aρ).

We next introduce the following uniform constants

C3 := sup
(t,x)∈[0,T ]×X

F (t, x, ϕ0(t, x)) and C4 := inf
(t,x)∈[0,T ]×X

F (t, x, ϕ0(t, x)).

A direct computation shows that the function defined on XT by

u(t, x) := aρ− C1 −max(C3 − n log a− logC0, 0)t

is a subsolution to the parabolic equation (1.2) with data (f, F ). Indeed,
for fixed t ∈ ]0, T [, the Monge–Ampère measure of ut can be estimated as

(ωt + ddcut)n > an(θ + ddcρ)n = anC0fdV.

Since F is non-decreasing in the last variable and ϕ0 > ut we obtain C3 >
F (t, x, ϕ0) > F (t, x, ut). Thus

eu̇t+F (t,·,ut)fdV 6 e−max(C3−n log a−logC0,0)+C3fdV
6 anC0fdV 6 (ωt + ddcut)n.

A similar computation shows that the function defined on XT by

v(t, x) := Aρ+ C2 + max(−C4 + n logA+ logC0, 0)t

is a supersolution to the parabolic equation

(4.8) (Aθ + ddcvt)n = ev̇t+F (t,x,vt)fdV.

Since Aθ > ωt we see that ϕt is a subsolution to the equation (4.8). The
parabolic comparison principle (Theorem 4.1) therefore yields

u 6 ϕ 6 v.,

in XT .

4.3.2. Bounds on ϕ̇

We now provide a uniform bound on ϕ̇t, assuming all data are smooth.
We only outline the proof since the arguments are classical. The previous
subsection has provided a uniform bound

−B0 6 ϕ(t, x) 6 B0, ∀ (t, x) ∈ [0, T [×X.

Since ωt is smooth in t and ωt is uniformly Kähler we can fix a positive
constant B1 such that

−B1ωt 6 ω̇t 6 B1ωt.

TOME 0 (0), FASCICULE 0
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Up to enlarging B1 we can further assume that

−B1 6 ∂rF (t, x, r) 6 B1, ∀ (t, x, r) ∈ [0, T [×X × [−B0, B0].

Set

∆t(h) = ∆ωt+ddcϕt(h) = n
ddch ∧ (ωt + ddcϕt)n−1

(ωt + ddcϕt)n
,

and

Trt(η) := n
η ∧ (ωt + ddcϕt)n−1

(ωt + ddcϕt)n
·

A straightforward computation yields

ϕ̈t = ∆t(ϕ̇t) + Trt(ω̇t)− ∂tF (t, x, ϕt)− ϕ̇t∂rF (t, x, ϕt)
6 ∆t(ϕ̇t)−B1∆t(ϕt) + C − ϕ̇t∂rF (t, x, ϕt),

using that ϕt, hence ∂tF (t, x, ϕt), is uniformly bounded on XT , and that

Trt(ω̇t) 6 B1 Trt(ωt) = B1n−B1∆t(ϕt).

Consider
H(t, x) := ϕ̇t(x)−B1ϕt(x)− (C + 1)t.

It follows from the above computation that(
∂

∂t
−∆t

)
H 6 −1− [B1 + ∂rF (t, x, ϕt)]ϕ̇t.

If H reaches its maximum at time zero, then

H 6 sup
X
ϕ̇0 −B1 inf

X
ϕ0,

hence ϕ̇t 6 C(T,B0, B1) + supX ϕ̇0. If H reaches its maximum at (t0, x0)
with t0 > 0, we obtain at (t0, x0),

0 6
(
∂

∂t
−∆t

)
H 6 −1− [B1 + ∂rF (t, x, ϕt)]ϕ̇t,

hence ϕ̇t(t0, x0) 6 0 since [B1 + ∂rF (t, x, ϕt)] > 0. Therefore

Hmax = H(t0, x0) 6 −B1 inf
X
ϕt0 6 B0B1,

and we obtain an appropriate bound from above for ϕ̇t.
The proof for the lower bound goes along similar lines, considering G =

ϕ̇t(x) +B1ϕt(x) + (C ′ + 1)t.
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5. Concluding remarks

5.1. Varying the reference forms

It is certainly interesting to study the stability properties when the ref-
erence forms θ, ωt are varying. For simplicty we address this issue here only
in the elliptic case.

Theorem 5.1. — Fix θ, ω Kähler forms. Fix p > 1 and 0 6 f, g ∈
Lp(X,dV ). If ϕ (resp. ψ) is a bounded θ-plurisubharmonic (resp. ω-pluri-
subharmonic) function on X such that

MAθ(ϕ) = eϕfdV and MAω(ψ) = eψgdV,

then
‖ϕ− ψ‖∞ 6 C

{
‖f − g‖1/n

p + d(ω, θ)
}
,

where C > 0 depends on p, n,X, ω,dV and uniform bounds on ‖f‖p, ‖g‖p.

We use here the following distance on positive forms,

d(ω, θ) := inf{t > 0 ; e−tω 6 θ 6 etω}.

Proof. — Set

c = inf{t > 0 ; (1− t)ω 6 θ 6 (1 + t)ω}.

Adjusting the constant we can assume that c 6 1/2 and c ' d(ω, θ). Now

ψc := (1− c)ψ + n log(1− c) + c inf
X
ψ

is a θ-psh function whose Monge–Ampère measure can be estimated as

MAθ(ψc) > (1− c)neψgdV > eψcgdV.

It thus follows from Theorem 3.1 that

ψc 6 ϕ+ C‖f − g‖1/n
p ,

for a uniform constant C. Note that the uniform norm of ψc is uniformly
controlled by ‖ψ‖ because c 6 1/2. From this and the definition of ψc we
obtain

ψ 6 ϕ+ C ′(‖f − g‖np + c),

where C ′ is a uniform constant. Exchanging the roles of ϕ and ψ yields the
conclusion. �
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5.2. Big classes

The ideas we have developed so far can also be applied to the more gen-
eral setting of cohomology classes that are merely big rather than Kähler.
We briefly explain the set up for the elliptic stability.

We assume that θ is a smooth form representing a big cohomology class.
A θ-psh function ϕ is no longer bounded on X, but it can have minimal
singularities. The function

Vθ = sup{u ∈ PSH(X, θ) ; u 6 0}

is an example of θ-psh with minimal singularities. Any other θ-psh function
ϕ with minimal singularities satisfies ‖ϕ− Vθ‖L∞(X) < +∞.

The pluripotential theory in big cohomology classes has been developed
in [4]. In short, the Bedford–Taylor theory can be developed, replacingX by
the ample locus of θ, a Zariski open subset in which Vθ is locally bounded.

The a priori estimate of Kołodziej can be extended, as well as 1.1. It
suffices indeed to establish the following:

Theorem 5.2. — Fix p > 1 and assume that 0 6 f, g ∈ Lp(X,dV ),
and ϕ,ψ are θ-psh functions on X with minimal singularities such that

MAθ(ϕ) > eϕfdV ; MAθ(ψ) 6 eψgdV.

Then there is a constant C > 0 depending on p, n,X, θ such that

ϕ 6 ψ +
(
C + 2 sup

X
|Vθ − ϕ|+ 2 sup

X
max(Vθ − ψ, 0)

)
exp

( supX ϕ
n

)
‖f − g‖1/n

p .

Proof. — Set ε := esupX ϕ/n‖f − g‖1/n
p . If ε > 1/2 then

sup
X

(ϕ− ψ) 6
(

sup
X
|ϕ− Vθ|+ sup

X
max(Vθ − ψ, 0)

)
6 2

(
sup
X
|ϕ− Vθ|+ sup

X
max(Vθ − ψ, 0)

)
exp

( supX ϕ
n

)
‖f − g‖1/n

p ,

as desired. So we can assume that ε < 1/2. Hölder inequality yields∫
X

|f − g|
‖f − g‖p

dV 6 1.

Let ρ be the unique θ-psh function with minimal singularities such that

MAθ(ρ) = hdV :=
(
a+ |f − g|
‖f − g‖p

)
dV, sup

X
ρ = 0,
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where a > 0 is a normalization constant to insure that
∫
X
hdV =

∫
X

dV .
Since ‖h‖p 6 2, it follows from [4, Theorem 4.1] that

−C1 6 ρ− Vθ 6 0,

where C1 only depends on p, θ, n. Consider now

ϕε := (1− ε)ϕ+ ερ− C2ε+ n log(1− ε),

where C2 is a positive constant to be specified hereafter. Then ϕε is a θ-psh
function with minimal singularities, and a direct computation shows that

MAθ(ϕε) > (1− ε)n MAθ(ϕ) + εn MAθ(ρ)

> eϕ+n log(1−ε)fdV + eϕ|f − g|dV.

If we choose C2 = supX(Vθ−ϕ) then ρ−ϕ 6 C2 and ϕε 6 ϕ+n log(1−ε) 6
ϕ. So we can continue the above estimate to arrive at

(5.1) MAθ(ϕε) > eϕε(f + |f − g|)dV > eϕεgdV.

It follows from (5.1) that ϕε is a subsolution and ψ is a supersolution
of the equation MAθ(φ) = eφgdV . The comparison principle [4, Proposi-
tion 6.3] insures that ϕε 6 ψ, hence

ϕ− ψ = ϕε − ψ + ε(ϕ− ρ) + C2ε− n log(1− ε)

6 (C1 + C2 + sup
X

(ϕ− Vθ) + 2n)ε

= (C1 + oscX(ϕ− Vθ) + 2n) exp
( supX ϕ

n

)
‖f − g‖1/n

p .

The result follows since C1 only depends on p, θ, n. �
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