[Géométrie, dynamique, et arithmétique des décalages -adiques]
Cet article étudie les propriétés géométriques et spectrales de décalages -adiques engendrés par fractions continues. Ces systèmes dynamiques symboliques sont obtenus par itération adique d’une suite de substitutions. Nous montrons que ces décalages sont à spectre purement discret et étudions les propriétés des ensembles fractals de Rauzy associés sous une hypothèse de type Pisot généralisée ainsi qu’une condition géométrique de coïncidence. Ces résultats étendent la portée de la conjecture Pisot substitutive au cadre -adique. Nous montrons que presque tous les décalages d’Arnoux–Rauzy ont un spectre purement discret. En utilisant des mots -adiques liés à l’algorithme de fraction continue de Brun, nous exhibons des ensembles à restes bornés et des codages symboliques pour presque toutes les translations du tore bidimensionnel. En raison de l’absence des propriétés d’autosimilarité des systèmes substitutifs, nous devons développer de nouvelles preuves dans le cadre -adique.
This paper studies geometric and spectral properties of -adic shifts and their relation to continued fraction algorithms. These shifts are symbolic dynamical systems obtained by iterating infinitely many substitutions. Pure discrete spectrum for -adic shifts and tiling properties of associated Rauzy fractals are established under a generalized Pisot assumption together with a geometric coincidence condition. These general results extend the scope of the Pisot substitution conjecture to the -adic framework. They are applied to families of -adic shifts generated by Arnoux–Rauzy as well as Brun substitutions. It is shown that almost all of these shifts have pure discrete spectrum. Using -adic words related to Brun’s continued fraction algorithm, we exhibit bounded remainder sets and natural codings for almost all translations on the two-dimensional torus. Due to the lack of self-similarity properties present for substitutive systems we have to develop new proofs to obtain our results in the -adic setting.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3273
Keywords: Symbolic dynamics, non-stationary dynamics, $S$-adic shifts, substitutions, tilings, Pisot numbers, continued fractions, Brun algorithm, Arnoux–Rauzy algorithm, Lyapunov exponents
Mot clés : Dynamique symbolique, dynamique non stationnaire, décalages $S$-adiques, substitutions, pavages, nombres de Pisot, fractions continues, algorithme de Brun, algorithme d’Arnoux–Rauzy, exposants de Lyapunov
Berthé, Valérie 1 ; Steiner, Wolfgang 1 ; Thuswaldner, Jörg M. 2
@article{AIF_2019__69_3_1347_0, author = {Berth\'e, Val\'erie and Steiner, Wolfgang and Thuswaldner, J\"org M.}, title = {Geometry, dynamics, and arithmetic of $S$-adic shifts}, journal = {Annales de l'Institut Fourier}, pages = {1347--1409}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {3}, year = {2019}, doi = {10.5802/aif.3273}, zbl = {07067434}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3273/} }
TY - JOUR AU - Berthé, Valérie AU - Steiner, Wolfgang AU - Thuswaldner, Jörg M. TI - Geometry, dynamics, and arithmetic of $S$-adic shifts JO - Annales de l'Institut Fourier PY - 2019 SP - 1347 EP - 1409 VL - 69 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3273/ DO - 10.5802/aif.3273 LA - en ID - AIF_2019__69_3_1347_0 ER -
%0 Journal Article %A Berthé, Valérie %A Steiner, Wolfgang %A Thuswaldner, Jörg M. %T Geometry, dynamics, and arithmetic of $S$-adic shifts %J Annales de l'Institut Fourier %D 2019 %P 1347-1409 %V 69 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3273/ %R 10.5802/aif.3273 %G en %F AIF_2019__69_3_1347_0
Berthé, Valérie; Steiner, Wolfgang; Thuswaldner, Jörg M. Geometry, dynamics, and arithmetic of $S$-adic shifts. Annales de l'Institut Fourier, Tome 69 (2019) no. 3, pp. 1347-1409. doi : 10.5802/aif.3273. https://aif.centre-mersenne.org/articles/10.5802/aif.3273/
[1] Balances for fixed points of primitive substitutions, Theor. Comput. Sci., Volume 307 (2003) no. 1, pp. 47-75 | MR | Zbl
[2] Symbolic discrepancy and self-similar dynamics, Ann. Inst. Fourier, Volume 54 (2004) no. 7, pp. 2201-2234 | DOI | MR | Zbl
[3] On the Pisot substitution conjecture, Mathematics of aperiodic order (Progress in Mathematics), Volume 309, Birkhäuser, 2015, pp. 33-72 | DOI | MR
[4] Algorithm for determining pure pointedness of self-affine tilings, Adv. Math., Volume 226 (2011) no. 4, pp. 2855-2883 | DOI | MR | Zbl
[5] Discrete planes, -actions, Jacobi-Perron algorithm and substitutions, Ann. Inst. Fourier, Volume 52 (2002) no. 2, pp. 305-349 | DOI | MR | Zbl
[6] Nonstationary Markov Partitions, Flows on Homogeneous Spaces, and Generalized Continued Fractions (2018) (in preparation)
[7] The scenery flow for geometric structures on the torus: the linear setting, Chin. Ann. Math., Ser. B, Volume 22 (2001) no. 4, pp. 427-470 | DOI | MR | Zbl
[8] Anosov families, renormalization and non-stationary subshifts, Ergodic Theory Dyn. Syst., Volume 25 (2005) no. 3, pp. 661-709 | DOI | MR | Zbl
[9] Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon Stevin, Volume 8 (2001) no. 2, pp. 181-207 | MR | Zbl
[10] Random product of substitutions with the same incidence matrix, Theor. Comput. Sci., Volume 543 (2014), pp. 68-78 | DOI | MR | Zbl
[11] Mesures de Gauss pour des algorithmes de fractions continues multidimensionnelles, Ann. Sci. Éc. Norm. Supér., Volume 26 (1993) no. 6, pp. 645-664 | DOI | MR | Zbl
[12] Représentation géométrique de suites de complexité , Bull. Soc. Math. Fr., Volume 119 (1991) no. 2, pp. 199-215 | DOI | Zbl
[13] Some monoids of Pisot matrices (2015) (https://arxiv.org/abs/1506.03692)
[14] Diffusion for chaotic plane sections of -periodic plane surfaces, Invent. Math., Volume 206 (2016), pp. 109-146 | DOI | MR | Zbl
[15] On the Hausdorff dimension of the Rauzy gasket, Bull. Soc. Math. Fr., Volume 144 (2016), pp. 539-568 | DOI | MR | Zbl
[16] Pure discrete spectrum for a class of one-dimensional substitution tiling systems, Discrete Contin. Dyn. Syst., Volume 36 (2016), pp. 1159-1173 | DOI | MR | Zbl
[17] The Pisot conjecture for -substitutions, Ergodic Theory Dyn. Syst., Volume 38 (2018), pp. 444-472 | DOI | MR | Zbl
[18] Geometric theory of unimodular Pisot substitutions, Am. J. Math., Volume 128 (2006) no. 5, pp. 1219-1282 | DOI | MR | Zbl
[19] Pure discrete spectrum in substitution tiling spaces, Discrete Contin. Dyn. Syst., Volume 33 (2013) no. 2, pp. 579-597 | MR | Zbl
[20] Sturmian and episturmian words (a survey of some recent results), Algebraic informatics (Lecture Notes in Computer Science), Volume 4728, Springer, 2007, pp. 23-47 | DOI | MR | Zbl
[21] Multidimensional Euclidean algorithms, numeration and substitutions, Integers, Volume 11B (2011), A02, 34 pages (Art. ID A02, 34 pages) | MR | Zbl
[22] Generating Discrete Planes with Substitutions, Combinatorics on words. 9th international conference, WORDS 2013 (Lecture Notes in Computer Science), Volume 8079 (2013), pp. 58-70 | MR | Zbl
[23] A combinatorial approach to products of Pisot substitutions, Ergodic Theory Dyn. Syst. (2015), pp. 1-38 | Zbl
[24] Balance properties of Arnoux-Rauzy words, Int. J. Algebra Comput., Volume 23 (2013) no. 4, pp. 689-703 | DOI | MR | Zbl
[25] Beyond substitutive dynamical systems: -adic expansions, RIMS Kôkyûroku Bessatsu, Volume B46 (2014), pp. 81-123 | Zbl
[26] Interactions between dynamics, arithmetics and combinatorics: the good, the bad, and the ugly, Algebraic and topological dynamics (Contemporary Mathematics), Volume 385, American Mathematical Society, 2005, pp. 333-364 | DOI | MR | Zbl
[27] Substitutive Arnoux-Rauzy sequences have pure discrete spectrum, Unif. Distrib. Theory, Volume 7 (2012) no. 1, pp. 173-197 | MR | Zbl
[28] The -adic Pisot conjecture on two letters, Topology Appl., Volume 205 (2016), pp. 47-57 | DOI | MR | Zbl
[29] Substitutions, Rauzy fractals, and tilings, Combinatorics, Automata and Number Theory (Encyclopedia of Mathematics and Its Applications), Volume 135, Cambridge University Press, 2010 | DOI | MR | Zbl
[30] Recognizability for sequences of morphisms, Ergodic Theory Dyn. Syst. (2018) | DOI
[31] Balance properties of multi-dimensional words, Theor. Comput. Sci., Volume 273 (2002) no. 1-2, pp. 197-224 | DOI | MR | Zbl
[32] Extensions of Jentzsch’s theorem, Trans. Am. Math. Soc., Volume 85 (1957), pp. 219-227 | MR | Zbl
[33] Multidimensional continued fraction algorithms, Mathematical Centre Tracts, 145, Mathematisch Centrum, 1981, i+183 pages | MR | Zbl
[34] On the characteristic exponents of the Jacobi-Perron algorithm, Dynamical systems and Diophantine approximation (Séminaires et Congrès), Volume 19, Société Mathématique de France, 2009, pp. 151-171 | MR | Zbl
[35] Algorithmes euclidiens pour trois et quatre nombres, Treizième congrès des mathèmaticiens scandinaves, tenu à Helsinki 18-23 août 1957, Mercators Tryckeri, 1958, pp. 45-64 | MR | Zbl
[36] Weak mixing and eigenvalues for Arnoux–Rauzy sequences, Ann. Inst. Fourier, Volume 58 (2008) no. 6, pp. 1983-2005 | DOI | MR | Zbl
[37] Imbalances in Arnoux–Rauzy sequences, Ann. Inst. Fourier, Volume 50 (2000) no. 4, pp. 1265-1276 | DOI | MR | Zbl
[38] Coding of a translation of the two-dimensional torus, Monatsh. Math., Volume 157 (2009) no. 2, pp. 101-130 | DOI | MR | Zbl
[39] When size matters: subshifts and their related tiling spaces, Ergodic Theory Dyn. Syst., Volume 23 (2003) no. 4, pp. 1043-1057 | DOI | MR | Zbl
[40] The spectrum of dynamical systems arising from substitutions of constant length, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 41 (1978) no. 3, pp. 221-239 | DOI | MR | Zbl
[41] Balancedness of Arnoux-Rauzy and Brun Words, WORDS (Lecture Notes in Computer Science), Volume 8079 (2013), pp. 119-131 | MR | Zbl
[42] Diffusion for the periodic wind-tree model, Ann. Sci. Éc. Norm. Supér., Volume 47 (2014) no. 6, pp. 1085-1110 | DOI | MR | Zbl
[43] Linearly recurrent subshifts have a finite number of non-periodic subshift factors, Ergodic Theory Dyn. Syst., Volume 20 (2000), pp. 1061-1078 | DOI | MR | Zbl
[44] Corrigendum and addendum to: “Linearly recurrent subshifts have a finite number of non-periodic subshift factors” [Ergodic Theory Dynam. Systems 20 (2000), 1061–1078], Ergodic Theory Dyn. Syst., Volume 23 (2003), pp. 663-669 | MR
[45] Substitutional dynamical systems, Bratteli diagrams and dimension groups, Ergodic Theory Dyn. Syst., Volume 19 (1999) no. 4, pp. 953-993 | DOI | MR | Zbl
[46] Do the properties of an -adic representation determine factor complexity?, J. Integer Seq., Volume 16 (2013) no. 2, 13.2.6, 30 pages (Art. ID 13.2.6, 30 pages) | MR | Zbl
[47] Bounded remainder sets, Acta Arith., Volume 61 (1992) no. 4, pp. 319-326 | DOI | MR | Zbl
[48] Multidimensional Sturmian sequences and generalized substitutions, Int. J. Found. Comput. Sci., Volume 17 (2006) no. 3, pp. 575-600 | DOI | MR | Zbl
[49] Nonstationary mixing and the unique ergodicity of adic transformations, Stoch. Dyn., Volume 9 (2009) no. 3, pp. 335-391 | DOI | MR | Zbl
[50] Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Mathematics, 1794, Springer, 2002, xviii+402 pages | MR | Zbl
[51] Finite beta-expansions, Ergodic Theory Dyn. Syst., Volume 12 (1992) no. 4, pp. 713-723 | DOI | MR | Zbl
[52] On almost everywhere exponential convergence of the modified Jacobi-Perron algorithm: a corrected proof, Ergodic Theory Dyn. Syst., Volume 16 (1996) no. 6, pp. 1345-1352 | DOI | MR | Zbl
[53] Stationary processes and prediction theory, Annals of Mathematics Studies, 44, Princeton University Press, 1960, x+283 pages | MR | Zbl
[54] Prime flows in topological dynamics, Isr. J. Math., Volume 14 (1973), pp. 26-38 | DOI | MR | Zbl
[55] Open problems in dynamics and related fields, J. Mod. Dyn., Volume 1 (2007) no. 1, pp. 1-35 | MR | Zbl
[56] Sets of bounded discrepancy for multi-dimensional irrational rotation, Geom. Funct. Anal., Volume 25 (2015), pp. 87-133 | DOI | MR | Zbl
[57] Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable, Ergodic Theory Dyn. Syst., Volume 6 (1986) no. 4, pp. 529-540 | DOI | Zbl
[58] Best simultaneous Diophantine approximations of Pisot numbers and Rauzy fractals, Acta Arith., Volume 124 (2006) no. 1, pp. 1-15 | DOI | MR | Zbl
[59] Weyl automorphisms, substitutions and fractals, Stability theory and related topics in dynamical systems (Nagoya, 1988) (World Scientific Advanced Series in Dynamical Systems), Volume 6, World Scientific, 1989, pp. 60-72 | MR | Zbl
[60] Fractal domains of quasi-periodic motions on , Algorithms, fractals, and dynamics (Okayama/Kyoto, 1992), Plenum Press, 1995, pp. 95-99 | Zbl
[61] On simultaneous approximation to with , J. Number Theory, Volume 99 (2003) no. 2, pp. 255-283 | Zbl
[62] Modified Jacobi-Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms, Tokyo J. Math., Volume 16 (1993) no. 2, pp. 441-472 | MR | Zbl
[63] Parallelogram tilings and Jacobi-Perron algorithm, Tokyo J. Math., Volume 17 (1994) no. 1, pp. 33-58 | MR | Zbl
[64] Atomic surfaces, tilings and coincidence. I. Irreducible case, Isr. J. Math., Volume 153 (2006), pp. 129-155 | MR | Zbl
[65] On simultaneous Diophantine approximation to periodic points related to modified Jacobi-Perron algorithm, Probability and number theory—Kanazawa 2005 (Advanced Studies in Pure Mathematics), Volume 49, Mathematical Society of Japan, 2007, pp. 171-184 | MR | Zbl
[66] Bispecial factors in the Brun -adic system, Developments in Language Theory (DLT) (Lecture Notes in Computer Science), Springer, 2016 | DOI | Zbl
[67] The quality of the Diophantine approximations found by the Jacobi-Perron algorithm and related algorithms, Monatsh. Math., Volume 115 (1993) no. 4, pp. 299-328 | DOI | MR | Zbl
[68] A simple proof of the exponential convergence of the modified Jacobi-Perron algorithm, Ergodic Theory Dyn. Syst., Volume 19 (1999) no. 4, pp. 1077-1083 | DOI | MR | Zbl
[69] The geometry of non-unit Pisot substitutions, Ann. Inst. Fourier, Volume 64 (2014), pp. 1373-1417 | DOI | MR | Zbl
[70] Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus, Math. Ann., Volume 64 (1907) no. 1, pp. 1-76 | MR | Zbl
[71] A generalization of the continued fraction algorithm that is related to the Viggo Brun algorithm, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov., Volume 67 (1977), pp. 184-194 | MR | Zbl
[72] Fusion: a general framework for hierarchical tilings of , Geom. Dedicata, Volume 171 (2014), pp. 149-186 | MR | Zbl
[73] Fusion tilings with infinite local complexity, Topol. Proc., Volume 43 (2014), pp. 235-276 | MR | Zbl
[74] Substitution dynamical systems—spectral analysis, Lecture Notes in Mathematics, 1294, Springer, 2010, xvi+351 pages | MR | Zbl
[75] Nombres algébriques et substitutions, Bull. Soc. Math. Fr., Volume 110 (1982) no. 2, pp. 147-178 | DOI | Zbl
[76] Ensembles à restes bornés, Seminar on number theory, 1983–1984 (Talence, 1983/1984), Université Bordeaux I, 1984 (Exp. No. 24, 12 pages) | Zbl
[77] Géométrie discrète, calculs en nombres entiers et algorithmes, Ph. D. Thesis, Université Louis Pasteur, Strasbourg (France) (1991) | Zbl
[78] A generalization of Sturmian sequences: combinatorial structure and transcendence, Acta Arith., Volume 95 (2000) no. 2, pp. 167-184 | DOI | MR | Zbl
[79] Finitely balanced sequences and plasticity of -dimensional Tilings, Topology Appl., Volume 205 (2016), pp. 82-87 | DOI | MR | Zbl
[80] The exponent of convergence for Brun’s algorithm in two dimensions, Sitzungsber., Abt. II, Ãsterr. Akad. Wiss., Math.-Naturwiss. Kl., Volume 207 (1998), pp. 229-238 | MR | Zbl
[81] Invariant measures for maps of continued fraction type, J. Number Theory, Volume 39 (1991) no. 2, pp. 162-174 | MR | Zbl
[82] Multidimensional continued fractions, Oxford Science Publications, Oxford University Press, 2000, viii+234 pages | Zbl
[83] Arithmetic dynamics, Topics in dynamics and ergodic theory (London Mathematical Society Lecture Note Series), Volume 310, Cambridge University Press, 2003, pp. 145-189 | DOI | MR | Zbl
[84] Topological properties of Rauzy fractals, Mém. Soc. Math. Fr., Nouv. Sér. (2009) no. 118 (140 pages) | MR | Zbl
[85] Self-affine tiling via substitution dynamical systems and Rauzy fractals, Pac. J. Math., Volume 206 (2002) no. 2, pp. 465-485 | DOI | MR | Zbl
[86] Dynamics of self-similar tilings, Ergodic Theory Dyn. Syst., Volume 17 (1997) no. 3, pp. 695-738 | DOI | MR | Zbl
[87] Uniform algebraic approximation of shift and multiplication operators, Dokl. Akad. Nauk SSSR, Volume 259 (1981) no. 3, pp. 526-529 English translation in Sov. Math. Dokl. 24 (1981), p. 97–100 | MR | Zbl
Cité par Sources :